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Introduction

The manifolds we study here are all orientable, of dimension three.

We use I-X.Y to denote a result in Perelman’s first paper, [15]; II-X.Y to denote a result in his
second paper, [16]. We follow the notations as listed in the beginning of [16], e.g. P (x, t, r,∆t) is a
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2 YU DING

parabolic neighborhood. For example, in page 1 of [16] the strong ε-neck is a parabolic neighborhood
P (x, t, ε−1r,−r2) that is ε-close to the corresponding part of an evolving S2 ×R, after rescale.

Needless to say, the readers are reading [16], and [15]; so we did not write a complete text with
all the definitions, notations, statements; the readers will find all the terminology and statement of
theorems in [16], [15].

Some of my incorrect and inaccurate interpretations, or arguments, in this notes were spotted
and corrected. But it is very likely that many more are still there. So corrections and comments are
very welcome!

From a logical point of view, the results of the second paper, [16], depends on the following
sections of the first paper, [15]: I-7, I-8, I-9, I-10, 1 I-11, I-12.1. A nice set of notes for the first paper
was written by Kleiner and Lott; see [14]. Section II-8 depends on I-1 and I-2; however we will not
get into II-8, because the major topological results and arguments are already given in II-7.

Here is a brief overview of what is going on:

Combine with the results from (especially, Sec. I-12 of) the first paper [15], in section II-1 Perel-
man gave a rough classification of noncollapsing ancient solutions with positive, bounded curvature.
Using this, one gets a good picture of the regions at which the scalar curvature R is sufficiently big:
near such point the manifold looks like either a tube, or a cap, or a compact manifold with positive
curvature that is classified by Hamilton’s work [8]. These possibilities, especially the tubes and the
caps, are called the canonical neighborhoods.

In particular, in section II-3 Perelman pointed out that the singularity looks like the tip of a horn.
The other end of this horn may be another horn, or a cap, or a noncollapsed manifold. The idea
of surgery is, wait till singularity happens, then break the tip of the horn and glue in a cap, i.e.,
smoothing off the horn tip. Genericly, the reason we get a horn as singularity is, the metric pinched
off at the center of a long, thin tube at the singularity time, and thus produces a pair of horns. So
surgeries are just breaking off connect sums, or remove an S2 × S1 from the prime decomposition.
In particular, we can recover the topological information.

After each surgery, the manifold may become disconnected. We throw away any connected com-
ponents that are diffeomorphic to a space form with positive curvature, and consider the remaining
components individually.

In section II-2 Perelman constructed a standard solution; that is, the added cap which we want
to glue in during a surgery. Roughly speaking, we need some control of the added cap. In particular,
after the surgery time, we want the added cap looks like a cap (i.e. the standard solution) for at
least a short time period; that will be proved in II-4.5 to II-4.7.

The major goal of Section II-4 and II-5 is to prove the canonical neighborhood assumption,
namely, even with surgeries, one must get canonical neighborhoods at high scalar curvature regions.
Moreover, surgeries does not effect the curvature pinching of Hamilton-Ivey, [12], [13], which says
that at high scalar curvature region the negative part of the curvature is relatively small compare
with the positive part, and this improves when time goes to ∞. These two conditions are the
cornerstone of all the arguments.

The proof of these results will be completed at the end of Section II-5. Many compactness argu-
ments are involved. Roughly, the canonical neighborhood assumption has some strong implications,
e.g., the solution is noncollapsing, the added cap will look like a cap for a while after the surgery, as
mentioned above, etc. One now argues by contradiction, assume there is an earliest time that the
canonical neighborhood assumption fails, then we try to get a limit for such counter examples: the

1I don’t know where the main theorem of I-10 was used; although Claim 1 and Claim 2 (those are elementary) are
widely used.
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limit turns out to be an ancient solution which automatically have canonical neighborhoods, that is
a contradiction.

However, as time goes by, the parameters for the canonical neighborhood may get weaker; e.g.
how noncollapsed the solutions are, and when the scalar curvature R are regarded as being big.

We may keep on performing surgeries indefinitely. But the surgery times are discrete, because
within finite time intervals we remove at least a definite amount of volume at each surgery.

Section II-6 gives some crucial estimate when time t0 is big, and scale r0 is relatively small compare
with

√
t0. For example, Corollary II-6.8 says, roughly, after running the Ricci flow with surgery for

quite a long time, if at t0 a ball of radius r0 has curvature bounded below by −r−2
0 , and the volume

has a lower bound, then there is no surgery on this ball shortly before t0; and we can estimate upper
bound of curvature.

The motivation is in I-11.4-6. Think, if we don’t have an upper bound in curvature, then do a
rescale limit, we expect an ancient solution. The lower bound in volume tells us the ancient solution
should have Euclidean volume growth. But as we know (e.g. I-11.4 and so on) ancient solutions
look like a tube at infinity. Although the radius of these tubes can grow unbounded, the solution
cannot have Euclidean volume growth. That is a contradiction.

These will be used in Section II-7. Let ρ(x, t) be the biggest ρ > 0 so that on B(x, t, ρ),

Rm ≥ −ρ−2.

One want to check if the ball B(x, t, ρ) collapses, i.e.

Vol(B(x, t, ρ)) < wρ3,

for some small constant w. It turns out, if ρ is small compare with
√
t, the ball must collapse;

one can use Corollary II-6.5: noncollapsing implies a curvature bound. But now, −ρ−2, the lower
bound in sectional curvature, is too negative and the pinching estimate ask for an even bigger scalar
curvature.

If ρ is not small compare with
√
t, it might collapse; if it does not collapse, using a differential

inequality argument similar to the one in Hamilton’s nonsingular paper, [12], Perelman showed that
after rescale, the metric on that piece converges to hyperbolic metric.

Roughly, this gives a thin-thick decomposition when time is big; The thick parts converges to
hyperbolic pieces and the thin parts are collapsed. It is used here some of Hamilton’s arguments
in his nonsingular paper [12], to show the hyperbolic pieces persist and their fundamental groups
inject into the fundamental group of the whole manifold.

Finally in II-7.4 Perelman claimed that the thin part is a graph manifold, thus implied the
Thurston geometrization conjecture! This graph manifold result seems to be known to Perelman
many years ago; but it was not published. However, in a recent preprint [22] of Shioya and Yam-
aguchi, they gave a proof for this result.

We remark that in Perelman’s third paper, [17] (and the paper of Colding and Minicozzi [6]),
among other things, it was proved that after sufficiently long time, all components of the solutions
are prime. So miraculously, the Ricci flow realizes the classical prime decomposition.

1. Section II-1.2

Here Perelman rules out κ-noncollapsed, noncompact, 3-dimensional shrinking solitons with strict
positive, bounded curvature. The proof is well written, and is also explained in [14].
Remark 1.1. The first two paragraphs in the proof also rules out κ-noncollapsed, noncompact, 2-
dimensional shrinking solitons with strict positive curvature. In fact there is a positive lower bound
in sectional curvature and the manifold must be compact.
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If we don’t know the curvature is bounded, one can argue using the disc picking argument in I-10,
and get a contradiction because splitting 2-manifolds are flat. Compare with I-11.4.

In particular, there are only two types of κ-noncollapsed, 3-dimensional shrinking solitons with
nonnegative curvature:

1). S3/Γ with standard metric, i.e. a space form with positive curvature.

2). S2 ×R, or S2 ×R/Z2, where the group Z2 action is

(x, t) 7→ (−x,−t).

Topologically, S2 ×R/Z2 is R+ × S2 with the end glue to RP2 by projection S2 → RP2; or, in
another word, remove a closed ball B3 from the project space RP3.

In fact, 1) is the only case with positive curvature. The compact case is proved by Ivey [13];
the noncompact case is ruled out here in II-1.2. When the curvature is not strictly positive, by
Hamilton’s maximum principle, the solution splits. Locally it is R times a two dimensional ancient
solution. By I-11.3, the only two dimensional noncollapsing ancient solution is S2 with the standard
metric. So our solution is S2×R or its quotients. If the quotient is compact, let time go to −∞, we
see only the S2 direction expands, so the solution is not κ-noncollapsing (it is not a soliton anyway).
On the other hand, all possible noncompact quotients of S2 ×R are listed in 2).

2. Section II-1.3

Roughly we now have a classification of κ-noncollapsed ancient solutions with nonnegative,
bounded curvature in dimension 3. We write down the classification here by looking at their asymp-
totic soliton (compare I-11.2).

Case one: The asymptotic soliton is S3/Γ.

Then by [8], the ancient solution must be S3/Γ itself, with constant positive curvature.

Case two: The asymptotic soliton is S2 ×R, or S2 ×R/Z2. We have :

2a). The solution does not have strictly positive curvature. Then as before (I-11.3), we see the
solution is S2 ×R, or S2 ×R/Z2 by the strong maximum principle.

2b). If the solution has strictly positive curvature and not compact, we know it is diffeomorphic
to R3 by the soul theorem; it can not have Euclidean volume growth by I-11.4. In fact, one can
show that at infinity the solution looks like a tube; this is based on I-11.7 and an application of the
splitting theorem.2

2c). If the solution has strictly positive curvature and compact. We assume the curvature is not
constant; i.e. not as in case one. We know it is diffeomorphic to a space form by [8]. We claim in
this case it could only be S3 or RP3:
Lemma 2.1. If a κ-noncollapsing ancient solution has positive bounded curvature and is compact,
and the curvature is not constant, then it must be diffeomorphic to S3 or RP 3.

Proof. Since the solution, M , is not of constant curvature, we know the asymptotic soliton can only
be S2 ×R, or S2 ×R/Z2.

This means, at some ancient time tα, there is a long tube in the solution. Since π1(M) is finite, if
we break the tube at one center sphere S2 the solution will be disconnected: it became two manifolds
Mα

1 and Mα
2 .

2Here in dimension 3, it is conjectured the radius of the tube goes to ∞ when we travel away from the base point.
In another word, R→ 0 at the space infinity.
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We observe, that the structure of Mα
1 is, a long tube connect to a compact manifold Eα1 ; if we

rescale the scalar curvature at any point of Eα1 to 1, the diameter of Eα1 is bounded by a universal
constant D. This is basically proved in I-11.8; except that, there is a possibility that another tube
connects to Eα1 . But this is ruled out by the following principle:

A compact set E in the sense of I-11.8 can not connect to two tubes.

Otherwise, E is now on the middle of a long minimal geodesic. Using a compactness argument
based on I-11.7, combine with the Toponogov-Cheeger-Gromoll splitting theorem, we see E itself
must be a tube.

Take Mα
1 . Assume pα is the point on Mα

1 that has maximal distance to the S2 at which we broke
the tube. So pα ∈ Eα1 . We rescale the curvature at pα to be 1 and take a pointed Gromov-Hausdorff
limit at pα when tα → −∞, this is possible by I-11.7. So by I-11.8 we see no topology of Mα

1

will “slide to ∞” when we take limit. In particular, Mα
1 will be diffeomorphic to the limit for α

sufficiently big.

By construction, we know the structure of M∞ is to attach a half tube to a compact manifold
E∞1 with a definite diameter control. In fact, the proof of the soul theorem tells us, the topology
must all be on one side of the tube; one checks that the totally convex set in that proof can not
contain any tube points. So E∞1 contains all the topological information of M∞1 .

The limit, (M∞1 , p∞) is clearly a complete manifold with nonnegative curvature. And p∞ can not
be on a tube by construction. It is itself an ancient solution. Now apply the soul theorem. Notice
π1(M∞1 ) is finite, so the soul can only be a point, or S2, or RP2. That is, it is diffeomorphic to one
of the following:

1). R3;

2). S2 ×R;

3). RP3 −B3.

2) is ruled out because p∞ can not lie on the middle of a tube by the choice of pα. So we only
have 1) and 3) as possible M∞1 .

However, the limit of Mα
1 and Mα

2 can not be 4) at the same time, because that implies π1(M) =
Z2 ∗Z2 is infinite. So at least one of Mα

1 and Mα
2 is diffeomorphic to 1); and the other diffeomorphic

to either 1) or 4). That proves our lemma. �

So the structure of this solution may be two caps connected together, and at least one of the caps
is B3.

3. II-1.4

All the cases, 1, 2a, 2b in the previous sections have examples. The example for 2b is the Bryant
soliton (Bryant himself did not publish a paper about this soliton, but one can read the papers of
Ivey for some examples).

In this section an example was given for case 2c. Compare with the arguments in II-2, Claim 4.

4. II-1.5. Definition of canonical neighborhoods

In dimension 3,

Lemma 4.1. There exist κ0, so that for all κ, any κ-noncollapsing ancient solution with bounded
curvature is either a κ0-solution, or a metric quotient of the round sphere.
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Proof. If the ancient soliton is a space form, we know the solution is itself a space form (that could
be very collapsed).

Otherwise, the ancient soliton contains a tube. We follow an argument in I-7.3; if the solution is
very collapsed at p, we get a small Ṽ . As in the proof of I-11.2, there is a curve from p to a very
ancient point q where l ≤ 3/2; and near q the solution looks like a tube; the curvature of which
also behave like a tube. So near q we get a definite lower bound in Ṽ . That contradicts to the
monotonicity of Ṽ . �

Remark 4.2. Here one should notice, the quantity Ṽ is invariant under simultaneous rescale of
distance and time, i.e. Ṽ is a quantity with no dimension. In particular we can compute Ṽ at an
ancient time using bounded τ , say τ ∼ 1, thanks to the rescale allowed by I-11.2. This is however not
possible in general situations, there because of the factor τ−n/2 in Ṽ , one gets very weak conclusion
of noncollapsing when time is very big.

Then we have inequality (1.3):

Lemma. On κ-solutions |∇R| < ηR3/2, |Rt| < ηR2.

Proof. This is automatic for space forms.

On the other hand, by the proof of I-11.7 we know curvature stay finite within finite distance
for a κ-solution; the bounds depend on κ. Now we know apart from space forms, κ-solutions are
κ0-solutions; so we can bound curvature on a ball with canter (x0, t0) of radius R(x0, t0)−1/2 by

R < CR(x0, t0).

The Harnack inequality tells us this is also a bound on a parabolic neighborhood. So we can use
Shi’s gradient estimate, [18], [19]. (Note Rt is bounded by |∇∇R| and R since Rm ≥ 0). �

Remark 4.3. . The η in (1.3) does not depend on κ.

Remark 4.4. In [16], it was not written explicitly that an ε-cap should be ε-close to a piece of
ancient solution; it seems one can impose this requirement as we will do below, or one just follow
[16]. What is important are the following properties of any piece E of ancient solutions:

i). If E contains a minimal geodesic of length ε−1, and R = 1 at the midpoint p of this geodesic,
then it contains a tube centered at p.

ii). If E does not contain any tube, then DiamE < ε−1/2 if we rescale the scalar curvature R at
any p ∈ E to 1.

iii). The gradient estimate II-(1.3) works on E.

For ancient solutions, i) is proved by compactness: if not, we take a limit of counterexamples, this
is possible by I-11.7. The limit splits, by the Toponogov-Cheeger-Gromoll splitting theorem. So the
limit itself is a tube (by I-11.3). That is a contradiction. Here certainly ε−1 should be sufficiently
big. This type of almost splitting theorem is very useful.

ii) by I-11.8;

iii). is just proved above.

It is these properties that are used in the later proofs.

Finally, Perelman discussed (although not explicitly mentioning the name) the canonical neigh-
borhood in II-1.5. This is a very important notion, so we state it here:
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There exist a number r > 0, so that for any κ-noncollapsing solution 3 of Ricci flow without
surgery on compact manifold M with |Rm| ≤ 1 at time 0, whenever

R(x, t) > r−2,

at some point (x, t), we have one of the following possibilities:

(a). We rescale the parabolic neighborhood, P (x, t, ε−1R(x, t)−1/2,−R(x, t)) by R(x, t) and do the
corresponding time-rescaling, and move t to 0; so we get a parabolic neighborhood P (x, 0, ε−1,−1).

Then P (x, 0, ε−1,−1) is ε-close to P (p, 0, ε−1,−1), here P (p, 0, ε−1,−1) is a parabolic neighbor-
hood in the standard evolving S2 × R which has scalar curvature 1 at time 0. Here and below,
ε-close is in Cε

−1
topology.

This possibility is called a strong ε-neck.

(b). We rescale the ball B(x, t, ε−1R(x, t)−1/2) by R(x, t) so we get a ball B(x, t, ε−1).

Then the ball B(x, t, ε−1) is ε-close to a piece of an ancient solution (at some time) and is
diffeomorphic to either the solid ball B3 or RP3 −B3. Moreover, the set B(x, t, ε−1)−B(x, t, C) is
ε-close to a piece of S2 ×R with constant scalar curvature C−1 < R < C.4

This possibility is called a ε-cap.

(c). The ball B(x, t, ε−1R(x, t)−1/2), after rescale the metric by R(x, t), is ε-close to an ancient
solution (at some time) and is diffeomorphic to S3 or RP3.

(d). The ball B(x, t, 10R(x, t)−1/2), after rescale the metric by R(x, t), is ε-close to a manifold
with constant sectional curvature 1/6.

Neighborhoods defined by (a), (b), (c), (d) are called canonical neighborhoods. However, to
prepare for the surgeries, we also want to include in the definition of canonical neighborhoods one
more possibility (e), which is similar to (b):

(e). We rescale the ball B(x, t, ε−1R(x, t)−1/2) by R(x, t) so we get a ball B(x, t, ε−1).

Then the ball B(x, t, ε−1) is diffeomorphic to the solid ball B3. Moreover, the set B(x, t, ε−1) −
B(x, t, ε−1/2) is ε-close to a piece of S2 × R with constant scalar curvature C−1

1 < R < C1; the
whole ball B(x, t, ε−1) is ε-close to the standard solution (Defined in II-2) at some time t < 1; after
suitable rescale.

Remark 4.5. The reason I add this possibility (e) is, the standard solution is generally not close
to an ancient solution; see the discussion of II-2-Claim 5 in this notes.

It seems possibly to relax the definition of canonical neighborhoods a little, for the caps; we can
allow metrics other than we mentioned above as long as the metric on the cap is of nonnegative
curvature, close to a cylinder near boundary, satisfying gradient estimate of R and the almost splitting
theorem, i.e. “point on a long geodesic lies on a tube”. I learned this from Prof. Lott.

In fact there exists a canonical neighborhood parameter r > 0 so that the above is true for
smooth solutions; (e) is not necessary in this case. This is proved by I-12.1 and the classification of
ancient solutions; as we have seen from II-1.3.

For example, we explain that category (b) appears in the following situation: By I-12.1 we know
near (x, t) there is a neighborhood that is close to a piece of an ancient solution; we assume it does
not fall into categories (d), (a), (c). So the ancient soliton is S2×R. Now since B(x, t, ε−1) is quite
big (diameter about ε−1), it contains a long minimal geodesic; near the middle of the geodesic the

3Not just ancient solutions; thanks I-12.1. κ-noncollapsing is alway true for some κ in finite amount of time by
I-7.3.

4C is the constant in I-11.8.
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ancient solution looks like a tube by a compactness argument; as we have seen in II-1.3. Since we
ruled out case (a), (x, t) is not in this tube. So (x, t) lies in a compact set E in the sense of I-11.8,
that compact set has diameter smaller than ε−1/2 by I-11.8. The remaining part, B − E, must all
be a tube because: i. we ruled out case (c); and ii. on a single ancient solution one can not have a
tube connect to a compact set in the sense of I-11.8 which leads to another tube, see the discussion
of II-1.3 of this notes.

Remark 4.6. I don’t know precisely the possible shapes of a cap. But roughly, its head can not be
“fat”.

Precisely, let’s rescale the scalar curvature at any point on the cap to be 1. Remember the part
of a cap that is not on a tube is a compact set E in the sense of I-11.8; it is attached a tube with
length roughly ε−1 � C, where C is the constant in I-11.8. So let r0 be the radius of the tube and
r0 is comparable to 1, as we have seen above. “Not fat” means the following:

The volume of any ball of radius up to Cr0 is no more than 1 + ε′ times the volume of a ball with
same radius on the tube.

The proof uses volume comparison with base point far away on the tube. Yau used this argument
to show that a noncompact manifold with nonnegative Ricci curvature has at least linear volume
growth. See [23] for an account of this.

About the final remark in II-1.5: we should point out, in case (c), the whole manifold is a compact
set in the sense of I-11.8. One might think that it could be that caps being connected by a long
tube; as we have seen in II-1.3, but in that case we don’t classify it to (c), we classify it to made up
of two pieces of type (b) and one or more pieces of (a). So the scalar curvature bound follows from
I-11.8.

The volume bounds for (a), (b) follows from the fact that, the neighborhood contains a piece of
tube.

The volume bound for (c) follows from κ0-noncollapsing of ancient solutions that is not space
forms.

The sectional curvature lower bound for (c), follows from a compactness argument: if not, we can
take limit for counter examples; then the limit splits. Thus we see some counterexample contains a
tube; so we should not have classified the solution into category (c).

5. Section II-2

In this section Perelman constructed a standard solution. This is a solution of the Ricci flow,
whose initial data looks like a cap, and shapes like a cylinder at infinity:

S2

We will give a more precise construction in our review of II-4.4, for now it is enough to know
that at time 0 the solution is like the above picture, it is radial symmetric and with nonnegative
curvature.
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By Shi’s theorem ([18], Theorem 1.1), we know the standard solution exits for a while, and we
have curvature control.

Exercise 1. Prove, under suitable assumptions, if the curvature operator is nonnegative at t = 0
on a noncompact manifold, then the (unique ?) solution of the Ricci flow preserves this.

Answer: See [19], Theorem 4.14. It is not trivial.

Claim 1.

I prefer to work with forms, i.e. the dual of vectors.

For any one form u(t) that evolves under the Ricci flow by

u′(t) = ∆tu+ b,

where ∆ = ∇2
ei,ei , b is a (time dependent) one tensor, we compute

(∇u)′t(X,Y ) =∆∇u(X,Y ) +∇Xb(Y ) +∇X Ric(Y, ei) · u(ei)

+ 2∇eiu(ej) ·R(ei, X, Y, ej)−∇eiu(Y ) · Ric(X, ei).

Here ∇u(X,Y ) = ∇Xu(Y ); and R(ei, ej , ej , ei) is the sectional curvature (opposite to Hamilton’s
notation). So if we make5

u′(t) = ∆u− Ric(ei, ·)u(ei),
we get, (let vi,j = ∇iuj) for an orthonormal frame,

v̇ij = (∆v)ij + 2Rikljvkl −Rikvkj −Rkjvik.

Note, unlike the formula in [9], here the frame i, j, k, l is fixed.

We now show that the center of the cap is the unique zero of any Killing field for any time; first,
there exists a zero any time: We consider the Busemann function associated to a ray γ:

B(x) = lim
s→∞

d(x, γ(s))− s.

Lemma 5.1. All Busemann functions are the same, up to adding a constant.

Proof. We need to use II-2, Claim 2, whose proof does not depend on the discussion here. That says
at space infinity, the solution looks like a tube.

First assume there are two rays from p, and we want to compare the two Busemann functions
associated with these two rays. One can start by showing that all points on an S2 on the tube
far away have almost the same distance from p. When trying to compare the distances from p to
x, y ∈ S2, one gets a very thin triangle pxy with two angles at x and y almost equal to π/2. Then
the Toponogov triangle inequality tells us d(p, x) ≈ d(p, y). In particular these S2 gets more and
more close to being level surfaces of the distance function to p. The conclusion then follows easily.

The general case is similar, also because eventually rays go into a tube with definite radius. �

By the proof of the Cheeger-Gromoll soul theorem, we know there is a unique maximal point of
the Busemann function. An isometry moves a ray to a ray, in particular, it does not change the
Busemann function. So it does not change the unique maximum point. So we have at least one
common zero for all the Killing fields.

Let Z(t) be the common zeros of all the Killing fields at time t. So Z(t) is a closed set and ∪tZ(t)
is closed in space-time. Assume p is a limit point of the common zeros of all the Killing fields, when
t→ t+0 .

Lemma 5.2. If u is a Killing form, u = 0 at p, then ∆u = 0 at p.

5A typo here?
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Proof. Compute using normal frame ei at p:

∆u(ej) =∇ei∇eiu(ej) = ei(∇eiu(ej))

=− ei(∇eju(ei)) = −∇ei∇eju(ei)

=−∇ej∇eiu(ei) + u(R(ei, ej)ei) = −ej(∇eiu(ei)) = 0.

�

Very roughly, this tells us zeros of Killing fields moves with speed 0 in space direction.

Now notice, if one direction is not contained in Z(t), there is a Killing field which rotates that
direction with a nonzero angle. Combine this with the above lemma, we see

d

dt

∣∣∣
t=t0

sup
z∈Z(t)

(dt(z, Z(t0)) = 0.

Here a superscript t means we use the distance at time t. We can also run the above in reverse time,
so we conclude that Z(t) does not depend on time t. At time 0 it is a single point p, the center (or
head) of the cap. So p remains the unique common zero for all Killing fields.

Consider the set Sr = {x|d(x, p) = r}. It is fixed by all Killing fields. Also the set of isometries
act transitively; this is trivial for sufficiently small r, so then it is true for all bigger r.

Moreover, p is a pole: every geodesic from p is a ray, there is no conjugate points.

That proved Claim 1.6

We can apply the similar method in studying rays from the pole p, each ray is the zero of a
particular Killing field, and vice versa (note a Killing field induces a degree 1 map from Sr to itself,
so it must have fix points on each Sr). So actually these rays remain to be rays all the time.

Claim 2.

This follows from a compactness argument. We move to infinity in space; and find a limit by
Shi’s theorem [18], and Hamilton’s compactness theorem [10].

The limit has initial data exactly S2×R; and we claim that initial data has unique solution; the
S2 factor shrinks to a point at time 1.

This need a curvature bound. It is provided by [18]. Also need the fact that positive curvature
operator is preserved, see [19], theorem 4.14.

First, the curvature can not be strict positive by the splitting theorem. By the strong maximum
principle7 the solution splits all the time. Moreover, the split direction is invariant in time. So the
solution is just the standard S2 ×R as we expected.

In particular, the compactness argument tells us the standard solution get singular no later than
t = 1. In fact, assume some parts survives at time 1, we see near time 1 the infinity is very thin
tubes, that violates the volume comparison, as we have seen many times.

Remark 5.3. A warning: for an n-sphere with constant sectional curvature 1, the time it takes to
go singular is 1/(2n− 2), not 1. See [11].

A useful byproduct is, we get explicit control of all derivatives of curvature, even near t = 0. In
fact, we have control of these explicitly at space infinity by Claim 2, so in particular, we get some

6It seems one can prove Claims 2, 3 without using Claim 1. Then the uniqueness result, Claim 3, implies Claim 1.
7See, by [9] section 8, this strong maximum principle is a local one.
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uniform bound on the whole manifold. Then notice the evolution equation (see [8])

(|∇dRm|2)′t = ∆|∇dRm|2 − 2|∇d+1Rm|2 +
d∑
i=0

Ci(∇iRm,∇d−iRm,∇dRm),

where Ci means a suitable contraction. Now we can carry the maximum principles on compact
manifolds (see, for instance, [5], compare with [19]) and get explicit bounds for derivatives of the
curvature Rm. This is stronger than the theorem in [18] could offer, it will be used in the proof of
the next Claim.

Claim 3.8

We use the “linearized Ricci flow”; that is DeTurck’s trick, there one modifies the Ricci flow by
a certain diffeomorphism so that the Ricci flow becomes a strict parabolic equation. See [2], or the
Appendix to this notes for more details. We can do the diffeomorphism thanks to Claim 2.

Precisely, we solve equation (31.8) in the Appendix to this notes.

The important thing is, the linearization of the modified Ricci flow equation (see the Appendix)
is now a linear parabolic equation

d

dt
hij = ∆hij + 2Rkijlhkl −Rikhkj −Rjkhki.

Here Rijji is the sectional curvature.

Exercise 2. Why is this equation the same as the Killing field equation in Claim 1?

Assume g(t) is a solution; and g(t) + v(t) is also a solution, with the same initial data; v(0) = 0.
Note by the gradient estimate of [18], [19], and our remark at the end of Claim 2, we can control all
the derivatives of curvatures of these solutions.

We compute, by integrating the linearization equation,

v′(t) = ∆vij + 2Rkijlvkl −Rikvkj −Rjkvki + εvij + ηk∇kvij + θab∇2
abvij ,

here ε, η, θ goes to 0 as t → 0. Pick any set B so that ∂B is almost a standard S2 far away on the
tube. We compute(∫

B

|v|2
)′

=2
∫
B

v(∆v + ...+ εv + ηk∇kv + θab∇2
abv + Cv + Ei∇iv) + C(R)|v|2

≤ε+
∫
B

−2|∇v|2 + Cv2 + Eiv∇iv + v(ηk∇kv + θab∇2
abv)

≤ε+
∫
B

Cv2

Here Cv + Ei∇iv in the first line comes from variation of volume form; the last term in the first
line comes from variation of metric and volume. ε on the beginning of the second line comes from
the boundary term of integrate by parts and Claim 2; in the last line, all the remaining terms are
absorbed into the v2 integral, or cancelled with the −2|∇v|2 integral; one checks this by the standard
inequality 2ab < εa2 + ε−1b2 and integrate by parts; one can use partition of unity here because the
metrics are basically the same. So∫

B

|v|2
∣∣∣
t
≤
∫
B

|v|2
∣∣∣
0
eCt + ε

∫ t

0

eC(t−r)dr = ε

∫ t

0

eC(t−r)dr.

8It appears to me that this proof can be done without using Claim 1. The idea behind is the following: By Claim

2, all solutions differ by some 2-tensor h in the Schwartz class S. But if one solves the linearizion equation of the
Ricci flow (after doing the DeTurck trick) within S, the solution is unique by standard energy estimate for parabolic

equation. Then perhaps several tools are at hand, e.g. implicit mapping theorem, contract mapping theorem, etc, to
conclude uniqueness.

Nevertheless, the conclusion of Claim 1 is used in II-4.4 to construct surgery, at least implicitly.
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By Claim 2, ε→ 0 if we make the set B exhaust the manifold. So∫
B

|v|2
∣∣∣
t

= 0,

the solution is unique.

Claim 4.

One need to check, the standard solution actually exists on [0, 1).

First we construct the solution via compact manifold: take a long tube and add two caps on the
two ends and run Ricci flow. We can make the tube longer and longer and take limit at the center
p of one cap, thus we get a solution.

Assume the solution get singular at T < 1. We observe, when d0(x, p) is sufficiently big, in fact
the solution extends to any T ′ < T near x. This is because, by Claim 2, for x far away, the solution
evolves like a tube.

But notice, by our construction, the solution is the limit of compact solutions; in particular, the
canonical neighborhood assumption (see II-4.1 for definition, and II-1.5, I-12.1 for proof) works. So
if we choose T ′ in the previous paragraph sufficiently close to T , we get a curvature bound near x
for all time t ∈ [T ′, T ) by the gradient estimate II-(1.3). So the solution extends smoothly to T near
x.

For fixed T , if singularity appears somewhere, it lies within finite distance to x (the “end” direction
looks more and more closer to a tube so there will be no singularity). We now argue using Claim 2
of I-12.1: note the curvature is positive, so near singularity the metric looks like a piece of non-flat
cone; this works because the solution is the limit of compact solutions so we can use the canonical
neighborhood assumption, e.g. high curvature region at the middle of a minimal geodesic looks like
a tube, etc. So we get a contradiction to the strong maximum principle, see [9], or [14] on I-11.4;
the argument is local.

Remark 5.4. . One can also argue using I-10.1, as written in the paper. I don’t feel this is
unavoidable; in any case we must use the canonical neighborhood assumption to make the argument
in I-12.1 work.

Claim 5.

This claim says that the standard solution satisfies the canonical neighborhood assumption (see
II-1.5 and II-4.1). There is a slight abuse of the terminology because here what it means is, the
standard solution is close to parts of ancient solutions (thus canonical neighborhood) even if the
curvature is not big, e.g. for time near 0. What we have in mind is, in doing surgeries we will glue
(the head of) a standard solution to a broken horn; there we have to rescale the standard solution to
the surgery scale, h. Then the curvature will be around h−2, which is big, and we want the canonical
neighborhood assumption.

One by-product of Claim 4 is, the standard solution will go singular at time 1 everywhere, i.e. it
is not possible that some parts go singular while other parts remain smooth.

First, we prove the claim for time close to 1, the canonical neighborhood assumption holds ev-
erywhere on the standard solution. In fact, when time close to 1 the curvature R must be big
everywhere on the standard solution. This is because, first, the standard solution goes singular
everywhere near time 1 as we observed, and, second, the standard solution is the limit of compact
solutions as in Claim 4, so it satisfies the canonical neighborhood assumption (see II-1.5) and es-
pecially the gradient estimate II-(1.3), so we can not have low curvature region near time 1. So
the canonical neighborhood assumption for compact manifolds applies everywhere to the standard
solution when time close to 1.
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For smaller time, we observe the following: There exist D > 0 so that if a point q of the stan-
dard solution lies at the middle of a minimal geodesic of length at least D, then there is a tube
neighborhood of q. Because we now stay away from time 1, this follows from Claim 2.

On the other hand, for the set of points not on a tube, first we get an upper bound for its diameter,
by a compactness argument. 9 Then because we work away from time 1, we get some curvature
bounds, in particular, a bound of Rmax/Rmin. Then we have the gradient estimate II-(1.3) (perhaps
we need to increase η in II-(1.3) a little). That is all we need for canonical neighborhood 10 ; see the
discussion of II-1.5 in this notes.

Remark 5.5. However, we have some points with a neck neighborhood, but not a strong neck
neighborhood. For example, at time 0, the points far away is a tube, but the solution is not defined
before 0 (by the strong maximum principle). This is not a serious trouble, because if we do surgery,
it will automatically become a strong neck; see II-4.4.

The last inequality,
Rmin ≥ const · (1− t)−1,

for time not close to 1, it follows from Claim 2: this works at the space infinity; for the remaining
compact set, there must be some constant “const” works for the above.

For time close to 1, we know the standard solution is a cap-like set H attached to a long tube;
H is a compact set in the sense of I-11.8; so by I-11.8 it is enough to prove the curvature estimate
on the tube part. We argue by contradiction. If the estimate is not true, then for tN → 1 we have
some tubes EN with

R <
1

N(1− tN )
.

For a true tube with R = 1/N(1− tN ), the time it takes to go singular is N(1− tN ). If we start
the clock at tN , at time 1, such a tube has scalar curvature

R =
1

(N − 1)(1− tN )
.

So go back to the standard solution. Let N →∞, we rescale EN and take limit; like the proof of
II-2 Claim 2 we see the limit is the standard tube.

This implies, for sufficiently big N , the standard solution will have some smooth part at time 1,
that contradicts to the proof of II-2 Claim 4.

This establishes the curvature estimate.

Remark 5.6. As an alternative proof, one can use volume comparison because the estimate is true
at space infinity.

Remark 5.7. The singularity of the standard solution should be of type II, in particular, one cannot
get a similar upper bound for Rmax. But I don’t know how to prove it.

6. Section II-3

Here Perelman gave a clear picture of the manifold at the first singular time, based on II-1.3
through II-1.5.

9This is not based on I-11.8 because the curvature is not big enough.
10The standard solution can not extend before time 0 because it contains some 0 sectional curvature at t = 0. So

the head piece of the standard solution at time 0 is not close to a piece of ancient solution if we don’t design the head
very carefully. But this does not effect later arguments.
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Roughly, pick ρ � r, where r is the canonical neighborhood parameter, so that there may be a
domain Ωρ on which curvatures satisfying

R ≤ ρ−2,

at the singular time. There could be one or many pieces of Ωρ, possibly disconnected, or connected
by ε-tubes (an ε-tube could have both ends on the same Ωρ component).

Note Ωρ is compact. In fact, by II-(1.3) (see also Claim 1 of II-4.2) and the κ-noncollapsing, every
metric ball of radius ρ in Ωρ has a lower bound in volume of size ρ3.

Besides these, there could be fingers (i.e. ε-caps or ε-horns) that grows out of some Ωρ; also,
there could be some pieces with high curvature everywhere, i.e. capped ε-horns and double horns.
11 At an earlier time, all pieces are connected together with tubes; at the singular time, the middle
of some tubes will pinch off, thus generates two horns on each side at the singular time. It is not
ruled out that a cap happens to pinch off in the center and generates a single horn, i.e. a degenerate
neck pinching. 12

Ωρ

Ωρ
Ωρ

ε-capε-tube

ε-tube

double ε-horn

ε-horns

ε-horn

capped ε-horn

The argument here is clear in view of II-1.3, II-1.5. One just travels along a long, thin tube to
see what happens at the ends, one either reaches a region with relatively low curvature, i.e. Ωρ, or,
a cap, or a horn where the curvature grows to infinity possibly in finite or infinite distance. One
can not get a tube extends to space infinity without forming a horn because the volume then will
be infinity.

For example, if the solution is covered by canonical neighborhoods, then it could be diffeomorphic
to a space form with positive curvature; otherwise, it contains a tube piece. Trace down the tube as
see what we meet, we get either S3, RP3, RP3#RP3 (meet caps on each end), or S2 × S1 (meet
itself at the ends; note we assume our manifolds are orientable).

11It might happen that there are infinitely many double horns.
12The Behavior of the standard solution seems to be evidence against the degenerate neck pinching.
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We explain why singularities must look like horns. This is because there exist a minimal geodesic
γ from regular part to any singularity. Because the gradient estimate II-(1.3) and the canonical
neighborhood assumption, sufficiently close to the singularity the curvature R must be big (i.e. no
oscillation to low curvature). Then by Claim 2 of I-12.1, we see, after rescale, any points x on γ that
is sufficiently close to the singularity lies on the middle of a long minimal geodesic (just the rescale
of γ), and by a compactness argument we see the canonical neighborhood of x must be a tube. This
tells us, the “path” to a singularity is a tube. We trace γ along this tube toward the singularity and
find out that this tube will eventually hit a horn singularity, where R becomes infinity.

I used to think that a horn must have infinite diameter. With nonnegative curvature, using
Hamilton’s maximum principle, it is true we can not reach infinite curvature within finite distance;
but this does not work for arbitrary curvature. In fact one can see the very recent example of neck
pinching worked out by Angenent and Knopf.

7. Section II-4.1

Having a clear picture of what is happening at singular time, the basic idea is, we do surgery to
round off the tips of horns, and continue running the Ricci flow.

It was not explain in II-4.1 how to do surgery. The section starts with an abstract notion of
“Ricci flow with surgery”:

Definition 7.1. A Ricci flow solution with surgery runs on [0, T ], with 0 = t0 < t1 < t2 < ... <
tm < T ; on [tk−1, tk) the soliton is a solution Mk−1(t), t ∈ [Tk−1, tk) of the Ricci flow in the usual
sense, and this solution converges to a singular manifold Msing

k−1 when t→ tk. There are some subsets

Ω1
k−1, ...,Ω

N(k)
k−1 ⊂M

sing
k−1 , each of which is a smooth manifold with boundary. The Ricci flow solution

with surgery at the moment tk is a compact, not necessarily connected manifold Mk(tk); the disjoint
union of Ω1

k−1, ...,Ω
N(k)
k−1 is isometricly embedded into Mk(tk).

We require the Ricci flow solution with surgery satisfies the following a priori assumptions:

1). Curvature pinching: there exist a decreasing function φ > 0 with φ→ 0, as x→∞, and

Rm ≥ −φ(R(t+ 1))R.

2). Canonical neighbor assumption. There exist r(t) > 0 depends on time t only, so that
whenever at some point (p, t) R > r−2, there is a neighborhood around (p, t) as described in II-1.5.
13

Remark 7.2. . We keep in mind, when t → tk the solution gets singular; horn singularities will
develop. We will remove the tips of the horns at time tk; the remaining (good) parts are the sets
Ω1
k−1, ... When we glue in the added caps (see II-4.4) we get the manifold M(tk).

Remark 7.3. We will define surgery later. But at this moment, we should keep in mind that
surgeries happen at regions with very high curvature, roughly h−2 � r−2, where r is the canonical
neighborhood parameter. Also surgeries add a cap-like part (the standard solution) to the solution.
So whenever we can control curvature by a reasonable bound we can rule out surgeries; if we can
rule out cap type canonical neighborhood we can also rule out surgery for some time before; see for
example II-4.3. There will be many other examples later.

Remark 7.4. . Clearly the topology could change at the moments tk. Also, the two a priori
assumptions hold for solutions without surgeries, i.e. the solution to Ricci flow in the usual sense.
1) is proved in Hamilton’s nonsingular paper [12]; 2) is proved in I-12.1.

13See the discussion of I-1.5 in this notes.
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Remark 7.5. The pinching estimate above is in fact copied from II-(5.1), here R(t+ 1) means “R
times (t+ 1)”. In [12], it is proved that

R ≥ X(logX + log(t+ 1)− 3) = X log
(
e−3(t+ 1)X

)
,

whenever X > 0; here −X < 0 is the smallest sectional curvature; we need X(0) ≤ 1. We explain
two versions of II-(5.1) from Hamilton’s theorem. Below φ means (could be different) function(s)
with limx→∞ φ(x) = 0.

First we get a simple version without the time factor: R ≥ X log(e−3X); that implies if R is big,
then X, the negative part of Rm is small compare with R; we have Rm ≥ −φ(R)R for R� 0, where
e3e1/φ is the inverse function of y = x log e−3x. So limx→∞ φ(x) = 0. This is the more classical
version of pinching estimate.

Next, assume E = R(t+1) is big. Then if R big, we can use the previous case to show φ is small.
Otherwise, (t + 1) = E/R is big. If log((t + 1)X) > N , then −X ≥ −N−1R, so Rm ≥ −N−1R.
Otherwise, we also have

−X ≥ −eNR/E > −N−1R,

if E is big enough (depends on N). Thus

Rm > −φ((t+ 1)R)R,

if (t+ 1)R is big; φ is some (other) function with limx→∞ φ(x) = 0.

In Sections II-4 and II-5 Perelman proved the existence of such solution with suitably rescaled
(so that R > −1, etc. See II-5.) initial metric at t = 0. The precise construction of the surgery is
given in Sec 4.4, and there the pinching condition 1) will be proved as long as the solution runs.

The canonical neighborhood assumption 2) has strong implications which actually help us to
construct the solution with surgery; among other things, we get κ-noncollapsing. So the strategy is,
assume t̄ is the first time that 2) fails, we extract a converging subsequence as before and conclude
that the limit actually satisfies 2), which leads to contradiction. Note 2) holds on [0, t̄], so we have
all the desired properties on this time period and so we can continue running the solution.

8. Section II-4.2

One gets some implications of the canonical neighborhood assumption.

Claim 1.

In fact, whenever the curvature is big, i.e. R(x0, t0) > r−2, we have a canonical neighborhood of
(x0, t0), on which there is a gradient estimate

|∇R| < ηR3/2, |Rt| < ηR2,

so in this neighborhood R can not grow to more than Q = R(x0, t0) + r−2.

Remark 8.1. Note this setting (put r−2 in Q) also covers the case that R(x0, t0) is not so big.

The second gradient estimate, |Rt| ≤ ηR2 follows from the estimate of ∇∇R, together with

R′t = ∆R+ 2|Ric |2.

Claim 1, as stated, works for only smooth solutions. We will see, by the construction of surgeries,
it is possible to make sense even with surgery, although there we don’t know how to define parabolic
neighborhoods, etc.

Claim 2.
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The proof is basically the same as the proof of the Claim 2 in I-12.1. As before we get a piece of
a non-flat cone as a limit. The only problem is, due to the possible presence of a surgery, we don’t
know if we can extend the time back a little and thus get a contradiction to the strong maximum
principle; see [9], or [14] on I-11.4.

However, because the singularities are all of horn type as we have seen before, the canonical
neighborhood can not be cap, or any compact manifolds; it can only be a tube (a tube can be close
to a very sharp cone). But for a tube, the canonical neighborhood assumption automatically provide
some running time back.

Remark 8.2. Claim 2 does not imply the we can not have infinite curvature within finite distance
on an arbitrary (singular) solution. However, this works if we rescaled curvature, especially when
we have nonnegative curvature.

We note, the number Q depends on A.

9. II-4.3; Lemma II-4.3

We assume that the canonical neighborhood assumption holds.

This section verifies that, on an ε-horn, the very thin part, i.e. with radius h with 0 ≤ h ≤ δρ ≤
δ2r, is actually a δ-strong tube. Here notice, a priori, we only know it is an ε-strong tube. It is
significant that δ can be arbitrarily small.

Here we require that the other end of the horn connects to Ωρ. Then we know there is a very
long distance (in its own scale) from the other end of the horn to our thin part with radius h.
This is necessary; otherwise our thin part can be the cap part of a capped horn, and the canonical
neighborhood is not a tube.

The problem here is, the presence of surgery makes it not so straightforward to extend time
back. A direct application of I-12.1 requires that the solution has been existing for a while, without
surgeries, see the statement there; then h will depend on how long the solution has been existing,
for which we have no knowledge.

Proof of Lemma II-4.3. The proof starts from the usual compactness-rescale argument. If the con-
clusion fails, we take a limit X for the counterexamples. Here we need Claim 2 for the existence of
limit; it somehow pushes the high curvature regions (thus the “ends”) to infinity. Claim 2 does not
show that the limit has bounded curvature; that is supplied by splitting, see the next paragraph.

X has two ends because we know the topology, X has nonnegative curvature by the pinching
estimate (see Remark 7.5 in this notes), so X splits; so everywhere on X the canonical neighborhood
is of strong tube type, and thus we can extend time back.

By the strong maximum principle, the splitting is preserved; so at any earlier time the canonical
neighborhood type is again of strong tube type. Here the ε-closeness, tells us at the earliest time
given by the canonical neighborhood assumption, the curvature is still big enough to guarantee the
existence of the canonical neighborhood.

Keep on doing this, we see that X is indeed an ancient solution: we know it splits all the time;
in fact, within any finite time interval [−A, 0], each time we move back in time, we get a canonical
neighborhood; so the curvature decreases like an ancient solution; the error just add up in a controlled
way, i.e. always being ε-close to tube. But since X is the rescaled limit, we can do this for ever.

So the limit is an ancient solution with bounded curvature; since we have the canonical neigh-
borhood of tube type all the time, we get some κ-noncollapsing condition. I-11.3 implies X is just
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S2 ×R, so we reached a contradiction, because at t = 0 the solution is not just δ-close to a tube, it
is exactly a tube. �

10. II-4.4: the surgery

We make more precise the construction of the standard solution. Start from the standard metric
on S2 ×R, denote by z the coordinate on R direction. We put a conformal factor e−2f(z) on the
metric, where

f(z) =
{

0, if z ≤ 0,
e−p/z, if z > 0 and z small .

p > 0 is a real number. We only care for small z; for bigger z we can use a warped product metric
to close the tube and make a cap, on that part we can guarantee positive sectional curvature.

Remember, if we take g̃ = e−2fg, we see

R̃m =e−2fRm+ e−2f (df ◦ df)� g − 1
2
|df |2e−2fg � g + e−2f Hessf �g,

where � is the Kulkarni-Nomizu product; see Besse’s book. Precisely,

R̃ijkl =e−2fRijkl + e−2f (fjfkgil − fjflgik − fifkgjl + fiflgjk) + |df |2e−2f (gikgjl − gjkgil)

− e−2f (Hessf (i, k)gjl −Hessf (j, k)gil − gjk Hessf (i, l) + gik Hessf (j, l)),

Now if ∂i, ∂j , ... is orthonormal under g (at one point), then ef∂i, e
f∂j , ... is orthonormal under g̃.

So the sectional curvature is

K̃ij =e2fKij + e2f (fjfj + fifi)− |df |2e2f + e2f (Hessf (j, j) + Hessf (i, i))

=e2fKij − fkfke2f + e2f (Hessf (j, j) + Hessf (i, i))

In our tube case, first we observe that |f |, |df |, |Hessf | are all very small when z is small. So now
if Kij is not small, i.e. the i, j-plane is not too close to the R direction, then K̃ij is positive. If the
sectional curvature of a plane σ is small, then σ must contain a line close to the z direction; say i is
that direction; so j, k lies almost in the S2 direction. We compute

K̃ij =e2fKij − fkfke2f + e2f (Hessf (j, j) + Hessf (i, i))

≈e2fKij − ε2e−p/z
p2

z4
e2f + e2fe−p/z(

p2

z4
− 2p
z3

) > Kij .

Here repeated index does not mean summation; in particular, k means the third direction, pointing
roughly in the S2 direction.

This means we have positive curvature as long as, say, z ≤ 10−32. For big z, we can do a
warp product instead of conformal deform to close off the tube to make it a cap with nonnegative
curvature.

Then we notice the change in scalar curvature (in 3-dimension):

R̃ =e2fR− (n− 1)(n− 2)e2f |df |2 − (2− 2n)e2f∆f

=e2fR− 2e2f |df |2 + 4e2f∆f.

So as above, we see R increases.

Now we can carry this argument to δ-tubes, i.e. manifolds that is δ-close to standard S2 ×R in
Cδ
−1

norm: we construct the surgery. First we rescale the metric so that the radius of S2 in the
δ-tube has radius about 1. Then We just transplant z to the δ-tube and do the conformal change of
metric (and warp product type deform for bigger z). In this way we cut the tube and pasted a cap;
and overall we get something Cδ

−1
close to the standard solution.
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S2 ×R

cut here along S2

S2 with radius h

- to the tip of the horn

S2

replace by a cap

Note, the metric is very close to that of S2 ×R; so only relative size of |df |2, ∆f , |Hessf | will
change slightly; in particular, for small z. So the above inequalities implies for small z, R increases,
and the minimum of sectional curvatures at each point increases. For not so small z, we actually
get positive curvature if δ is small enough.

Also, since we do surgery at places with huge R, we see the minimum of scalar curvature is not
changed.

In conclusion, the pinching estimate (see Hamilton’s nonsingular solution paper [12])

R ≥ X(logX + log(1 + t)− 3)

is preserved; in fact it even improved a little at the surgery regions. The proof in [12] works here
without any change, because surgeries only effect regions with high scalar curvature.

11. Definition of surgery

So now we state the definition of surgery precisely:

We run the Ricci flow until a singular time, then there will be a finite number of horns with the
other end connect to Ωρ, the low curvature region; see II-3.

Besides these, there could be capped horns and double horns, we regard such pieces to be extinct
and throw them away immediately (but remember the topological information, e.g. connect sums
were broken...).

Go back to the remaining horns. Because these horns connect to Ωρ, by II-4.3 we find a surgery
radius h with 0 ≤ h ≤ δρ ≤ δ2r and part of the horn (probably close to the singularity in naked
eyes) that is δ-close to a tube at scale h.

We rescale this part by h−2 (so that we get a tube with radius roughly 1) and apply the surgery
described in the previous section of this notes. Then recover the original scale.

After the surgery, we immediately throw away any pieces that is has R > r−2 everywhere (so
these pieces are covered by canonical neighborhoods, the possibilities are: S2×S1, RP3#RP3 and
spaces diffeomorphic to some space forms with positive curvature, by II-1.5, II-3). We also throw
away all pieces that are diffeomorphic to space forms with positive curvature even if the curvature on
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these pieces are not high somewhere. 14 We then declare such pieces to extinct. (But we remember
the topological information...)

So we continue to run the Ricci flow until the next singular time and do the same thing...

As long as the canonical neighborhood assumption holds, we see the surgery times are discrete:
since the lower bound R ≥ −6 is preserved, the volume growth is controlled; but at each surgery
time, the amount of volume lost is at least h3.

Exercise 3. Find out why Hamilton used constant mean curvature foliation to work in the four
dimensional case. Why such a foliation exist and unique?

Part of the answer: See the notes of [12] in the recent collected paper in Ricci flow volume, [1].

12. Lemma II-4.5

Roughly, Lemma II-4.5 says that after a surgery at time T0, the added cap (we cut the horn and
glue in a cap that is almost a standard solution) will remain close to the standard solution for a
definite amount of time, on its own scale, with the possibility that somewhere in the direction of the
boundary of the cap pinched off at a time very shortly after T0, so that the cap “extinct”, i.e. we
just throw the resulting capped horn away.

In this section, the “center” of a cap means the “tip” of a cap; in the standard solution case that
means the pole.

Exercise 4. Will the solution be smooth, if there is a surgery somewhere far away?

Answer: Yes.

Lemma 12.1. For all θ < 1, there exists A, so that if the Ricci flow exist on [0, θ], and there is
an upper bound K in curvature over B2A(p); also assume at time 0, B2A(p) is close to the standard
solution. Then for all time 0 ≤ t < θ, BA(p) is ε-close to the standard solution.

Proof. 15 The proof uses a compactness argument. We make A→∞ and try to get a limit solution,
and show that the limit is indeed the standard solution.

The κ-noncollapsing is missing, but each time we extend time forward a little (depends on K),
so that the Ricci flow does not distort distance and volume too much because we have curvature
bounds. So we can do a compactness argument and get a limit on this (small) time interval. On
the limit, the initial data is exactly the standard solution at 0. By the uniqueness of the standard
solution, on this small time interval the limit is the standard solution. In particular, we have a
better, explicit curvature control.

In particular we can continue extend time forward until we reach θ. That proves the lemma. �

In order to apply this to prove Lemma II-4.5, we see we need δ to be very small, depends also on
A. Only this can guarantee the condition of the above lemma is satisfied.

Remark 12.2. A priori, we don’t know how long the solution exist on the added cap (i.e. would
there be singularity/surgery?).

14This is just for convenience. We don’t need to do this, in fact in [17] these pieces stays, in order to prove
extinction in finite time for certain solutions. Throw away these pieces is more of an artificial extinction than a

natural extinction.
15After reading II-2, I realized that the assumption on curvature bound here is essential. We don’t need an explicit

bound but there must be some curvature bound on the whole time interval; otherwise we don’t know if the standard

solution is unique. I believe this is the basic reason that in the proof of II-4.5 one has to go forward in steps of very
small time interval.
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Now we apply the above in the proof of Lemma II-4.5. First, the curvature bound is missing;
but we get it from the gradient estimate: |R′t| ≤ ηR2, whenever R is bigger than some r−2, which is
roughly the case here. This is implied by the canonical neighborhood assumption. So the curvature
can not suddenly grow very big.

Let Q be the maximal scalar curvature on the standard solution on time interval [0, θ]. So at
time T0, the maximal curvature on the cap is at most Qh−2 (that bound is quite generous). By the
gradient estimate,

R ≤ η−1
( 1
η−1Q−1h2 − t

)
.

So we extend time forward by ∆t ≤ εη−1Q−1h2 and get curvature control, then apply the lemma
to conclude that this part of solution is close to a standard solution. In particular, on this part of
solution, we get a better curvature control: we still have R ≤ Qh−2.

Then we repeat this argument. Each time we can extend forward the same time amount ∆t ≤
εη−1Q−1h2. Apply Lemma 12.1, each time the curvature turns out to be better than the gradient
estimate could give; after a definite number of steps, we reach h2θ.

The second part of Lemma 4.5 says, if the solution disappears at some time before T1, at one
point, it must disappear everywhere on the cap. There is only one possibility: the solution pinched
off somewhere and the cap is a part of a capped horn. This is because a cap will keep on looking
like a cap as long as the solution exits, i.e. no singularity will develop here; the part of a cap with
distance Ah to its center does not own a neck that is long enough for surgery.

13. Corollary II-4.6

This corollary says, roughly, if a curve parameterized by t ∈ [T0, Tγ ] in an added cap is long
enough (until reach a space or time obstruction), then∫ Tγ

T0

(R(γ(t), t) + |γ̇(t)|2)dt ≥ l.

This is a technical result; it will be used later to deal with the κ-noncollapsing issue. Note the
expression is similar to the L-functional in I-7.

Exercise 5. Here R should be R+?

Answer: No. In the cap, R is big by Lemma II-4.5.

Proof of Corollary 4.6. The notation is, the curve γ is defined on [T0, Tγ ].

The first case is, Tγ = T1 < T . In particular, T1 < T means T1 = T0 + θh2. Then∫ Tγ

T0

R =
∫ T0+θh2

T0

R ≥ const
∫ θh2

0

1
(h2 − t)

= const
∫ θ

0

1
(1− t)

= −const · log(1− θ).

We can make it bigger than l by choosing θ close to 1. Here “const” means the constant in the last
line of II-2 Claim 5.

The second case, Tγ < T1 ≤ T0 + θh2. Assume A is so big that on the standard solution
d(q, ∂B(p, 0, A)) > A/4 at any time t ∈ [0, θ] for q ∈ B(p, 0, A/2). Then∫ Tγ

T0

|γ̇|2 ≥ 1
Tγ − T0

(∫ Tγ

T0

|γ̇|
)2

≥ 1
θh2

(
Ah

4
)2 = A2/(16θ).

Here of course the distance is distorted (when we compute |γ̇|2), when time changes; but since the
solution on the cap is close to the standard solution, and distance shrinks on a standard solution,
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so we can bound this distortion with a definite factor. In this second case, we only need A big, we
don’t need θ close to 1. �

14. Corollary II-4.7

The curvature of an added cap will grow like on the standard solution; it may reach infinity at
time “1”. So if we have control of curvature on a cap, we know the time can not be too long since
the surgery.

The condition R(x, Tx) ≤ Q(Tx − T0)−1 says, if we rescale the time Tx − T0 to about 1, then
R(x, tx) is bounded by Q. This is also an upper bound for Tx − T0, but it is not a very precise
bound; we have in mind on this cap R should be at least h−2. The conclusion of II-4.7 gives a much
better bound.

The other inequality, Q−1R(x, t) ≤ R(x, Tx), says R at x is not too small at Tx, compare with
any other time.

Proof of corollary II-4.7. Argue by contradiction. So we assume that Tx ≥ T0 + θh2, that is, the
solution exists at least on [T0, T0 + θh2].

Notice Lemma 4.5 and Claim 5 of Section II-2 tell us,

R(x, T0 + θh2) ≥ const · 1
1− θ

· 1
h2
,

here const is as in II-2 Claim 5. The assumption says Q−1R(x, t) ≤ R(x, Tx) ≤ Q(Tx − T0)−1; so

Q(Tx − T0)−1 ≥ R(x, Tx) ≥ Q−1const · 1
1− θ

· 1
h2
,

so
Tx − T0 ≤ Q2(const)−1(1− θ)h2 < θh2,

the last inequality requires that θ is sufficiently close to 1. That gives a contradiction. �

Exercise 6. What happens to a cap after a while, say near time h2? Will it go singular everywhere?
Or, will it give birth to a “degenerate neck pinching”? Will it happen that the cap behaves like a
standard solution for a while up to θ and then the curvature begin to decrease? This means the low
curvature region in the boundary direction of a cap will overpower the cap region and eventually
smooth the metric.

Answer: For the standard solution, it goes singular everywhere at t = 1; however, it seems to me
the head (i.e. center) of the cap is “eaten” by the tube, see the proof of II-1.4. For other cases, the
situation is not clear to me.

15. Section II-5.1

The section starts with introducing normalized initial metric, that is, Rm ≥ −1, and each ball of
radius 1 has almost Euclidean volume. So the Ricci flow will run at least a definite amount of time
before hitting any singularity.

Proposition II-5.1 claims two things for a solution with surgery: first, the solution is κ-noncollapsed,
second, it satisfies the canonical neighborhood assumption. However, the parameters κ and r (the
critical radius in canonical neighborhood assumption) will decrease with time. The parameter δ (we
do surgery at scale 0 ≤ h ≤ δρ ≤ δ2r) might also decrease in order that the proof gets through.

We recall the following from Perelman’s first paper [15]:



NOTES ON PERELMAN’S SECOND PAPER 23

Definition. We say a solution of Ricci flow is κ-collapsing at (x0, t0) on scale r > 0, if
|Rm| ≤ r−2 at all (x, t) with dt0(x, x0) < r and t0 − r2 ≤ t ≤ t0, and

Volt0(Br(x0)) ≤ κrn.

Lemma. If a solution of Ricci flow is κ-collapsing at (x0, r0) on scale r, then

Ṽ ( n
√
κ · r2) < 3

√
κ.

See I-7.

Remark 15.1. To be κ-noncollapsed is a scale invariant thing, but up to what scale is certainly
not. Look at the argument in I-7.3, it does not work for too big a scale r; since we have to go back
in time by n

√
κ · r2.

For any manifold, we can always rescale to get a normalized initial metric. This appears to
improve the κ value in the noncollapsing argument as in I-7.3, but the scale is sacrificed: in order
to get normalized initial data, we need to rescale the manifold, as a result, the scale at which we get
κ-noncollapsing may be small; also, time is getting big. Overall, we did not gain much in this issue;
think of the lens spaces.

16. Lemma II-5.2: κ-noncollapsing

Exercise 7. Is “ 0 < r < ε2” in his statement a typo?

Answer: Probably, yes. But this is not essential. He used ε to measure time... So 0 < r2 < ε
might be more natural. On page 12, line 10 from top, actually he means 0 < r < ε. So in the
following, I will use 0 < r2 < ε.

Exercise 8. Is κ just a constant depending on nothing?

Answer: Of course when time is big, we get worse control of κ. This is because in the argument
of I-7.3, the factor τ−n/2 in the definition of Ṽ makes it difficult to get good lower bound of Ṽ when
τ (inverse time) is big. I-7.3 does work better with ancient solutions, as we have seen in I-11.2; but
that is not our situation here.

For another reason that κ gets worse (i.e. smaller) at big time and depends on r, see the last
remark in “step 1” below.

The proof of Lemma 5.2 is divided into several steps:

Step 0:

Consider a parabolic neighborhood P (x0, t0, r0,−r2
0) with |Rm| ≤ r−2

0 . It is enough to assume
r0 > r, where r is the parameter in the canonical neighborhood assumption. Otherwise, let r1 < r
be the biggest number so that on P (x0, t0, r1,−r2

1) with |Rm| ≤ r−2
1 . There must be a point (x, t)

with t ∈ [t0 − r2
1, t0] a latest time so that |Rm(x, t)| = r−2

1 , (x, t) ∈ P (x0, t0, r1,−r2
1). and we want

to show κ-noncollapsing at (x0, t0).

Now the pinching estimate tells us at (x, t) the scalar curvature R is also big (see Remark 7.5 of
this notes), we have canonical neighborhood around (x, t). We see the ball B(x, t, R(x, t)−1/2) has
a lower bound in volume, of magnitude C−2

2 R−3/2 (see II-1.5 for this bound; also by II-3, II-4 we
throw away components that are diffeomorphic to positive space forms). The actual definition of
κ-noncollapsing is only slightly different from this lower bound; but it can be easily proved by the
estimate of distance-volume distortion; see [11] Theorem 17.1.
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Remark 16.1. The above is not only helpful, it is also necessary. In fact, the proof below for scale
more than r does not work for scale smaller than r. The problem is, at small scale, we need to deal
with curvature bigger than r−2, so it is possible we are in the added cap formed just after a singular
time; such a region does not exist before the surgery. So it is impossible to define L-geodesics (see
II-7) starting from such a region in a reasonable way, in particular, we can not get a good definition
for the reduced volume based at these regions.

On the other hand, the construction of surgery tells us, there is no surgery on a region with
R < r−2

0 . So we can define Ṽ , etc. and prove that the solution is κ-noncollapsing up to scale ε; see
the previous section of this notes.

Step 1: The proof of Lemma II-5.3.

In the notation of I-7, the conclusion is∫ t0−T0

0

√
τ (R+(γ(τ), τ) + |γ̇(τ)|2)dτ ≥ L.

Here τ = t0 − t and for convenience we reverse the direction of γ: i.e. γ(0) = x0. The readers have
no difficulty to recognize the directions t and τ and other notations.

The functional L is a quantity with unit; it measures length. I would prefer to write Lr0 instead
of L, so that makes L scale-invariant. But let’s follow the version in [16].

Proof of Lemma 5.3. As before, We start from a neighborhood P (x0, t0, r0,−r2
0) on which |Rm| ≤

r−2
0 < r−2. Assume γ is a curve in space-time that starts at (x0, t0) and ended at some added cap.

More precisely, we define a barely admissible curve as the following:

Definition. A barely admissible curve is a curve defined on [t, t0], so that t is a surgery time,
and γ(t) ∈ B(p, t, Ah/2), where p is the center of the add cap.

Recall h is the radius of the tube at which the surgery happened. Here is a picture of a barely
admissible curve:

(x0, t0)

time t

Remark 16.2. A barely admissible curve enters into a region (an added cap) that probably does not
exist a second ago. Later we will be doing some differential inequalities and we want to avoid such
unstable region. So we want to single out these curves.
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Compute, for some ∆t,∫ ∆t

0

√
τ |γ̇(τ)|2dτ ≥

(∫ ∆t

0

1√
τ
dτ
)−1(∫ ∆t

0

|γ̇(τ)|dτ
)2

.

Now we pick ∆t = εr4
0L−2,∫ ∆t

0

√
τ |γ̇(τ)|2dτ ≥ 1

2
√
εr2

0

L
(∫ ∆t

0

|γ̇(τ)|dτ
)2

.

So if γ([0,∆t]) runs out of P (x0, t0, r0,−∆t), because of our assumption on P that the curvature
|Rm| ≤ r−2

0 < r−2, during this ∆t time period, the length of a fixed vector is distorted by a factor
at most e−εr

2
0L
−2

, which is very close to 1; see section 17 of [11]. So by estimating the part of the
distance in P (x0, t0, r0,−∆t), we get a lower bound 16∫ ∆t

0

|γ̇(τ)|dτ ≥
√

2 ε1/4r0,

and this implies our conclusion∫ t0−T0

0

√
τ(R+(γ(τ), τ) + |γ̇(τ)|2)dτ ≥ L.

The other case is, γ([0,∆t]) lies in P (x0, t0, r0,−∆t). Then let’s check the assumption in Corollary
II-4.6: we have Tγ < t0−∆t (notation: the part of γ that lies in an added cap in the sense of Corollary
II-4.6 is defined on [T0, Tγ ]); this is because we choose δ small so the neighborhood P (x0, t0, r0,−∆t)
is not the place on which a replaced cap evolves: the curvature bound r−2

0 is not big enough. So the
curve satisfies the assumptions of Corollary II-4.6. Applying Corollary II-4.6 with l = L(∆t)−1/2,
we get again ∫ t0−T0

0

√
τ(R+(γ(τ), τ) + |γ̇(τ)|2)dτ ≥

√
∆t
∫ Tγ

T0

(R+(γ(t), t) + |γ̇(t)|2)dt

≥l
√

∆t = L.
Here t = t0 − τ ; that is good with the notation of Corollary II-4.6. �

Remark 16.3. The use of Corollary 4.6 requires that δ is sufficiently small. Certainly it depends
on L.

Remark 16.4. A barely admissible curve is remarkable in the sense that it goes deeply into a cap
(or a horn, a split ago). So we expect its l value to be big.

Remark 16.5. We want the barely admissible curves have large l value. The reason we want this
is, we want to run differential inequality about the minimum of l; so we don’t want the minimum
happens at a region that does not exist a second ago. See also the discussion of II-6.3(a) in this
notes.

One has to divide L by 2
√
τ to get l; this means, if a curve is long in the sense of time, big L does

not automatically imply big l. This is not a serious problem, but enough to hint that the parameters
like δ should not stay constant all the time, we need better parameters to get better estimates.

A more serious problems happens in the following situation: assume a curve runs in space-time
from (x0, t0) back to a time close to a point (x, t) with small time, say, t � 2i−N ε, and (x, t) lies
in an added cap; then Lemma 5.3 does not give the desired lower bound. In fact Lemma 5.3 need a
certain small δ, that is usually not the δ (coupled with a r value) value which is already constructed
at t, and for which we have no right to change: we are arguing by an induction.

We remark, though, if the time period is not too close to 0, say if i� 5, and t ∼ 2i−kε, k = 0, ..., 5,
δ values are small enough to get big l value. This will be used in the next step.

16This is generous. Probably take ∆t = r4
0L−2 will be sufficient for the argument.
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For this reason, we can get min l ≤ 3/2 only on, say, [2i−5ε, 2iε]. Can not extend time back more,
because then we don’t know how to prove that barely admissible curves have big l value and how to
carry out the differential inequality argument in I-7.

Step 2: We first supply the proof of min l ≤ 3/2 on [2i−5ε, 2iε]. We take L = 2ε−2T
√
T (we want

to show some κ-noncollapsing on [0, T ], note the canonical neighborhood assumption works on this
time interval); so Lemma 5.3 says bare admissible curves have L+ ≥ 2ε−2T

√
T ; here L+ is to replace

the R in L by R+. but

(16.6) L+ < L+ 4T
√
T ,

because R > −6; so for barely admissible curves we still have L ≥ ε−2T
√
T . So we can now apply

the differential inequality argument in I-7 because barely admissible curves do not carry minimum.
So we conclude min l ≤ 3/2, see I-7.1.

Next, we want to get a curve with small l value, and also with small curvature at the end: only
then can we bound l nearby.

We claim there exist a point (x, t) with t ∈ [2i−1ε, 2iε], R(x, t) < r−2
i−1, and L+ ≤ ε−2T

√
T . 17

Note 2iε ≤ t0 ≤ 2i+1ε, so T ∼ 2iε.

If the claim is not true, as in the remarks of the previous step, we have a curve from (x0, t0) to
some (x, 2i−1ε) with l ≤ 3/2; but the curvature on the end is big. We can assume R(γ(τ), τ) ≥ r−2

i−1

for all τ ≥ 2i−1ε, i.e. time stay away from t0 and deep into [2i−1ε, 2iε]; otherwise we can take part
of this curve and get both small l and small R in the end. So now we estimate

L ≥
∫
γ

√
τR(γ(τ), τ) ≥

∫ 2i−1ε

0

(
√
τ )r−2

i−1 − 6
∫ 2iε

0

(
√
τ ) >

1
3

(2i−1ε)
3
2 r−2
i−1.

Here we used R ≥ −6. Thus l ≥ 2i−1εr−2
i−1/3 since time∼ 2i−1ε. Because r2

i−1 < ε (sure!), that
contradicts to l ≤ 3/2.

Remark 16.7. Here ε (a constant measure closeness in the definition of canonical neighborhood
assumption, I-1.5) is used here to measure time. It is not clear to me why he used it for this purpose
here. Apparently other numbers also works.

Step 3:

We follow the previous proof of κ-noncollapsing as in I-7.3. This is like Gromov’s generalization
of the volume comparison beyond cut locus: when L-geodesic hits surgery region, we just stop. As
a result, l is defined only at those points that can be hit by a minimal geodesic that runs away from
surgery regions; elsewhere we take l to be +∞.

Let Ṽ be defined as before, so it is again a decreasing function of τ .

We use the curve in the previous step. Note the end (x, t) has R ≤ r−2
i−1, so by Claim 1 of Section

II-4.2, we get an upper bound in curvature on a parabolic neighborhood of (x, t) with definite size.
We have upper bound of l at (x, t), so we can get a lower bound of Ṽ at a slightly earlier time than
t, as in I-7.3. Thus by monotonicity we proved the κi-noncollapsing.

�

Remark 16.8. Look at I-7.3, we see our argument here shows κi-noncollapsing up to scale
√
ε.

17This is generous. L
√
L is used to deal with the relation between L+ and L; here I think, 10T is sufficient.
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17. II-5.4: Canonical neighborhood assumption

Proof of Proposition 5.1. We argue by contradiction. By induction, we assume there is a sequence
of solutions, Mα,β , such that rαβ → 0, δαβ → 0 on [2iε, 2i+1ε], but there are counter examples to
the canonical neighborhood assumption during the time interval [2iε, 2i+1ε], with canonical neigh-
borhood parameter rα,β , and the surgery parameter δα,β . For convenience, we omit the superscript
α, β.

Let t̄ be the first time that the canonical neighborhood assumption is violated, say at x̄. This is a
little subtle. We may want to redefine the canonical neighborhood condition by replacing ε there by
(1− 2−i)ε on time interval [2iε, 2i+1ε]. So roughly, at this first time of violation, the neighborhood
of (x̄, t̄) is at most exactly (1 − 2−i−1)ε close to a corresponding set of some ancient solution; can
not be any closer. Our strategy here is, by taking limit we will show it is actually much closer to
the corresponding set of an ancient solution.

By definition, R(x̄, t̄) > r−2.

So up to time t̄, the canonical neighborhood assumption is satisfied. In particular, we can use all
the results from Section II-4, II-5 up to time t̄. In particular, we have the noncollapsing condition
; after a look at the proof of Lemma 5.2, especially step 2 and 3 in this notes, we see even though
rαβ → 0, δαβ → 0, we get a κ-noncollapsing condition independent of rαβ , δαβ ; κ depends on the
parameter r, on the previous time interval. That allows us to take limit.

Now we rescale the Ricci flow around (x̄, t̄) by factor R(x̄, t̄). Claim 2 of II-4.2 tells us we can
bound curvature within a definite distance A. So we can take limit at least on this part. However,
since rαβ → 0, φ(R(x̄, t̄))→ 0. So in fact we can take bigger and bigger A in Claim 2 of II-4.2. So
we get a completed manifold M∞(0) with nonnegative curvature as the limit. Now by the canonical
neighborhood assumption, we can argue like in I-11, and conclude the limit has bounded curvature,
say |Rm| ≤ Q0.

At this stage of the proof, we don’t know yet if this solution at t = 0 can be extended back in
time, we don’t even know that the “surgery times” on limit are discrete. So in the following we
(implicitly) consider a solution in the sequence Mα,β that is sufficiently close to the limit; then argue
like II-4.4 we know on this solution the surgery time is discrete. With the help of this, we eventually
will show the solution on the limit can be extended back in time and there is indeed no surgery on
the limit; i.e. for sufficiently big α, β, there is a large parabolic neighborhood around x̄α,β ∈ Mα,β

that has no surgery.

Now we remind the readers Claim 1 of II-4.2 says, before rescale, in our situation, if R(x, t) ≥ r−2

then R ≤ 8R(x, t) over the parabolic neighborhood

P
(
x, t,

1
2
η−1R(x, t)−1/2,−1

8
η−1R(x, t)−1

)
,

by Claim 1 of II-4.2; here η is the gradient estimate constant appeared in II-(1.3).

Without surgeries, the above tells us that after rescale, we have curvature control with time
extend back for εη−1Q−1

0 . That means we can actually extend back in time and make the limit a
solution M∞(t), t ∈ [−εη−1Q−1

0 , 0].

Let’s first assume this is not the case. So before rescale, there is a point y, and a time T0 ∈
[t̄− εη−1Q−1

0 R−1(x̄, t̄), t̄], so that at y the Ricci flow is defined at T0 but not before (i.e. y is on an
add cap); moreover, d2

T0
(x̄, y)R(x̄, t̄) stay bounded in order that x does not escape to infinity when

taking limit. We assume T0 is the first such time before t̄ (here we mean on Mα,β with big α, β).

Even with surgery, we still have curvature control at x̄ at time T0 by II-4.2 Claim 1 (assume Q0

is bigger than ε−1η). Then we can use Claim 2 in II-4.2 at time T0 to control the curvature at y,
which is ≈ h−2 since y is on the added cap.
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That shows h2(T0)R(x̄, t̄) is bounded away from 0. 18

So x̄ lies very close to a (replaced) cap: x̄ is within distance, say, Ah to the tip of the cap (almost
y), at time T0. Moreover, the curvature is bounded at x̄ by (use II-4.2 for the first inequality)

8−1R(x̄, t) ≤ R(x̄, t̄) < ε−1ηQ0R(x̄, t̄) ≤ 1
t̄− T0

.

So we apply Lemma 4.7 to conclude t̄− T0 is relatively small compare with h2, t̄− T0 ≤ θh2.

By lemma II-4.5, during this time period, near x̄ the manifold is close to the standard solution, in
particular, on the limit it is much better than ε/2-close. By Claim 5 in II-2, we get a contradiction.
So we can extend time back and make the limit a solution M∞(t), t ∈ [−εη−1Q−1

0 , 0].

We apply the same argument again: as before, we have a curvature boundQ1 forM∞(−εη−1Q−1
0 ).

Then we try to extend time back from t = −εη−1Q−1
0 . We use the same argument to see that we can

extend time back again by εη−1Q−1
1 with no surgery, because otherwise (x̄, t̄) would have a canonical

neighborhood.

This works. Remember we proved R(x̄, t̄)h−2 is bounded away from 0; but we don’t know how far
it is from 0, because, a priori, there is no knowledge on how big dT0(x̄, y) is. So we don’t know how
far x̄ is from the tip of the cap. This is fine, because δα,β , rα,β → 0 so II-4.7 is valid for arbitrarily
big Q. This same principle works when we try to extend the time further back: whenever we hit a
surgery at time T ′0, we get some lower bound of R(x̄, t̄)h−2. By II-4.2 Claims 1, 2, we get

(Q∗)−1R(x̄, t) ≤ R(x̄, t̄) ≤ εη−1(Q−1
0 +Q−1

1 )
1

t̄− T ′0
,

where t̄− T ′0 < R(x̄, t̄)−1εη−1(Q−1
0 +Q−1

1 ) is the amount of time we can extend back before hitting
a surgery.

The lower bound of R(x̄, t̄)h−2, and the constant Q∗ depend on Q1, Q0, and where the surgery
happens; e.g., the first inequality is obtained by using II-4.2 Claim 1 on consecutive time intervals.
We have no knowledge of these constants, only knowing they are uniform for α, β. It is OK to apply
II-4.7 because δα,β , rα,β → 0. 19

So the limit turns out to be a solution M∞(t), t ∈ [−εη−1(Q−1
0 +Q−1

1 ), 0].

We keep on doing this and extend time back. We get an ancient solution unless the curvature
bounds Qi goes to +∞; but that is ruled out by an argument as in I-12.1. We briefly review that
argument:

Assume the solution exists on (t′, 0], but can not extend before t′. By the Harnack inequality
Rt +R/(t− t′) ≥ 0, together with the pinching estimate, we conclude

0 ≤ R ≤ |t′|
t− t′

Q0.

Then we estimate that distance will distort by at most 100|t′|
√
Q0; see I-8.3(b). So we will speak of

“huge” distance without mentioning time.

First assume the limit is compact. Then Rmin is nondecreasing, that implies at any time there
is region with low scalar curvature. The gradient estimate tells us near time t′ we can extend this
region. Now the previous lemma implies that if there exists high curvature region, then it will be
pushed to infinity and make the visible region enjoying curvature bounded by c(κ)−1. In particular,
we can extend the solution back.

18This is interesting, since h < δρ < δ2r is very small; on the other hand there is no way to control Q0, so we have

to use II-4.2 Claim 2 to argue. (Use II-4.2 Claim 1 one only gets that h2Q0 is bounded away from 0).
19This argument suggests that a long cap will eventually develop into singularity; in some sense no singularity

afterwards implies no cap.
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For the noncompact case, we find a distance D at time 0 so that every point z at distance more
than D from x̄ is close to being a midpoint of a long minimal geodesic; by saying this we mean that
starts from z, there are two long minimal geodesics γ1, γ2 on [0, D] so that

d(γ1(D), γ2(D)) ≥ (2− ε)D.

To prove this, we argue by contradiction, assume zi are counterexamples associated to Di; Di >
2Di−1. Then by compactness there are i < j so that the angle between the geodesics from the base
point x̄ to zi and to zj are small. Now apply the Toponogov triangle comparison theorem, we see zi
actually is not a counter example. That is a contradiction.

Now assume such a z has a huge curvature near t′. Then it has a tube neighborhood because by
the above argument the cap neighborhood is ruled out. The radius, s(z), of this tube at z near t′

is extremely thin. At time 0 the topology near z does not change; moreover since Rm ≥ 0 and the
distance distortion is controlled, we conclude, by removing a ball centered at z, the manifold will
become disconnected; go to time 0, the size of this ball is modified by only a definite amount while
volume decreases. Now we see his can not happen, in view of the volume comparison from ∞; i.e.
Yau’s “visibility” argument (using this Yau proved that a noncompact manifold with Ric ≥ 0 has
at least linear volume growth; see [23]).

So R(z) must be uniformly bounded as long as d(z, x̄) > D (at any time). Then by Claim 2 of
4.2 we get global curvature control. Thus we can extend the solution back in time more.

So (x̄, t̄) turns out to be lying on an ancient solution and we reached a contradiction to the choice
of (x̄, t̄). Compare Remark 21.2 of this notes. That proves the conclusion. �

18. II-6.1

If the scalar curvature is nonnegative at some time, it will become positive immediately unless it
is Ricci flat; see equation II-(7.1). Remember R′min ≥ 2R2

min/3, it will go extinct within finite time
because surgeries does not effect Rmin.

At each surgery time, we throw away pieces that are capped horns or double horns; after the
surgery, we throw away those components that are diffeomorphic to a manifold with constant positive
sectional curvature. The remaining parts can experience surgeries later, but eventually Rmin will
grow bigger than r−2 so the solution is covered by canonical neighborhoods. So these parts are
either S2×S1, or RP 3#RP 3; because by definition of extinction (II-3 and II-4.1), the only possible
canonical neighborhood types are a) and b) in II-1.5.

As we have seen in II-3, we can recover the initial manifold. This gives the structure theorem of
orientable manifolds with positive scalar curvature: any such manifold is a connect sum of spaces
forms with positive curvature and some copies of S2 × S1. Remember, when we glue in a double
horn, it means either connecting two components, or glue a S2 × S1 to one component.

The work of Gromov and Lawson tells us that these manifolds do support metrics with positive
scalar curvature.

19. II-6.2

This section restates Theorem I-12.2. We will use the version with surgeries, whose proof is given
in II-6.3(c) below.
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20. Proposition II-6.3

We have in mind, the results in Section 6 deals with “long time behavior”. The scale r0 is usually
getting big as time goes by. The (small) number r̄ = r̄(A) is a “quantity without dimension”, i.e. it
does not have a unit: not length, not time.

The main result is Proposition II-6.3:

Proposition. For A <∞ there is κ > 0, K1(A) <∞, K2(A) <∞, r̄(A) > 0 so that: For all t0 <
∞ there exists δ̄, for any solution with δ(t)-cutoff with δ(t) ≤ δ̄ on [0, T ], and normalized initial data,
if the solution is defined on P (x0, t0, r0,−r2

0), 2r2
0 < t0, and |Rm| ≤ r−2

0 on P , Volt0(B(x0, t0, r0)) ≥
A−1r3

0, then :
(a) The solution is κ-noncollapsed on the scale less than r0 in B(x0, t0, Ar0).
(b) Every point x ∈ B(x0, r0, Ar0) with R(x0, t0) ≥ K1r

−2
0 has a canonical neighborhood.

(c) If r0 ≤ r̄
√
t0, then R ≤ K2r

−2
0 in B(x0, r0, Ar0).

By the curvature bound, we can assume the lower bound in volume is valid for all t ∈ [t0− r2
0, t0].

Exercise 9. Why do we need a).? Isn’t it already proved in II-5.2?

Answer: This theorem, under its condition, gives κ-noncollapsing no matter how big the time is.
In II-5.2, the κ value gets worse at big time. The theorem here is useful when we take limit with
time goes to infinity.

(b) says, every point x ∈ B(x0, r0, Ar0) with relatively big curvature has a canonical neighborhood.

Exercise 10. What is the application of part (b)?

Answer: in II-7.2(b).

Exercise 11. What’s the meaning of the assumption r0 ≤ r̄
√
t0 in (c)?

Answer: Simply put, this implies we have a good curvature pinching, from [12]. See the proof,
and Remark 7.5 in this notes.

Proof of (a). We only need to study those r0 that are more than r(t0), the canonical neighborhood
parameter. Observe, the conclusion of the proposition says we have κ-noncollapsing at scale up to
r0. When r0 < r(t0), this is almost automatic. In fact, pick any point (x, t), find the maximal
r1 so that |Rm| < r−2

1 on P (x, t, r1,−r2
1). If r1 ≤ r(t0), we know some points in P (x, t, r1,−r2

1)
has big curvature and so owns a canonical neighborhood. However, canonical neighborhoods are
κ-noncollapsed (we throw away components diffeomorphic to positive space forms so the canonical
neighborhoods are caps and tubes). So the solution is κ-noncollapsed at (x, t) at scale r1, because
in P (x0, t0, r0,−r2

0) volume and distance distort by at most a factor ec(3), so we get a lower bound
of Vol(B(x, t, r1)) as well.

If r1 > r(t0), the κ noncollapsing follows from the proposition with the setting r0 = r1 > r(t0);
which we will prove below.

Remark 20.1. It is necessary to distinguish the small scale case from the large scale case. The
reason is the same as in the proof of II-5.2. At scale smaller than the canonical neighborhood
parameter r(t0), we may have trouble defining the reduced volume Ṽ based at high curvature region.

So now assume r0 > r(t0).

If the proposition is not true, there is a point (x, t) with d(x, x0, t0) = Ar0 (assume this, like in
I-8) at which the solution is quite collapsed at some scale ρ with r(t0) ≤ ρ ≤ r0; note we assume
r(t0) ≤ ρ because of the discussion in the beginning of the proof.
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Rescale r0 to 1 and move time t0 to 1. So the curvature estimate |Rm| ≤ 1 holds on P (x0, 1, 1,−1).
By using the same notation, ρ ≤ 1.

We make p = x and define τ = 1− t, l, Ṽ , etc. as in I-8. We see from I-7.3,

Ṽ ( n
√
κ · ρ2) < 3

√
κ.

That is the reason we can not use this method to show noncollapsing on a bigger scale: we need
n
√
κ · ρ2 < 1/2 in order to use monotonicity of Ṽ .

We want to show that Ṽ (1) is not so small and thus get a contradiction to the monotonicity of Ṽ .
We claim, it is enough to show that min l(y, 1/2) is not so big, here the minimum is taken among y
with d1/2(y, x0) ≤ 1/10.

In fact, d1/2(y, x0) ≤ 1/10 implies d0(y, x0) ≤ 1 because the curvature is bounded by 1. Thus if
min l(y, 1/2) is reached at some y1/2, we can extend the geodesic in space-time to all points y1 with
d0(x0, y1) ≤ 1 without increasing l too much, thanks the curvature bound. So we have a uniform
bound of l over B1(x0) at time t = 0, i.e. τ = 1, together with the lower bound in volume (this is
the only place it is used), we get a lower bound in Ṽ .

Now unlike I-8, we have surgeries here, and remember once we reach an added cap region at a
surgery time, we stop (like hit a cut point in the usual geodesic case). So we need to show that
barely admissible curves has relatively big l value, or equivalently, big L̄ value when τ ≤ 1/2; in
particular, the minimum of l does not happen at the end of a barely admissible curve (these region
may not exist before the surgery time). Then we can follow the differential inequality argument as
in I-8 without any change. This is our basic strategy.

Recall, defined in I-7.1 and used in I-8, L̄ = 2
√
τL, with τ = 1− t. Lemma II-5.3 tells us, we can

make

(20.2) L̄ = 2
√
τ

∫ √
τ(R(γ(τ), τ) + |γ̇(τ)|2)dτ ≥

√
τ C∗(A)

for barely admissible curves. This estimate, unfortunately, become less powerful when τ is small,
i.e. when there is a surgery at time close to t0.

We need a better growth estimate of L̄, in order to show that barely admissible curves does
not contribute to the minimal of L̄ near x0: as the proof of I-8.2, we get a growth estimate for
the minimum of some function h (essentially min L̄); if this minimum is obtained by some barely
admissible curve, i.e. a curve passing through a cap region, then this minimum may jump because we
have to throw away those part of a barely admissible curve after the cap region; then the argument
does not make sense.

Lemma 20.3. L̄+ 2
√
τ ≥ 0 for t ≥ 1/2, i.e. τ ≤ 1/2.

Proof of Lemma. We have R ≥ −3 (after rescale; it can well be a blow down, when r0 > 1). In fact,
by the differential inequality R′min ≥ 2R2

min/3, we estimate

R ≥ −3
2
· 1
t+ 1/4

· r2
0 ≥ −3;

The last inequality follows by r2
0 < t0/2.

So now we estimate

L ≥
∫ τ

0

√
sR(γ(1− s), 1− s)ds ≥ −3

∫ τ

0

√
sds = −2τ3/2.

So (use τ ≤ 1/2 for the last inequality).

L̄ = 2
√
τL ≥ −4τ2 ≥ −2

√
τ .

�
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Write d(·, t) = d(x0, ·) at time t.

Pick the function φ with limx→1/10− φ(x) =∞ as in I-8.2; remember we can make

2(φ′)2

φ
− φ′′ ≥ (2A+ 300)φ′ − C(A)φ;

for example, let φ = (0.1− x)−2 near 1/10, then smooth connect to constant 1 near 1/20.

-

6

1
20

1
10

x

φ

1

We define
h(y, t) = φ(d(x0, y, t)−A(2t− 1)) · (L̄(y, τ) + 2

√
τ),

where τ = 1− t.

Notice, h(y, 1) = φ(d(y, t)−A) · (0 + 0) = 0.

We compute (notice τ ′t = −1),

(∂t −∆)h =φ′ · (dt − 2A)(L̄+ 2
√
τ) + φ · (L̄t −

1√
τ

)

− (φ′′ + φ′∆d)(L̄+ 2
√
τ)− 2∇φ · ∇L̄− φ∆L̄.

At minimum point of h, we have ∇h = 0, i.e.

(L̄+ 2
√
τ)∇φ = −φ∇L̄;

then

(∂t −∆)h =φ′ · (dt − 2A)(L̄+ 2
√
τ) + φ · (L̄t −

1√
τ

)

− (φ′′ + φ′∆d)(L̄+ 2
√
τ) +

2|∇φ|2

φ
(L̄+ 2

√
τ)− φ∆L̄

=(L̄+ 2
√
τ)(−φ′′ + (dt −∆d− 2A)φ′ + 2

(φ′)2

φ
) + (L̄t −∆L̄− 1√

τ
)φ.

Lemma 20.4 (I-8.3 (a)).

d′t −∆d ≥ −(3− 1)
(2

3
Kr0 +

1
r0

)
.

K is the upper bound in Ricci curvature on B(x0, t0, r0); here we can take K = 3− 1 as r0 = 1;
so d′t −∆d ≥ −100.
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Also recall I-(7.15): −L̄t + ∆L̄ ≤ 2n = 6. Combine these estimates and the property of φ, we see

(∂t −∆)h ≥ −C(A)h− (6 +
1√
τ

)φ.

So we compute (note τ ′t = −1),

d

dt

(
log(

hmin(t)√
τ

)
)

=
h′min

hmin
+

1
2τ
≥ −C(A)− (6 +

1√
τ

)
1

L̄+ 2
√
τ

+
1
2τ
.

Note we proved L̄ ≥ −4τ2, so indeed L̄+ 2
√
τ ≥ 2

√
τ − 4τ2. So

d

dt

(
log(

hmin(t)√
τ

)
)
≥ −C(A)− 6

√
τ + 1

2τ − 4τ2
√
τ

+
1
2τ
≥ −C(A)− 50√

τ
.

Note

lim inf
τ→0+

(
log(

hmin(t)√
τ

)
)

= log 2.

So (
log(

hmin(t)√
τ

)
)
≤ log 2 +

∫ τ

0

C(A) +
50√
s
ds = log 2 + C(A)τ + 100

√
τ ,

hmin(τ) ≤ 2
√
τeC(A)τ+100

√
τ .

Compare with (20.2), minimum of h is not reached by a barely admissible curve. So we can follow
the differential inequality argument in I-8 and I-7.1. That proves (a).

21. Proposition II-6.3(b)

We argue by contradiction. The proof is divided into two steps.

Step 1 is a choosing procedure like in I-10.1 Claim 1, among all counterexamples on a manifold,
we get a point (x̄, t̄) without canonical neighborhood, but with almost maximal curvature. Then in
step 2 we rescale around such points and argue like in II-5.4 to get an ancient solution.

Of course, the conclusion is significant only when r0 � r(t0).

Proof of (b). Assume for Kα
1 →∞, we have counterexamples.

Step 1.

For fixed Kα
1 (so we omit α in the following), assume (x1, t1) is a counterexample; t1 = t0,

d(x0, x1, t1) ≤ Ar0, Q1 = R(x1, r1) ≥ K1r
−2
0 while there is no canonical neighborhood at (x1, t1).

Assume we can find (x2, t2), Q2 = R(x2, t2), without canonical neighborhood

d(x0, x2, t2) ≤ d(x0, x1, t1) +
√
K1Q

−1/2
1 , Q2 ≥ 4Q1, t1 −

1
4
K1Q

−1
1 ≤ t2 ≤ t1.

Once we find (x2, t2), we try to find (x3, t3) similarly. Generally, Qk ≥ 4k−1Q1,

d(x0, xk, tk) ≤ d(x0, x1, t1) +
1

1− 1
2

√
K1Q

−1/2
1 , t1 −

1
4
K1Q

−1
1

1
1− 1

4

≤ tk ≤ t1,

i.e.
d(x0, xk, tk) ≤ d(x0, x1, t1) + 2

√
K1Q

−1/2
1 , t1 −

1
3
K1Q

−1
1 ≤ tk ≤ t1.

This procedure must stop in finite steps since Qk → ∞; once this is bigger than r(t0)−2 we get
canonical neighborhood.

So we found (x̄, t̄), R(x̄, t̄) = Q̄; so that for all (x, t) satisfying

d(x0, x, t) ≤ d(x0, x̄, t̄) +
√
K1 Q̄

−1/2, R(x, t) ≥ 4Q̄, t̄− 1
4
K1Q̄

−1 ≤ t ≤ t̄,
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there is a canonical neighborhood around (x, t). Remember Q1 ≥ K1r
−2
0 , so 1

3K1Q
−1
1 < 1

2r
2
0, so

t̄ ≥ t0 − 1
2r

2
0. Also,

d(x0, x̄, t̄) ≤ d(x0, x1, t1) + 2
√
K1Q

−1/2
1 ≤ 2Ar0.

Note here it is slightly different from I-10.1 Claim 1, we might keep on finding curvature bigger
and bigger, e.g go to the tip of a horn.

Step 2.

We rescale around (x̄, t̄) by Q̄, shift time t̄ to 0, then take limit with α → ∞. Since K1 → ∞,
we can use the proof of Claim 2 of II-4.2 to get curvature control. So the limit M∞(0) at t = 0 is a
complete manifold with nonnegative curvature. As before we know M∞(0) has bounded curvature,
say C0. We don’t need the explicit value of C0.

We remark, for sufficiently big α, every point with R ≥ 4 within a given space distance (∼ Kα
1 ),

and time within [−εη−1C−1
0 , 0] has a canonical neighborhood. This follows from the construction of

(x̄, t̄), Claim 1 of II-4.2, and the estimate in distance distort in Section 17, [11]. Now Kα
1 →∞, we

have canonical neighborhood whenever R ≥ 4. So we now can follow the method in II-5.4.

Since we don’t have a canonical neighborhood at (x̄, t̄) we can argue like in II-5.4 to take a limit
and conclude that the limit actually extend backward in time to −εη−1C−1

0 ; in particular, no surgery.
We can keep on doing this and eventually get an ancient solution. That is a contradiction as in
II-5.4. �

Remark 21.1. Here, the condition 2r2
0 < t0 is used to make sure the curvature pinching is good

enough; we need this in order to apply Claim 2 of II-4.2. In fact, because K1 is big, if the negative
part of sectional curvature X is not small compare with K1r

−2
0 , log(Xt0) will be big; so we have to

conclude X is small compare with K1r
−2
0 .

Remark 21.2. Here, and in many other places, we argue by contradiction and end up at an ancient
solution. We need to check this solution is κ-noncollapsing on all scales; compare I-11.2. In this
case it is all right, because our arguments make K1 →∞.

22. Proposition II-6.3(c)

Proof of (c). Assume the conclusion is not true, then there are some points x with R(x) > K2r
−2
0 .

Here r0 ≤ r̄
√
t0 implies that (t0 + 1)R(x) > K2r̄

−2; so (t0 + 1)R(x) is a huge number. That
implies φ < ξ in the pinching estimate; see our remark 7.5.

Combine with (b), we can use Claim 2 of II-4.2 (like I-12.1, one needs φ small in the proof). The
proof is just as written in II-6.3(c). �

23. Lemma II-6.5

Exercise 12. Where is the almost maximal volume assumption used? Is it necessary?

A: In this lemma, I think not. We need some lower bound in volume, but not necessarily almost
Euclidean. This lemma is exactly the same as Lemma I-11.6(b). As long as we have curvature
bounds, we can estimate the extent to which volume is deformed, that is the content of the second
part, (b).

Remark 23.1. In I-11.6(b), the volume lower bound and the curvature estimate count on each
other, for that proof, they are either both available or both unavailable.
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We remark, in 3 dimension, a lower bound in sectional curvature is the same as a lower bound
in curvature operator.

Remark 23.2. We also remark, this lemma is on smooth solutions without surgery. In fact, it is
used in proving Proposition II-6.4; when it is called for, the surgeries are already ruled out. See the
proof below.

24. Lemma II-6.6

This is true even if we only have a lower bound in Ricci curvature. See Theorem 2.45 in [4].

25. Proof of Proposition II-6.4

This proposition says, if the scale r0 is relatively small compare with
√
t0, and if at t0 a ball of

radius r0 has curvature bounded below by −r−2
0 , and almost maximal volume , then there is no

surgery on this ball shortly before t0; and we can estimate the upper bound of curvature.

We keep in mind, this will be more useful when t0 is big.

The major motivation of this proposition is I-11.6.

Remark 25.1. The number C1 in the proposition should be quite big, we will indicate this in the
proof below.

Proof. The first case: r0 ≤ r(t0). We claim R(x, t0) ≤ C2
1r
−2
0 , for any x ∈ B(x0, t0, r0/4).

If not, there is a canonical neighborhood around (x, t0). The positive curvature neighborhoods (c
and d in II-1.5) are ruled out by our design of surgeries; the remaining cases imply (x, t0) belongs a
tube or a cap.

If (x, t0) belongs to a tube, we see around (x, t0) the volume is too small. By Rm ≥ −r−2
0 using

volume comparison we get a contradiction to the assumption that the balls with radius up to r0 is
almost Euclidean.

If (x, t0) belongs to a cap, remember the remark after II-1.5 says that R in a canonical neighbor-
hood are uniformly equivalent everywhere; that implies, if C1 is suitably chosen (precisely, we just
need C1 � C2, C2 is the constant in the very end of II-1.5), then the cap canonical neighborhood of
(x, t0) is connected to a tube with radius at most C−1/2r0 with C � 1. So use Remark 4.6 in this
notes, we see the volume around (x0, t) is again way too small, and again by the volume comparison,
this contradicts to the assumption that the balls with radius up to r0 are almost Euclidean.

Exercise 13. Is this the only place that used almost maximal volume instead of just a lower bound
in volume?

So R(x, t0) ≤ C2
1r
−2
0 . If we take K = 2C2

1 , τ = εη−1C−2
1 , by the gradient estimate |Rt| ≤ ηR2 in

II-1.3, we see on P (x0, t0, r0/4,−τr2
0),

R ≤ 2C2
1r
−2
0 = Kr−2

0 .

In particular, by assumption r0 > 2C1h, there is no surgery in P (x0, t0, r0/4,−τr2
0) because surgery

happens in places with R ≥ h−2 ≥ 4C2
1r
−2
0 .

The second case: r(t0) < r0 ≤ r̄
√
t0. We claim that we can take

τ = min{τ0/2, εη−1C−2
1 }, K = max{2K0τ

−1, 2C2
1}.

These clearly are weaker than the values in the first case. Here K0, τ0 are the two constants in
Lemma 6.5.
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We argue by contradiction, assume the proposition is not true, that means we have a sequence of
solutions, Mα, with r̄α → 0, rα0 ≤ r̄α

√
tα0 ; but the solution is not defined in P (x0, t0, r0/4,−τr2

0), i.e.
there are surgeries; or, although the solution is defined on P (x0, t0, r0/4,−τr2

0), but the curvature
estimate is violated.

Note (by assumption) r(tα0 ) < rα0 , so among all counter examples on Mα, we can take one with
(almost) minimal radius rα0 . By the first part we can assume any smaller ball as described in the
proposition satisfies the proposition. For convenience, we omit the superscript α.

Take a sub-ball B(x0, t0, r1) ⊂ B(x0, t0, r0), with for instance r1 = r0/2, on which we see the
conclusion of proposition holds, so the solution is defined on P (x0, t0, r1/4,−τr2

1) and there we have
R < Kr−2

1 .

Because Rm ≥ −r−2
0 , this is indeed a sectional curvature bound,

|Rm| < Kr−2
1 .

Now apply Proposition 6.3 (c) to conclude that R < K ′(Aτ−1/2)r−2
1 for (x, t) with

t ∈ [t0 − τr2
1/2, t0], d(x0, x, t) < Ar1.

Be careful, here Aτ−1/2 plays the role of A in II-6.3(c).

Hamilton’s singularity paper, [11], section 17, or I-8.3(b), tells us under Ricci flow, distance distort
by at most

10
√
K ′(Aτ−1/2)r−2

1 ∆t,

on any time interval ∆t in [t0 − τr2
1/2, t0]. So if we take (with r1 = r0/2),

∆t = min{K ′(Aτ−1/2)−1/2r2
1, τr

2
1/2}, A = 100r0/r1 ≈ 200,

we can guarantee that the curvature estimate

R < K ′(Aτ−1/2)r−2
1

actually holds on the parabolic neighborhood P (x0, t0, r0,−∆t). (As long as the curvature estimate
works, there is no surgery).

We claim the above estimate implies Rm > −r−2
0 . If it is not true, then X > r−2

0 (see [12] and
Remark 7.5 in this notes for the notation); the pinching estimate says

R ≥ X log
(
e−3(t+ 1)X

)
≥ r−2

0 log
(
e−3t0r

−2
0

)
> K ′(Aτ−1/2)r−2

1 ;

because r1 = r0/2 and r2
0t
−1
0 is small enough by assumption. That is a contradiction.

Thus we can apply Lemma II-6.5 to B(x0, t0, r0). In particular, (b) told us the volume of B(x0, t0−
∆t, r0/4) is at least 1/10 of the Euclidean ball with the same radius.

By Lemma II-6.6 we see there is a sub-ball B′ of B(x0, r0/4, t0 − ∆t) with a definite radius
satisfying the assumption of this proposition (which we want to prove); by our choice of (x0, t0) and
(the almost minimal) r0, the proposition works for B′. Here we need almost maximal volume in an
essential way, because it could be that the radius of B′, or even r0/4, is smaller than the critical
radius r(t0 −∆t).

So now we repeat our argument, put B′ in the position of B(x0, t0, r), get a curvature estimate
on a short time interval ∆t2 ∼ τ(DiamB′)−2 before t0 − ∆t. More precisely, this bound is in the
size of

K ′′(DiamB′)−2,

over P (x0, t0, r0,−∆t−∆t2). This bound is worse than the previous one, but still small enough to
rule out surgeries, because we have a lower bound in DiamB′/r0.

However, r̄α → 0 and the pinching estimate tell us that we actually have −r−2
0 as a lower bound

of sectional curvature, because we have a lower bound in DiamB′/r0.
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Then apply again Lemma II-6.5 (a), and we get a much better curvature estimate; II-6.5 (b) gives
a ball with radius 1/4 with big volume.

So now we returned to exactly the same situation before we pick the sub-ball B′. So we will do
this again, and so can extend time back by the same amount like this, until we can apply Lemma
6.5 (a) and (b) no more.

As a result, we can extend time back by τr2
0, this is a contradiction (the proposition is actually

true for B(x0, t0, r0), so it is not a counterexample!). �

26. Corollary II-6.8

This corollary says, we can drop the almost maximal volume condition in Proposition 6.4, just
replace it by a definite lower bound in volume.

The proof just gets through as written in [16]. We note in the statement the lower bound in
sectional curvature should be −r−2

0 .

27. Section II-7.1

We assume at any time, Rmin < 0, otherwise, the situation was treated in the beginning of II-6.

The main result of this section is

Theorem 27.1. If for a fixed r0 < 1, a sequence tα →∞, the parabolic neighborhoods P (xα, tα, r0

√
tα,−r2

0t
α)

converge to P (x̄, 1, r0,−r2
0) after rescale the metric by 1/tα, then this limit solution has constant sec-

tional curvature −1/(4t) at any time t ∈ (1− r2
0, 1].

In dimension three,

R′t = ∆R+ 2|Ric|2 +
2
3
R2 implies R′min ≥

2
3
R2

min.

So by the maximum principle, (by normalization, Rmin(0) ≥ −6),

Rmin ≥
3
2
· 1

3
2Rmin(0)−1 − t

≥ 3
2
· 1
− 1

4 − t
= −3

2
· 1
t+ 1/4

.

Because the volume V has derivative V ′ = −
∫
R, we see V ′ ≤ −

∫
Rmin, so V ′ ≤ −RminV . So

V ′ ≤ 3
2
· 1
t+ 1/4

V, i.e. (V (t+ 1/4)−3/2)′ ≤ 0.

So we define V̄ = limt→∞ V (t+ 1/4)−3/2.

Lemma 27.2. If V̄ > 0, then

lim
t→∞

Rmin

−3/(2t)
= 1.

Proof. From the lower bound in Rmin,

lim sup
t→∞

Rmin

−3/(2t)
≤ 1;

so if the conclusion is incorrect, there is arbitrarily big T with −2TRmin(T )/3 < 1− 3ε, that is

Rmin(T ) ≥ −3
2
· 1− 3ε

T
.
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We observe, after T , Rmin will not get close to −3/(2t) very soon; in fact, since R′min ≥ 2
3R

2
min, when

t > T ,

Rmin(t) ≥ 3
2
· 1

3
2Rmin(T )−1 − (t− T )

≥ −3
2
· 1− 3ε
T + (1− 3ε)(t− T )

.

So for all t ∈ [T, 4
3T ], we have

Rmin(t) > −3
2
· 1− 1.5ε

t
.

So

V ′ ≤ −RminV ≤
3
2

(1− ε)(t+ 1/4)−1V,

so on [T, 4
3T ],

V ′(t+ 1/4)−3/2 − 3
2

(t+ 1/4)−1− 3
2V ≤ −ε3

2
(t+ 1/4)−1− 3

2V,

i.e. (
log(V (t+ 1/4)−3/2)

)′ ≤ −ε3
2

(t+ 1/4)−1,

so

log(V (t+ 1/4)−3/2)
∣∣∣ 4

3T

T
≤ −

∫ 4
3T

T

ε(t+ 1/4)−1 ≈ −ε log
4
3
.

If V̄ > 0, log(V (t + 1/4)−3/2)(∞) > −∞, the above can not happen for infinitely many disjoint
intervals [T, 2T ]. That leads to a contradiction. �

Let R̂ = RminV
2/3. We estimate

(R̂)′t = (Rmin)′tV
2/3 +

2
3
V ′

V
R̂ ≥ 2

3
RminRminV

2/3 − 2
3

∫
R

V
R̂ =

2R̂
3V

∫
(Rmin −R).

Since Rmin < 0 by assumption, we see the right hand side above is nonnegative. So we can define
R̄ = limt→∞ R̂. The above lemma told us, when V̄ > 0,

R̄V̄ −
2
3 = −3

2
.

Now after the rescale (page 18 top), the parabolic neighborhood is of a definite size. Now by
inequality II-(7.4), the contribution to R̂′ from this neighborhood should go to 0 since R̂ goes to a
limit monotonically. Since the convergence is C∞, we conclude20, on the limit, we have R = Rmin.

In particular, if we rescale by t−1, we see the limit metric is of constant scalar curvature −3/2.
Indeed the limit is at least a parabolic neighborhood, so by the evolution equation of R, we see the
sectional curvature is also constant on limit; i.e −1/4 at time 1 if we rescale by t−1.

Note, a priori, we don’t know Rmin is reached in the parabolic neighborhood.

At page 18, the end of first paragraph, he said “otherwise it is vacuous”. The meaning is, if
V̄ = 0, after we rescale by time, the limit has zero volume. So it is not possible for rescaled
parabolic neighborhood to converge.

We know surgeries does not reduce Rmin, in particular, the differential inequality for Rmin is valid
when surgeries present; also surgeries does not increase volume, so the differential inequality for
volume is preserved as well. So the arguments stands with the surgeries.

20Strictly speaking, here one takes derivative not with t, but with the rescaled time; and R, Rmin are all in the
rescaled (by t−1) metric. The reader can easily check II-(7.4) is invariant under such a rescale.
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28. Section II-7.2

Exercise 14. In Lemma 7.2, is it a typo in (a), i.e. “wr3” should be “wr3t
3/2
0 ”?

Answer: apparently, yes.

Remark 28.1. Note the notation r here has nothing to do with the canonical neighborhood parame-
ter. We require r < 1, otherwise for example the conclusion (a), about the curvature, will be absurd.
r is a quantity with no dimension.

Proof of 7.2.(a). This is proved by a standard compactness argument. In order to get a convergent
subsequence, we need curvature control; this is given by Corollary II-6.8.

We work on a smaller ball, make r0 = min(r, r̄(w))
√
t0, where r̄(w) is as in Corollary II-6.8.

Observe
Rm > −r−2t−1

0 > −r−2
0 ,

and r0 � h because the time is big. So the condition of Corollary II-6.8 is satisfies on B(x0, t0, r0).
Thus we have curvature control on P (x0, t0, r0/4,−τr2

0). By the pinching estimate that is also a
sectional curvature bound. Look at the conclusion of Corollary II-6.8 we see after scale down by t−1

we still have a definite curvature bound.

Then the conclusion follows by using the result of 7.1.

Notice the way he wrote equation II-(7.5). After rescale by t, we know

|t−1gab + 2 Ricab | ≤ ξ,

with a, b with unit length in t−1g(t). So i = t−1/2a, j = t−1/2b is unit in g(t); thus a = t1/2i,
b = t1/2j,

| gij + 2tRicij | ≤ ξ.
�

Remark 28.2. The above is proved on a tiny neighborhood of (x0, t0), so it is only stated at (x0, t0).

Proof of 7.2.(b). We continue with the argument in (a); having a curvature control over P (x0, t0, r0/4,−τr2
0),

we apply II-6.3 to a smaller neighborhood P (x0, t0, r
′
0/4,−(r′0)2), e.g. (r′0)2 = τr2

0.

We apply II-6.3 (b) first, claiming on B(x0, t0, Ar
√
t0), any point y with R > K ′1(A∗)r2

0, where

A∗ =
Ar
√
t0

r′0
=
Ar
√
t0√

τ r0
= τ−1/2A ·max{1, r

r̄(w)
},

has a canonical neighborhood; and the canonical neighborhood must be either tube or a cap; certainly
y can not be x0 since by (a) x0 has negative curvature while y has positive scalar curvature. We
find such a point y which is closest to x0 under the distance of time t0; there R = K ′1(A)r2

0. The
pinching estimate tells us Rm(y) ≥ −r−2

0 . Now because by assumption,

Vol(B(x0, t0, r
√
t0)) ≥ w(r

√
t0)3, r

√
t0 ≥ r0,

we get for y ∈ B(x0, t0, Ar
√
t0),

Vol(B(y, t0, r
√
t0)) ≥ w′(A, r

r̄(w)
)(r
√
t0)3.

So we can make time sufficiently big so that for the w′ we can apply II-7.2 (a) that was just proved
and get a contradiction; because (a) will say at y we have negative curvature while y has quite big
scalar curvature by assumption.
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That implies, on B(x0, t0, Ar
√
t0), we have R ≤ K ′1(A)r2

0. 21

Then we apply II-6.3 (a) to conclude that we have a uniform lower bound in volume of balls with
radius r0. The curvature bound, together with pinching, gives the lower bound in Rm; so we can
apply II-7.2 (a) that was just proved. �

It seems we can also argue starting from II-6.3 (c), to conclude that

R < K ′(A∗)(r′0)−2 = K ′(A∗)τ−1(r0)−2

on B(x0, t0, Ar
√
t0), where

A∗ =
Ar
√
t0

r′0
=
Ar
√
t0√

τ r0
= τ−1/2A ·max{1, r

r̄(w)
}.

We now take time so large that the pinching estimate says

Rm ≥ −ε(r0)−2 on B(x0, t0, Ar
√
t0).

Now because by assumption,

Vol(B(x0, t0, r
√
t0)) ≥ w(r

√
t0)3, r

√
t0 ≥ r0,

we get for x ∈ B(x0, t0, Ar
√
t0),

Vol(B(x, t0, r
√
t0)) ≥ w′(A, r

r̄(w)
)(r
√
t0)3.

So we can make time sufficiently big so that for the w′ we can apply II-7.2 (a) we just proved. �

Proof of 7.2.(c). We will start by showing that the conclusion is valid on P (x0, t0, Ar
√
t0, 3t0), that

is, extend time forward to 4t0. Then we repeat this argument until we reach the time Ar2t0.

We argue by contradiction. The metric at t0 is almost Einstein, so it will remain so for a while.
Assume t1 is the first time with

|2t1 Ricij +gij | = ξ

somewhere in P (x0, t0, Ar
√
t0, 3t0). We can just assume t1 = 4t0.

First notice the curvature lower bound Rm ≥ −r−2t−1
0 is satisfied (note r < 1 by my remark).

Since −2 Ricij = t−1gij + t−1ξ(x, t), we see by integration,∣∣∣g(t1)− t1
t0
g(t0)

∣∣∣ ≤ t1
t0
ξ.

We use this to compute volume:

Vol(B(x0, t1, r
√
t1)) ≈8 Vol(B(x0, t0,

1
2
r
√
t1)) = 8 Vol(B(x0, t0, r

√
t0))

≥8w(r
√
t0)3 = w(r

√
t1)3.

So we can apply (b) again, use a slightly bigger A: notice a distance Ar
√
t0 at t0 is deformed to a

distance about Ar
√
t1. So we conclude at t1,

|2t1 Ric +g| < ξ.

That’s a contradiction.

We can extend time forward like this. But notice, each time the volume estimate introduced an
error of size ξ3/2; similarly the slight change in A. We can manage it as long as we have a definite
number of steps to extend, e.g. in the theorem with ∆t = A2r2t0. But we can not extend infinitely
many steps using the method of our proof. �

21We can not prove this by arguing that a tube has small volume and thus get a contradiction by volume com-

parison. Because when A is big, the volume comparison is not powerful enough to rule out thin tubes at a distance.
On the other hand, in order to apply (a), we don’t need a explicit lower bound in volume, as long as the time is big

enough.
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29. Section II-7.3

Definition. Let ρ(x, t) be the biggest ρ > 0 so that on B(x, t, ρ),

(29.1) Rm ≥ −ρ−2.

First, we assume Rmin < 0, so ρ < ∞. We do not rule out the possibility that ρ is bigger than
Diam(M).

Roughly speaking, within the radius ρ(x, t), we expect the geometry to be relative controlled; see
[4].

Lemma 29.2. For any w > 0, there is ρ̄(w) > 0 so that, if ρ(x, t) < ρ̄
√
t, then

Vol(B(x, t, ρ(x, t))) < wρ3(x, t).

Proof. If not, we can apply Corollary II-6.8 to B(x, t, ρ); but we first need to check the condition
θ−1h < ρ.

If not, remember there is a point (x∗, t∗) ∈ B(x, t, ρ) so that the minimal sectional curvature at
(x∗, t∗) is −ρ−2. Assume x∗ is the point that is closest to x among all such points. Since θ does
not depend on time (check the proof of Proposition II-6.4), because δ(t)→ 0 we conclude that ρ is
smaller than r, the canonical neighborhood parameter; by the pinching estimate, we conclude

R(x∗, t∗)� ρ−2 > r−2.

So (x∗, t∗) has a canonical neighborhood. By the construction of surgery we see this canonical
neighborhood is a tube, or a cap that is connected to a tube. So by remark 4.6 in this notes we
see the volume near (x∗, t∗) is very small at any scale bigger than the radius of the tube. By the
curvature lower bound (29.1) and the volume comparison 22 we get the desired volume bound.

So we apply II-6.8. Once we estimated curvature on P (x, t, ρ/4,−τ), we can use Lemma 6.3 (c)
to get curvature estimate on B(x, r, 2ρ) by Kρ−2. Then the pinching estimate23 says, if time is big
enough, ρ̄ is small enough, indeed we have on B(x, r, 2ρ)

Rm > −ρ−2/2.

That contradicts to the choice of ρ(x, t). �

Definition. We define the thin part24 M−(w, t) to be those point x with

Vol(B(x, t, ρ∗(x, t)) < w(ρ∗(x, t))3;

here
ρ∗(x, t) = min{ρ(x, t),

√
t}.

Its complement M+(w, t) is the thick part.

So if ρ(x, t) is small compare with
√
t, x automatically belongs to the thin par M−.

In particular, the thick part must satisfy

ρ(x, t) ≥ ρ̄(w)
√
t.

22One need to be careful here. Actually the volume comparison is not powerful enough to work for arbitrarily

small w: see, the thin ε-tube within roughly has length/caliber ratio ε−1; this is quite collapsed but perhaps not
collapsed enough to imply the volume of the entire ball B(x, t, ρ(x, t)) is smaller than wρ3(x, t) if w is very very small.

However, we don’t need w to be aribitrary small. In fact one can first prove Theorem II-7.4, a metric geometry

result, i.e. manifold that is w-collapsed is a graph manifold... We just need this critical w. For this w, we adjust ε a
little (only once!) to make the volume comparison work. This estimate is sufficient for later applications.

23Compare the discussion of II-6.4 in this notes
24Thin parts are not automatically “collapsing”. There is one exceptional case we need to check in the next section.
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So we can apply Lemma II-7.2 to a sequence of points in M+ when time goes to ∞ and conclude
these parts, after rescale by t, converge to a complete hyperbolic manifold. These pieces are of finite
volume because V (t)(t+1/4)−2/3 is non-increasing. Since we specify w to measure if a ball collapses,
there are only finitely many hyperbolic pieces.

At this point we have a rough decomposition of the solution into a thick part (the almost hy-
perbolic pieces) and the remaining parts. The major topological issue is, to show the fundamental
groups of the almost hyperbolic pieces injects into the fundamental group of the whole solution at
any time.

This is proved in [12]. In [12], Hamilton classified nonsingular solutions to the normalized Ricci
flow. The adjustment we need here, if any, is minor. What is needed is, the persistence of hyperbolic
pieces, and that the boundary tori are incompressible.

To prove the persistence of hyperbolic pieces, Hamilton used hyperbolic rigidity and harmonic
map on manifolds with boundary; none of these are directly related to Ricci flow. Specifically, in
order that argument gets through, one just need the following fact: assume we have a family of
metrics parameterized by time t; if a sequence of points, (pi, ti), each has a neighborhood that is
ξ-close to a hyperbolic ball, then for any subsequence of (pi, ti) which we denote also by (pi, ti),
there exist neighborhoods of (pi, ti) that converges to a complete hyperbolic manifold as i → ∞.
In our situation, we consider the manifolds with metric t−1g(t); the above mentioned requirement
follows from II-7.1 and II-7.2.

Next consider the incompressible issue. We are now dealing with a family of metric h(t) = t−1g(t).
We see

h′ = −t−1h− 2t−1 Ric .

For convenience, all the notions (curvatures, etc) in this argument are respect to h. Follow the
argument in [12]. Denote by A the area of the (supposed) minimal disc D whose boundary ∂D lies
in a torus T , so that ∂D is a primitive element of π1(T ) that generates (the supposed) kernel of
π1(T )→ π1(M c); M c is the complement of the hyperbolic piece to which T belongs. T is of constant
mean curvature, and almost constant second fundamental form, and of definite area. We need these
to make A a well-defined quantity.

Notice, this torus T may move with respect to time, in order to preserve constant mean curvature
and constant area. The derivative of metric here is −t−1(h + 2 Ric); by II-7.2 we know the tensor
h + 2 Ric is already very small. Also we know the persistence of hyperbolic pieces. All these tells
us the V term in [12], section 11, is of size o(t−1). (Recall, the proof of existence of such a torus T
uses the implicit function theorem, as described in the footnotes to [12] in [1]. Thanks Prof. Chow
for explaining these issues).

We compute the variation of area as in [12]. Denote by D the minimal disc,

A′ ≤ −
∫
D

1
t
dA−

∫
D

Rh

2t
dA− 2π

t
+

1
t

∫
∂D

kg + o
(1
t

)
.

Here kg is the geodesic curvature of ∂D. It almost equals to 1/4 since the torus is of almost constant
second fundamental form (check how to rescale!). The Rh above is the scalar curvature of the metric
h = t−1g; by II-7.1 it almost equals to −3/2. So in conclusion we get

A′t ≤
1 + 2ε

4t
L− 1− ε′

4t
A− 2π

t
+ o
(1
t

)
.

L is the length of ∂D. So finally we follow the argument in [12] section 12 to bound length L by
area A, we conclude

A′t ≤ −
2π − ξ
t

.

This is not possible because the right hand side is not integrable.
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These arguments works with the surgeries. In fact, the surgeries are essentially breaking off necks.
They happen when a long, thin tube pinches off in the center or (degenerate case) one end. Assume
a minimal disc passes through a thin tube because. Look at all the intersections of the minimal disc
with a center S2; these are all genericly circles (if not, take some generic S2 close to the center one...).
Consider all out most circles in the disc; The “outside” of these circles is a disc with many holes; we
observe that this set remain connected after a surgery because we have counted all intersections, on
both sides of surgery. So now we can just fill in these circles locally near the center S2, as we have
seen these remain connected to the T 2 we are studying even after a surgery. So we see doing surgery
actually reduces the area of A. Compare [17], we remark after sufficiently long time, all surgeries
are topologically trivial, thanks the prime decomposition.

In fact I don’t think that a minimal disc has to pass through a neck.

30. Section II-7.4: the application

Remark 30.1. We will apply theorem II-7.4 to the thin part of a solution to Ricci flow, after we
rescaled the solution down by t−1. (So in (2) the curvature is about 1/4).

The sectional curvature lower bound in II-7.4(3) should be −r−2
0 .

We need to explain that the thin part satisfies the assumption of theorem II-7.4, with only one
possible exceptional case that is easy to treat.

Having the persistence of hyperbolic pieces, we truncate these pieces at boundary tori with suf-
ficiently small area (so that the remaining parts are thin in the sense of II-7.3), and with almost
constant second fundamental form; this is possible by the persistence of hyperbolic pieces. In par-
ticular, the remaining (thin) parts has convex boundary.25

The thin part satisfies (1) by definition, or almost, except the part concerning the diameter of the
manifold; see the following paragraphs for this issue. And (2) is also satisfied since the boundary
between thin and thick part (on a cusp) can be chosen like this, the metric is almost hyperbolic. (3)
apparently follows from Corollary II-6.8 and Shi’s estimate [18], [19].

Now let us look at (1) more carefully. Note here the metric is t−1g(t).

If (1) is not satisfied, we claim M has no hyperbolic pieces, that is, there is no thick part, and M
is a compact manifold with no boundary so that

wρ3 ≥ Vol ≥ cDiam3, Rm ≥ −ρ−2 ≥ −Diam−2 .

In fact, we have the almost cusps between a thin part and a thick part, so when there is a thick part
which is not the whole manifold, there is a long cusp; one can arrange that the diameter of the “thin”
part is more than 100, while the curvature near cusp is −1/4. That contradicts to Rm ≥ −Diam−2.

Moreover, c stays away from 0. Otherwise we can apply Theorem II-7.4 to show that M is a
graph manifold.

We also remark that Diam is smaller than r̄ (use metric t−1g(t)); in fact, it should go to 0 at
t→∞. Otherwise, M would converge to a hyperbolic manifold.

Lemma 30.2. For any K0, c, there is a τ so that, if a manifold N satisfies

Diam(N) = 1, Vol(N) ≥ c, −τ ≤ Rm ≤ K0,

and also Perelman’s condition II-7.4(3), then N admits a metric with nonnegative sectional curva-
ture.

25I don’t know why this is needed in the proof of theorem II-7.4.
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Proof. Compactness. Probably one does not need II-7.4(3). �

The K0 above is the one in II-7.4(3).

Now if ρ
√
τ > Diam, If we rescale the “exceptional” manifold by Diam−2, we can apply the

Lemma so the topology of M is fully understood.

Otherwise, by taking a even smaller w, we see Vol Diam−3 is small. For more about this, see the
next section. So again we can apply Theorem II-7.4 to M .

31. Assemble the proof: A brief remark on the constants

Let us try to assemble the proof.

One first goes through the first paper.

Then prove Theorem II-7.4 and get a critical ω0 = wα; that is, if for all p ∈M , there is ρ so that

Rm ≥ −ρ−2 on Bρ(p), Vol(Bρ(p)) ≤ ω0ρ
3,

and assume II-7.4 conditions (2), (3), then M is a graph manifold. The proof is purely metric
geometry.

For this ω0, we go through the arguments II-1 to II-6, and find K0 so that if

Rm ≥ −ρ−2 on B2ρ(p), Vol(Bρ(p)) ≥ ωρ3, ρ�
√
t,

then for t big enough, Rm < K0 on Bρ(p).

Then put c = ω0, K0 in Lemma 30.2 and find the corresponding τ .

Now define the thin part as: (under metric t−1g(t)) for the biggest ρ so that

Rm ≥ −ρ−2 on B2ρ(p),

we have

Vol(Bρ(p) ≤ τ
3
2ω0ρ

3.

This, first of all settles the “exceptional case”. In fact, if we cannot apply II-7.4, it must be

τ
3
2ω0ρ

3 ≥ Vol ≥ ω0 Diam3,

then we can apply Lemma 30.2. Note in II-7.4 (1) and (3) Perelman used different symbols (wα vs
w′).

In the arguments of II-1 through II-7, one need to be careful about which constant depends on
which.

After the proof in II-4, II-5, we are free to further reduce the value of δ(t) when necessary.

Many other constants, e.g. the K in II-6.4, κ in II-6.3, are insensitive to time t. And they will
not get worse if we reduce δ.

For instance, in the beginning of the proof in II-6.4, one need to reduce δ further so that δ � K−1

in order that a curvature as big as Kr−2 is still not big enough to call for a surgery. (In this case K
comes from earlier works, e.g. II-6.5 and volume comparison).

It is possible one can make sense of “weak solution” of the Ricci flow and take δ = 0.
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Appendix: Theorem II-7.4 and the method of Shioya-Yamaguchi

In April 2003, Shioya and Yamaguchi posted a paper, [22], with a proof of Perelman’s theorem
II-7.4. In fact, the major ideas and the (most important) local case are already available in their
earlier works, [7], [25], [21]. Here we give a sketch of their method.

A collapsing 3-manifold looks like a 1 or 2 dimensional object. So first we need to study Alexandrov
spaces of dimension 1 (that’s trivial) and 2, as the limits of collapsing sequences. It turns out there
are some fiber structure on at least parts of the manifolds that converge to the “nice” parts of the
limit. One then try to glue these local structures to get global information.

Sometimes we will not distinguish notations on manifolds and on the limit Alexandrov spaces;
this should not cause much confusion.

1. The critical points in the sense of Grove-Shiohama.

Consider the distance function d(p, ·) over a manifold. If for all vector T at x, there is a minimal
geodesics γ from x to p so that

∠(γ′(0), T ) ≤ π

2
,

we say x is a critical point (for d(p, ·)).

Proposition 31.1. If there is no critical points for d(p, ·) over Br(q), then there is a set E ⊃ Br(q)
that is diffeomorphic to S ×R, where S is some n− 1 surface.

In fact, without critical points, one can construct a vector filed V that is “almost in the gradient
direction of d(p, ·)”. The diffeomorphism is obtained by following the integral curves of V .

Proposition 31.2. There is no critical points for d(p, ·) near the middle of a minimal geodesic
connecting p and q.

Otherwise, we get two minimal geodesics from x to p and to q, with small angle at x, that
contradicts to the Toponogov theorem.

2. Alexandrov spaces. [3].

Assume X is an Alexandrov space with curvature at least K, for example, any limit of Riemannian
manifolds with sectional curvature at least K. For convenience, we assume K = 0.

Assume γ1, γ2 are two minimal geodesics, γ1(0) = γ2(0) = x. Define26

α(t1, t2) = arccos
( t21 + t22 − d(γ1(t1), γ2(t2))2

2t1t2

)
.

The Toponogov theorem implies α is a nonincreasing function of t1, t2. So it makes sense to define
the angle between γ1, γ2 at x as the limit of α(t1, t2) when t1, t2 → 0.

A tangent cone at x ∈ X is defined as the pointed Gromov-Hausdorff limit of (X,x, r−2
i d), where

d is the distance on X, ri → 0. This limit does not depend on the choice of the sequence ri (because
we can define the angle between γ1, γ2...).

A point x ∈ X is regular, if the tangent cone at x is Rk.

Then define a strainer at p: it is a set of points a1, a2, ..., an; b1, b2, ...bn, so that all the distances
d(p, ai), d(p, bi) are comparable, and for i 6= j,

d(ai, aj)√
d(ai, p)2 + d(aj , p)2

≈ 1,
d(bi, bj)√

d(bi, p)2 + d(bj , p)2
≈ 1,

d(ai, bi)
d(ai, p) + d(bi, p)

≈ 1.

26If K < 0, we have to use the law of cosine on space with constant curvature K.
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The biggest number r so that there is a stainer at p with r = min{d(ai, p), d(bj , p)} is called the
strainer radius at p.

pa1 b1

a2

b2

Proposition 31.3. If there is a strainer at p of radius r, and the curvature is at least −ε(n)2r2,
then there is a bi-Lipschitz map from a set containing Bε(n)(p) in p to a ball in Rn.

In fact, the map x 7→ (d(a1, x), d(a2, x), ..., d(an, x)) gives the bi-Lipschitz map. You can prove
the case n = 2 as an exercise (use the Toponogov theorem...).

3. The geometry of 2-Alexandrov spaces. [3], [20], [21].

Proposition 31.4. A 2-Alexandrov space is a topological manifold of dimension 2, possibly with
boundary.

For all δ > 0, let Sδ ⊂ X be the set of points x in X so that the tangent cone at x is a cone over
a circle with perimeter l ≤ 2π − δ. 27

Proposition 31.5. There are only finitely many Sδ within finite distance.

One can prove this directly. However, there is a version of 2-dimensional Gauss-Bonnet theorem
for Alexander spaces; [22], a singular point carries a “curvature mass” of 2π − l. You can think the
case that X is the limit of a sequence of surfaces. So indeed we can estimate precisely how many
points belong to Sδ.

We define the essential boundary ∂∗X to be those x ∈ X so that the tangent cone at X is a
cone over a closed segment (of length at most π). Sometimes we need to cut X by some distance
functions, the boundary pieces formed this way are not regarded as essential boundary.

4. The soul theorem in dimension 3. 28 Assume M is a three dimensional complete manifold
of nonnegative sectional curvature. Then we have the soul theorem of Cheeger-Gromoll.

If the soul is two dimension, it must be S2, RP 2, T 2 or the Klein bottle. If the soul is S2, M must
be a metric product S2×R by the splitting theorem; if the soul is RP 2, M must be S2×R/Z2, by
going into the double covering. If the soul is T 2 or Klein bottle, M must be flat. For example, there
is only one R bundle on T 2 so that the total space is orientable; so M has two ends and thus splits.

27If l = 2π, then x is a regular point.
28We state it for the smooth case. Actually, this is true for 3-Alexandrov spaces with nonnegative curvature; [21].

however, with the help of condition (3) in Perelman’s theorem II-7.4, we can avoid the general case.
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Assume the soul is S1, then the manifold must be diffeomorphic to S1×E; E is a complete surface
that is diffeomorphic to R2. This is because the lift of S1 is a line (notice a soul is totally convex); so
there is a splitting in the S1 direction. However the metric need not to be a global metric product.

Assume the soul is a point, p, then M is diffeomorphic to R3.

5. The Shioya-Yamaguchi limit. [21].

Assume a sequence of manifolds converges to an Alexandrov space of lower dimension (i.e. the
collapsing case). We first focus on singular points x of X, i.e. the tangent cone at x is not Rk.

We assume BR(x) is very close to (after rescale by R−1) the corresponding ball BR in the tangent
cone at x.

The standard method of analyzing a singularity is to find a rescaled limit. The first technical
issue is, to choose suitable base point p̂i ∈ Mi, with p̂i → x in the Gromov-Hausdorff sense. We
want p̂i on the “peak” as shown in the picture; this is achieved by maximizing the average distance
to Σx, the cross section of the tangent cone; for details see [21].
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Let δi be the distance from p̂i to the furthest critical point of di(p̂i, ·) within distance R. We
know δi → 0, because (Mi, p̂i), at scale up to R, is very close to a metric cone. So critical points at
distance comparable to R are ruled out by the Toponogov theorem, c.f. Proposition 31.2.

Then take limit of (Mi, p̂i, δ
−2
i dxi). Such a limit, which is an Alexandrov space with nonnegative

curvature, is called a Shioya-Yamaguchi limit (SY limit) associated with the singularity x. In
particular, the ball B2(p̂i), contains all the information about the topology on Mi that is near the
singular point x in the Gromov-Hausdorff sense.

One can check the dimension of an SY limit is at least one more than the dimension of X. Roughly
speaking, our choice of p̂i forces the furthest critical point lies in a direction almost perpendicular
to the direction that leads to Σx, that gives us an extra dimension. In our situation Mi are of
dimension 3, if X is of dimension 2, then a SY limit must be of dimension 3; if X is of dimension 1,
then a SY limit has dimension at least 2.

6. The fibration theorem. [25].

Proposition 31.6 (Yamaguchi). Assume Mi
dGH−→ X, with curvature bounded from below by −1.

Assume the strainer radius on X is at least δ; then for sufficiently big i there is a fibration on Mi.

Consider the Hilbert space L2(X). For each p ∈ X, we get a function fX(p) ∈ L2(X) that is
defined as

fX(p)(x) = h(dX(x, p)),

where h ≥ 0 is a function supported near 0; the size of this support is smaller than the stainer
radius. So fX : X → L2(X) is certainly a bi-Lipschitz embedding. One can check, even though it is
not a smooth embedding, one can define “rough” tangent bundle and a “rough” normal bundle of
fX(X) ⊂ L2(X); in particular, for points sufficiently close to fX(X) we can define a “projection” π
onto X.
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Similarly, for each m ∈M , we get a function fM (m) ∈ L2(X) that is defined as

fM (m)(x) = h(dM (m,φ(x))),

φ is a Gromov-Hausdorff approximation from X to M . fM is generally not an embedding of M into
L2(X); however we still can consider the map f−1

X ◦ π ◦ fM from M to X; one can prove that is a
submersion and gives the fibration, [25].

In the case X is of dimension 2, the fiber is clearly S1; when X is of dimension 1, the fiber is
either S2 or T 2, this can be seen directly by taking limit similar to the SY limit and reduce the
study to 2-dimensional limit spaces; one can also check the first Betti number of fiber is at most 2,
as in [24], [21], [25].

7. Local structure over 2-Alexandrov spaces.

Close to any regular points in X, there is a local S1 fibration on M . Near a singular point x,
we can take a small r so that Br(x), in its own scale, is close to the tangent cone at x. Cones of
dimension 2 is regular away from the pole, so there is a fibration over ∂Br(x), thus we get a T ≈ T 2

over ∂Br(x).

We then study the SY limit Y at x, it is a complete 3-manifold with nonnegative curvature, by
Perelman’s condition II-7.4(3). Notice the boundary of big balls in Y is a torus, T 2, the soul theorem
implies Y must be S1 × E where E is a surface diffeomorphic to R2. So T actually bounds a solid
torus so we can get some 29 Seifert fiber structure over Br(x).

So we have a Seifert fibered structure over the interior of X.

Next study the part close to ∂∗X. We first divide ∂∗X into many small pieces, so that each piece
is almost “straight”. Let pq be such a piece. We also make the scale of pq so small that there is no
point of Sδ (see the definition before Proposition 31.5) near pq.

So the function d(p, ·) does not have critical points on pq, we can get an open set in M that is
close to pq, and diffeomorphic to S × I, where S can be taken as a piece of a level surface of (p, ·)
near the middle of pq.

X

p
q

∂∗X

?

S × I

M

@
@
@

@
@I

S

Because there is no point of Sδ near pq, the fibration theorem, which is valid on regions that is
not too close to pq, applies. In particular, there is a deformation retraction map from B(S, r) to
S, here r is comparable with half of the distance form p to q, but much bigger than the size of S.

29If this singularity is not too singular, i.e. the angle is more than π, we know this fill in fibration is trivial; and
it agrees with the boundary fibration.
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Then the Margulis lemma, [21] implies π1(S) is almost nilpotent. There is only one surface with
nonempty boundary has an almost nilpotent fundamental group, that is D2. So S is a disc D2.

Near a corner point p, we study the SY limit at p. The set ∂Bµ(p̂), will cut out two discs near
∂∗X, while the boundary of these discs will be connected by an annulus in ∂Bµ(p̂); this annulus is
formed by the S1 fibration on regions away from ∂∗X. So ∂Bµ(p̂) is a sphere, see the picture:

p̂

D2 × I D2 × I

M �
�	

S1 fibration

If the boundary of big balls in the SY limit is a sphere, the soul theorem implies the limit is
diffeomorphic to R3. Thus ∂Bµ(p̂) bounds a solid ball.

So the structure near ∂∗X is, there is an open set that is diffeomorphic to ∂∗X × D2, and is
Gromov-Hausdorff close to ∂∗X, so that for each x ∈ ∂∗X, x × ∂D2 is an S1 fiber on the regular
part of X. Roughly speaking, the S1 fibers near ∂∗X are “filled in” by discs.

8. Local structure over 1-Alexandrov spaces.

Assume the limit space X is of dimension 1. Then on the regular part there is an S2 or a T 2

fibration. If p is a singular point, then X is a segment or a ray starts at p. Take an SY limit Y at
p. If Y is of dim 3, then by the soul theorem it is diffeomorphic to R3, or S2 ×R/Z2; S1 ×R2, or
K2×̃R; depends on whether the fiber on the regular part is S2 or T 2. So the structure near p is just
gluing D3, or S2 × I/Z2; S1 ×D2, or K2×̃I to the regular ends.

When the fiber on the regular part is T 2, then gluing Y to the regular T 2 fibration gives a graph
manifold. If the fiber is S2, we remark there is one S1 action. For example, if the SY limit is R3,
near the singularity p, it is like the following:

&%
'$x

D3
-s s

p = ∂∗X

X

The center of the ball D3 projects to p; the fibers are the concentric spheres in D3. We remark
the fixed points in the action is a curve (the diameter of D3). There is a similar picture if the SY
limit is S2×R/Z2. This picture describes the action only, in reality the size of the S2 fiber is small.

Locally this does not give a Seifert fiber structure. However, when we do a global gluing, there
will be a graph manifold structure. See the subsequent subsection “Finding global structures”.

If the SY limit Y is of dim 2, by the argument in the previous subsection, basically over p, we
see some Seifert fiber structure over Y (with or without boundary); and it is connected to a piece
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with S2 or T 2 fibers over a segment. The structure that connects these two pieces will be discussed
in a subsequent subsection “Finding global structures”. 30

9. The building block.

Proposition 31.7. There is a w > 0 so that, if Rm ≥ −1 on B2(p),

Vol(B2(p)) < w,

Then there is an Alexandrov space (Xp, x), with or without boundary, so that for some 1 ≤ r ≤ 2,

dGH(Br(p), Br(x)) < ε;

and on Br(p) there is a structure as described in the last two subsections; moreover, there is no Sδ
points in the σ neighborhood of ∂Br(x) ⊂ X.

Remember, Sδ are points at which the tangent cone is a cone over a circle with perimeter less
than 2π − δ.

The proof is, of course, by taking limit.

This result is suitable for our purpose, because in II-7.4 there is only a local lower bound in
curvature, we need to rescale. In particular there is no bound for diameter, it can well happen that
one region looks like 2 dimensional while another region that is far away looks like 1 dimensional.

So in order to glue the above building blocks together, we need to glue structures over 2 dimen-
sional Alexandrov spaces first, then glue structures over 1 dimensional Alexandrov spaces, finally
we glue over the “transition regions” between 2 dimensional Alexandrov spaces and 1 dimensional
Alexandrov spaces.

10. Gluing structures with the same dimension.

Assume p and q are so that the dimensions of Xp and Xq (as in the previous subsection) are the
same. The main idea is, on the overlap Br(p) ∩Br′(q), the fibers roughly over ∂Br(x) are isotopic;
this is because, by construction, points are almost regular near ∂Br(x); so one can use the gradient
of distance functions to flow one fiber to another.

So by perturbing the fibers near ∂Br(x) ⊂ Xp, one can glue the fibers together. One can keep
on doing this. More precisely, let U2 be a connect component of those p so that the space Xp in
Proposition 31.7 is of dimension 2; then U2 has the following structure:

There is a (compact, with boundary) 2-surface Z, whose boundary ∂Z is divided into two parts,
one part is ∂∗Z. There is a Seifert fibered space Û2 over Z (viewed as a closed set), and U2 is
obtained by fill in the S1 fibers over ∂∗Z with discs D2.

∂∗Z

Z
∂∗Z∂∗Z

30With more effort, e.g. a more careful analysis of the structure over singularities and a finer classification of

2-Alexandrov spaces with nonnegative curvature, [21], one actually sees in this case the structure is a solid D3 or
RP 3 −D3 glues to a S2 × I, or S1 ×D2 or K×̃I glue to T 2 × I.
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So if there is a piece of ∂Z − ∂∗Z that is a circle, there is a corresponding T 2 boundary for U2;
besides that, each component of ∂Z − ∂∗Z is a segment; and there is a corresponding S2 boundary
for U2.

Similarly, let U1 be a connect component of those p so that the space Xp in Proposition 31.7 is
of dimension 1; then U1 has the following structure:

There is a piece E that is diffeomorphic to S2 × I, or T 2 × I. If E is not all of U1, then there
is one, or two spaces, each of these are either one of D3, S2 × I/Z2, S1 × D2, K2×̃I, or with the
structure as U2 described above, each space has only one boundary component, which is glued to
end (or ends) of E. See the next subsection.

11. Finding global structures.

The gluing between U1 and U2 is clear, one just match the S2 or T 2 boundary. The gluing of
T 2 is of course described by elements of SL2(Z); but we don’t need to worry about this, thanks the
very definition of graph manifolds.

∂∗X

X
∂∗X∂∗X

Glue with a T 2 bundle
over a segment

@
@
@
@R

Glue with a S2 bundle
over a segment

@
@
@
@
@I

�
�
�+

Glue with a S2 bundle
over a segment

?

So the question is, how to find the graph structure when we glue U2 with the S2 bundles over I.

Assume one S2 boundary piece of U2 is glues to a S2 × I. Then the other end of this S2 × I is
glued with D3, or RP 3 −D3 = RP 2×̃I, or another S2 boundary piece of (probably another) U2.

Now we construct an S1 action on the union of all these S2 × I, D3, RP 3 −D3 = RP 2×̃I, and
the region near ∂∗X. Remember, the structure near ∂∗X is ∂∗X ×D2, and each x× ∂D2 is a fiber.
So we can put an S1 action on ∂∗X × D2, by rotating the D2. Note this action has fixed points,
which is diffeomorphic to (and Gromov-Hausdorff close to) ∂∗X. We can arrange so that this action
extends to the boundary S2 pieces of U2. (We only consider orientable manifolds!) Then extend it
to the S2 × I:

S2 × I &%
'$x

S2

&%
'$x

S2

&%
'$x

S2
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Note the fixed points (the north poles and the south poles) form two intervals. We can extend
this to the other U2 piece, or to D3 or RP 3−D3 = RP 2×̃I that is glued to the other end of S2× I.

The fixed points of this action is one (or more) circle(s), in naked eyes these circles “link the ∂∗X
pieces”.

Remove a (very thin) solid torus around the fixed point sets. The remaining part is some Seifert
fibered spaces glued along the T 2 boundaries with a set that admits an S1 action which is almost free,
except there are possible fixed points for eiπ ∈ S1: these arise from the action onRP 3−D3 = RP 2×̃I.
These fixed points form some disjoint circles, together with the S1 orbits one gets a Seifert structure.

So the manifold admits a graph structure. Here the T 2 between Seifert spaces might not be incom-
pressible, e.g. there might be solid tori; but this does not effect the correctness of geometrization.
31

Appendix: DeTurck’s trick

We review DeTurck’s trick.

Assume V (x, t) = V i∂/∂xi is a vector field. It generates a one-parameter diffeomorphism group
φ(t). Assume g is a metric depends on time t, one computes

d(φ∗t g)
dt

= φ∗t

(dg
dt

)
+ 2φ∗t (δ

∗v),

here v is the dual 1-form of V , δ∗v is a symmetric 2-tensor with 32

δ∗v(x,y) =
1
2

(∇xv(y) +∇yv(x)).

This can be used to change the Ricci flow equation into a strict parabolic equation. Recall, for a
variation of metric, g + sh,

(2 Ric)′s(X,Y ) =− 2δ∗δh(X,Y )−HessTr h(X,Y ) +∇∗∇h(X,Y )

+ Ric(X, ei)h(ei, Y ) + Ric(Y, ei)h(ei, X)− 2h(R(ei, Y )X, ei).

Observe, δ∗δfg = −δ∗df = −Hessf , we see

(2 Ric)′s(X,Y ) =− 2δ∗δ(h− 1
2

Tr h)(X,Y ) +∇∗∇h(X,Y )...

31The graph manifold here is defines by gluing Seifert fibered spaces together. In the gluing, if boundary torus T

are not imcompressible, we can do the following:
Assume T is a seperating torus. Find a disc D with ∂D embedded in T . Find an embedded I-bundle E on D so

that E ∩ T is exactly the I-fibers over ∂D.
Cut the manifold along T ∪ ∂E − (T ∩ ∂E). We see this is just cut along a S2. The first case is, this S2 does not

bound a ball on either side. Then clearly such a splitting cut M into a nontrivial connect sum, M = M1#M2. Both

of them are graph manifolds. In fact, M2, the one comes from the “D side of T”, is obtained by cutting a unknotted
solid torus from S3 and glue in the originally pieces in M that lies on D side of T ; M1, the other piece is obtained by

glue in to M a solid torus to replace the piece of M that is on “D side of T”.

If this torus is not seperating, then we can still do the above, cut along the surface above and get a connected
manifold with two S2 boundary pieces; we can glue in balls to these S2 pieces, this time the result is just to remove

a S2 × S1 from M .
This cannot continue for ever, by the prime decomposition.

The remaining case is, T bounds a solid torus, we can assume the fiber structure does not extend. That means,

the fiber structure is the meridian circles of T 2. Consider the part of M bounded by T that is not a solid torus; that
part has a base surface, which is just the S1 action quotient.

Draw a curve on that base surface with end points touching T , cut, we will get another connect sum, or the whole
thing is a lens space.

32See, δ∗ is the adjoint of the divergence operator δw = −∇eiw(ei, ·). Another interpretation is the Lie derivative

δ∗v = LV g/2.
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It is because of the first term on r.h.s. that the equation is not strict parabolic; see [8]. DeTurck’s
trick is, to find some form v depends on g, so that the symbol of the operator g 7→ δ∗v is the same
as that of −2δ∗δ(h− 1

2Tr h). Thus the r.h.s. of the equation

dg

dt
= −2 Ric−2δ∗v

has the same symbol as the rough Laplacian ∆ = −∇∗∇ = ∇2
ei, ei , and it is strict parabolic and we

get a solution. Then φ∗t g satisfies the Ricci flow equation,

d(φ∗t g)
dt

= φ∗t

(
− 2 Ric−2δ∗v

)
+ 2φ∗t (δ

∗v) = −2 Ric(φ∗g).

For this v, DeTurck used v = T−1δ(T−(Tr T )g/2), where T is any fixed nondegenerate symmetric
2-tensor; T−1 is defined by T ((T−1w)], X) = w(X), for all 1-tensors w, in local coordinate

T−1 : widxi 7→ T pqwqgpidxi.

We now compute the symbol of g 7→ δ∗v. As before, take a variation g + sh. Below every equation
is mod 0th and 1st derivatives of h. We start from

(δ∗T−1δT )′s = δ∗T−1(
d

dt
δT ) + ...

We compute, using an evolving frame ei(s),

d

dt
δT (X) = −(∇T )′(ei, ei, X) + ... = T (∇′eiei, X) + T (ei,∇′eiX) + ...

Recall, 2 < ∇′XY,Z >= ∇Xh(Y,Z) +∇Y h(X,Z)−∇Zh(X,Y ), so

δ∗(T−1T (∇′eiei, ·)) = δ∗(T kpTjk(−(δh)j −
1
2

(dTrh)j)ep) = −δ∗δ(h− 1
2

(Trh)g).

Similarly, write hij,k = ∇ekh(ei, ej),

δ∗(T−1T (ei,∇′ei ·)) = δ∗(T pk(
1
2
hkj,i +

1
2
hij,k −

1
2
hik,j)Tijep) = δ∗(

1
2
hij,kT

pkTije
p).

Then consider δ∗T−1δ(TrT )g,

(δ∗T−1δ(TrT )g)′s = δ∗T−1(
d

dt
δ)(TrT )g + δ∗T−1δ(

d

dt
TrT )g + δ∗T−1δ(TrT )h+ ...

The first part is, mod 0th and 1st derivatives of h,

δ∗T−1(TrT < ∇′eiei, · > +TrT < ei,∇′ei · >) = −δ∗T−1TrTδh,

it cancels the last. The second part is −δ∗T−1δ(< T, h > g). So, mod 0th and 1st derivatives of h,

(δ∗T−1δ(TrT )g)′s ∼− δ∗T−1δ(< T, h > g) = δ∗(T ijTpqhpq,iej).

�

We now study a family of metric g(t) (want it to be a solution of Ricci flow). Assume g0(t) is a
solution to the Ricci flow equation.

Instead of a fixed T , we can choose a tensor T that depends on time. Following [2], we pick a
special vector field V defined by

V (t) = Trt(∇t −∇).

Here ∇ is the connection of a fixed background metric g0(t) = T (t). Note g0(t) changes with respect
to time. ∇t is the connection of our metric g(t). Note the trace is taken for g(t).

Let W be its dual form, so

Wi = gik(t)gpq(t)(Γkpq(g(t))− Γkpq(g0(t))).
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Recall T = g0(t), one computes W = T−1δ(T − (Tr T )g/2)): check directly,

W (t)l =− 1
2
g(t)lkg0(t)kpg(t)ij(∇ti(g0(t))jp +∇tj(g0(t))ip −∇tp(g0(t))ij)

=g(t)lkg0(t)kpδ(g0 − (Tr tg0(t))g(t)/2).

So instead of solving Ricci flow directly, one solves

(31.8)
d

dt
gij = −2 Ricij +∇iWj +∇jWi,

which is parabolic. In fact, one can similarly compute the linearized equations as
d

dt
hij = ∆hij + 2Rkijlhkl −Rikhkj −Rjkhki.

Finally one runs the diffeomorphism to recover the Ricci flow. See [2] section 2 for details.
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