/* [wxMaxima batch file version 1] [ DO NOT EDIT BY HAND! ]*/ /* [ Created with wxMaxima version 17.10.0 ] */ /* [wxMaxima: title start ] photon2.wxm Explicit Circular Polarization 3-Vectors and 4-Vectors [wxMaxima: title end ] */ /* [wxMaxima: comment start ] [wxMaxima: comment end ] */ /* [wxMaxima: comment start ] photon2.wxm, Nov. 23, 2018 Edwin (Ted) Woollett, Maxima by Example, ch. 12, Dirac Algebra and Quantum Electrodynamics, ver. 3, "Dirac3" http://web.csulb.edu/~woollett/ woollett@charter.net We use Heaviside-Lorentz electromagnetic units and natural units. In general, we follow the conventions in Peskin & Schroeder: Quantum Field Theory. In particular, the diagonal elements of the metric tensor g^{μ, ν} are diag (g) = (1, -1, -1, -1). In this worksheet we use lists to represent 3-vectors, and the 3-vector dot product of lists L1 and L2 is given by L1 . L2. Cross (j, L1, L2) ==> j'th component of L1 X L2. vprod (L1, L2) ==> list of components of the vector cross product of 3-vectors L1 and L2 (each defined as a list). [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ load (dirac3); /* [wxMaxima: input end ] */ /* [wxMaxima: section start ] photon with k-hat = [0, 0, 1] [wxMaxima: section end ] */ /* [wxMaxima: subsect start ] Linear Polarization 3-Vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] kh list represents k-hat, a unit 3-vector in the direction of a photon moving in the + z direction. construct a pair of linear polarization 3-vectors ek1 and ek2 such that each is normalized to 1, they are perpendicular to each other, and ek1 X ek2 = k-hat (vector cross product). We arbitrarily choose ek1 to lie in the z-x plane, in which k-hat lies. This is simply the unit vector x-hat along the positive x-axis, and ek2 will be y-hat, the unit vector along the y-axis, in a right-handed coordinate system. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ kh : [0, 0, 1]$ ek1 : [1, 0, 0]$ ek2 : [0, 1, 0]$ /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ ek1 . ek1; ek2 . ek2; ek1 . ek2; ek1 . kh; ek2 . kh; /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ is (equal (vprod (ek1,ek2), kh)); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ vprod (ek1, ek2); /* [wxMaxima: input end ] */ /* [wxMaxima: subsect start ] Circular Polarization 3-Vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] See, for example, MarkThompson, Modern Particle Physics, pp. 527 - 528, and Peskin & Schroeder, Quantum Field Theory, p. 804 Halzen and Martin, Quarks and Leptons, p. 135, Eq (6.69) ) We now use the usual combinations of the linear polarization 3-vectors to define ekR (right circularly polarized) and ekL (left circularly polarized) 3-vectors. The 3-vector ekR corresponds to helicity +1, and the 3-vector ekL corresponds to helicity -1. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ ekR : -(ek1 + %i*ek2)/sqrt(2); ekL : (ek1 - %i*ek2)/sqrt(2); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] These complex circular polarization 3-vectors have the " orthonormality" properties: ekR . (ekR)^c = 1, where ( )^c stands for complex conjugate, ekL . (ekL)^c = 1, ekR . (ekL)^c = 0, [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ ekR . conjugate ( ekR); ekL . conjugate ( ekL); ekR . conjugate ( ekL); ekL . conjugate ( ekR); /* [wxMaxima: input end ] */ /* [wxMaxima: subsect start ] Transverse Linear Polarization 4-vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] Use comp_def to define four dimensional (zero based) arrays whose zero component is equal to 0. Let kZ be a "unit 4-vector" along the positive z-axis. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ comp_def (kZ (0, 0, 0, 1), eps1 (0, 1, 0, 0 ), eps2 (0, 0, 1, 0) )$ /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ map ('listarray, [kZ, eps1, eps2] ); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] VP(a, b) is the 4-vector dot product with our metric tensor choice. We can use VP to explore the "orthonormality" of the linear polarization 4-vectors eps1 and eps2 relative to each other and to kZ. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ VP (a, b); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ VP (kZ, kZ); VP (eps1, eps1); VP (eps2, eps2); VP (eps1, eps2); VP (eps1, kZ); VP (eps2, kZ); /* [wxMaxima: input end ] */ /* [wxMaxima: subsect start ] Transverse Circular Polarization 4-vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] We define transverse complex circular polarization 4-vectors in terms of transverse linear polarization 4-vectors epsR = - (eps1 + %i*eps2) / sqrt(2) epsL = (eps1 - %i*eps2) / sqrt(2) and the complex conjugates of epsR and epsL: epsRc = conjugate (epsR) = - (eps1 - %i*eps2) / sqrt(2) epsLc = conjugate (epsL) = (eps1 + %i*eps2) / sqrt(2) [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ comp_def ( epsR (0, -1/sqrt(2), -%i/sqrt(2), 0 ), epsL (0, 1/sqrt(2), -%i/sqrt(2), 0), epsRc (0, -1/sqrt(2), %i/sqrt(2), 0 ), epsLc (0, 1/sqrt(2), %i/sqrt(2), 0) )$ /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ map ('listarray, [epsR, epsL, epsRc, epsLc] ); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] All are 4-orthogonal to the 4-vector kZ: [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ VP (epsR, kZ); VP (epsL, kZ); VP (epsRc, kZ); VP (epsLc, kZ); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] mutual orthonormality properties (summation convention on repeated Lorentz indices) epsR ^{μ} epsRc_{μ} = -1 epsL ^{μ} epsLc_{μ} = -1 epsR ^{μ} epsLc_{μ} = 0 epsL ^{μ} epsRc_{μ} = 0 [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ VP (epsR, epsRc); VP (epsL, epsLc); VP (epsR, epsLc); VP (epsL, epsRc); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] [wxMaxima: comment end ] */ /* [wxMaxima: section start ] photon with k-hat = [0, 0, -1] [wxMaxima: section end ] */ /* [wxMaxima: subsect start ] Linear Polarization 3-Vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] If we rotate the previous case by 180 deg = π radians about the positive y-axis, we can use the unit 3-vectors: [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ kh : [0, 0, -1]$ ek1 : [-1, 0, 0]$ ek2 : [0, 1, 0]$ /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] check orthonormality [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ ek1 . ek1; ek2 . ek2; ek1 . ek2; ek1 . kh; ek2 . kh; /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] check right-hand rule [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ is (equal (vprod (ek1,ek2), kh)); /* [wxMaxima: input end ] */ /* [wxMaxima: subsect start ] Circular Polarization 3-Vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] See, for example, MarkThompson, Modern Particle Physics, pp. 527 - 528, and Peskin & Schroeder, Quantum Field Theory, p. 804 Halzen and Martin, Quarks and Leptons, p. 135, Eq (6.69) ) We now use the usual combinations of the linear polarization 3-vectors to define ekR (right circularly polarized) and ekL (left circularly polarized) 3-vectors. The 3-vector ekR corresponds to helicity +1, and the 3-vector ekL corresponds to helicity -1. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ ekR : -(ek1 + %i*ek2)/sqrt(2); ekL : (ek1 - %i*ek2)/sqrt(2); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] These complex circular polarization 3-vectors have the " orthonormality" properties: ekR . (ekR)^c = 1, where ( )^c stands for complex conjugate, ekL . (ekL)^c = 1, ekR . (ekL)^c = 0, [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ ekR . conjugate ( ekR); ekL . conjugate ( ekL); ekR . conjugate ( ekL); ekL . conjugate ( ekR); /* [wxMaxima: input end ] */ /* [wxMaxima: subsect start ] Transverse Linear Polarization 4-vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] Use comp_def to define four dimensional (zero based) arrays whose zero component is equal to 0. Let kmZ be a "unit 4-vector" along the NEGATIVE z-axis. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ comp_def (kmZ (0, 0, 0, -1), e1 (0, -1, 0, 0 ), e2 (0, 0, 1, 0) )$ /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ map ('listarray, [kmZ, e1, e2] ); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] As above, we can use VP to explore the "orthonormality" of the linear polarization 4-vectors e1 and e2 relative to each other and to kmZ. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ VP (kmZ, kmZ); VP (e1, e1); VP (e2, e2); VP (e1, e2); VP (e1, kmZ); VP (e2, kmZ); /* [wxMaxima: input end ] */ /* [wxMaxima: subsect start ] Transverse Circular Polarization 4-vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] We define transverse complex circular polarization 4-vectors in terms of transverse linear polarization 4-vectors eR = - (e1 + %i*e2) / sqrt(2) eL = (e1 - %i*e2) / sqrt(2) and the complex conjugates of epsR and epsL: eRc = conjugate (eR) = - (e1 - %i*e2) / sqrt(2) eLc = conjugate (eL) = (e1 + %i*e2) / sqrt(2) [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ comp_def ( eR (0, 1/sqrt(2), -%i/sqrt(2), 0 ), eL (0, -1/sqrt(2), -%i/sqrt(2), 0), eRc (0, 1/sqrt(2), %i/sqrt(2), 0 ), eLc (0, -1/sqrt(2), %i/sqrt(2), 0) )$ /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ map ('listarray, [eR, eL, eRc, eLc] ); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] All are 4-orthogonal to the 4-vector kmZ: [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ VP (eR, kmZ); VP (eL, kmZ); VP (eRc, kmZ); VP (eLc, kmZ); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] mutual orthonormality properties (summation convention on repeated Lorentz indices) eR ^{μ} eRc_{μ} = -1 eL ^{μ} eLc_{μ} = -1 eR ^{μ} eLc_{μ} = 0 eL ^{μ} eRc_{μ} = 0 [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ VP (eR, eRc); VP (eL, eLc); VP (eR, eLc); VP (eL, eRc); /* [wxMaxima: input end ] */ /* [wxMaxima: section start ] photon with k-hat = [sin(th), 0, cos(th)] [wxMaxima: section end ] */ /* [wxMaxima: subsect start ] Linear Polarization 3-Vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] kh list represents k-hat, a unit 3-vector in the direction of an outgoing photon. construct a pair of linear polarization 3-vectors ek1 and ek2 such that each is normalized to 1, they are perpendicular to each other, and ek1 X ek2 = k-hat (vector cross product). We arbitrarily choose ek1 to lie in the "scattering plane", the z-x plane, in which k-hat lies. Then elementary trig gives us the three components of ek1, and it is properly normalized to 1. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ kh : [sin(th),0,cos(th)]; ek1 : [cos(th), 0, -sin(th)]; ek2 : [d,e,f]; /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ trigsimp (ek1 . ek1); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] We need three equations to solve for the three unknowns d, e, and f. Cross (j,A,B) is our Dirac3 package function which returns the j'th component of the vector cross product of the 3-vectors A and B. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ eq1 : ek2 . ek2 = 1; /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ eq2 : ek2 . ek1 = 0; /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ eq3 : Cross(3,ek1,ek2) = kh[3]; /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ solns : solve ([eq1,eq2,eq3],[d,e,f]); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] Without trying to be fancy, we just write down the resulting linear polarization vector ek2: [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ ek2 : [0,1,0]; /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] Some of you want a fancier way, so here goes: [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ map ('rhs, solns [1]); /* [wxMaxima: input end ] */ /* [wxMaxima: subsect start ] Circular Polarization 3-Vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] We now use the usual combinations of the linear polarization vectors to define ekR (right circularly polarized) and ekL (left circularly polarized) vectors. The 3-vector ekR corresponds to helicity +1, and the 3-vector ekL corresponds to helicity -1. (See, for example, Halzen and Martin, Quarks and Leptons, p. 135, Eq (6.69) ) [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ ekR : -(ek1 + %i*ek2)/sqrt(2); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ ekL : (ek1 - %i*ek2)/sqrt(2); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] These complex circular polarization 3-vectors have the " orthonormality" properties: ekR . (ekR)^c = 1, where ( )^c stands for complex conjugate, ekL . (ekL)^c = 1, ekR . (ekL)^c = 0, [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ trigsimp ( ekR . conjugate ( ekR)); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ trigsimp ( ekL . conjugate ( ekL)); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ trigsimp ( ekR . conjugate ( ekL)); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ trigsimp ( ekL . conjugate (ekR)); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] vprod (A,B) is our Dirac3 package vector cross product for 3-vectors defined as lists. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ trigsimp ( vprod (ekR, ekL)); /* [wxMaxima: input end ] */ /* [wxMaxima: subsect start ] Circular Polarization 4-Vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] Now to define corresponding circular polarization 4-vectors ek1R and ek1L. Use our package function comp_def to define arrays k1, ek1R, and ek1L which hold the four components of 4-vectors. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ comp_def (k1 (E,E*sin(th), 0, E*cos(th)), ek1R (0, - cos (th)/sqrt(2), - %i/sqrt(2), sin(th)/sqrt(2) ), ek1L (0, cos (th)/sqrt(2), - %i/sqrt(2), - sin(th)/sqrt(2)) )$ /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ k1[0]; listarray (k1); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] We also need circular polarization 4-vectors constructed from the complex conjugate 3-vectors for later use, so define the two arrays ek1Rc (c for conjugate) and ek1Lc. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ comp_def (ek1Rc (0, - cos (th)/sqrt(2), %i/sqrt(2), sin(th)/sqrt(2) ), ek1Lc (0, cos (th)/sqrt(2), %i/sqrt(2), - sin(th)/sqrt(2)) )$ /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ map ('listarray, [ek1R,ek1L,ek1Rc,ek1Lc] ); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] VP (A, B) uses the components of 4-vectors defined using comp_def to construct the 4 -vector dot product using our metric tensor choice (1, -1, -1, -1). We then use VP to demonstrate "orthonormality" properties of these complex circular polarization vectors. For example, k . eps (k, R) = 0 eps (k, R) . eps (k, R)^c = -1 (^c meaning complex conjugate here) eps (k, L) . eps (k, L)^c = -1 eps (k, R) . eps (k, L)^c = 0 [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ VP (k1, ek1R); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ VP (k1, ek1L); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ VP (ek1R, ek1Rc); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ VP (ek1L, ek1Lc); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ VP (ek1R, ek1Lc); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ VP (ek1L, ek1Rc); /* [wxMaxima: input end ] */ /* [wxMaxima: section start ] photon with k-hat = [ - sin(th), 0, - cos(th)] [wxMaxima: section end ] */ /* [wxMaxima: subsect start ] Linear Polarization 3-Vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] We now construct circular polarization vectors for a photon with 3-momentum opposite to the case considered above (still confined to the z-x plane); then kh representing k-hat is the negative of our previous case, and we arbitrarily choose a linear polarization 3-vector ek1 opposite to our previous case, as well. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ kh : [- sin(th), 0, - cos(th)]; ek1 : [-cos(th), 0, sin(th)]; ek2 : [d,e,f]; /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ trigsimp (ek1 . ek1); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] We need three equations to solve for the three unknowns d, e, and f. Cross (j,A,B) is our Dirac3 package function which returns the j'th component of the vector cross product of the 3-vectors A and B. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ eq1 : ek2 . ek2 = 1; /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ eq2 : ek2 . ek1 = 0; /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ eq3 : Cross(3,ek1,ek2) = kh[3]; /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ solns : solve ([eq1,eq2,eq3],[d,e,f]); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ ek2 : map ('rhs, solns[1]); /* [wxMaxima: input end ] */ /* [wxMaxima: subsect start ] Circular Polarization 3-Vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] We now use the usual combinations of the linear polarization vectors to define ekR (right circularly polarized) and ekL (left circularly polarized) vectors. The 3-vector ekR corresponds to helicity +1, and the 3-vector ekL corresponds to helicity -1. (See, for example, Halzen and Martin, Quarks and Leptons, p. 135, Eq (6.69) ) [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ ekR : -(ek1 + %i*ek2)/sqrt(2); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ ekL : (ek1 - %i*ek2)/sqrt(2); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] These complex circular polarization 3-vectors have the " orthonormality" properties: ekR . (ekR)^c = 1, where ( )^c stands for complex conjugate, ekL . (ekL)^c = 1, ekR . (ekL)^c = 0, [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ trigsimp ( ekR . conjugate ( ekR)); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ trigsimp ( ekL . conjugate ( ekL)); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ trigsimp ( ekR . conjugate ( ekL)); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ trigsimp ( ekL . conjugate ( ekR)); /* [wxMaxima: input end ] */ /* [wxMaxima: subsect start ] Circular Polarization 4-Vectors [wxMaxima: subsect end ] */ /* [wxMaxima: comment start ] Now to define corresponding circular polarization 4-vectors ek2R and ek2L. Use our package function comp_def to define arrays k2, ek2R, and ek2L which hold the four components of 4-vectors. As above, we also define arrays holding the complex conjugate 4-vectors. [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ comp_def (k2 (E, - E*sin(th), 0, - E*cos(th)), ek2R (0, cos (th)/sqrt(2), - %i/sqrt(2), - sin(th)/sqrt(2) ), ek2L (0, - cos (th)/sqrt(2), - %i/sqrt(2), sin(th)/sqrt(2)), ek2Rc (0, cos (th)/sqrt(2), %i/sqrt(2), - sin(th)/sqrt(2) ), ek2Lc (0, - cos (th)/sqrt(2), %i/sqrt(2), sin(th)/sqrt(2)) )$ /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ k2[0]; listarray (k2); /* [wxMaxima: input end ] */ /* [wxMaxima: input start ] */ map ('listarray, [ek2R, ek2L, ek2Rc, ek2Lc]); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] VP (A, B) uses the components of 4-vectors defined using comp_def to construct the 4 -vector dot product using our metric tensor choice (1, -1, -1, -1). We then use VP to demonstrate "orthonormality" properties of these complex circular polarization vectors. For example, k . eps (k, R) = 0 eps (k, R) . eps (k, R)^c = -1 (^c meaning complex conjugate here) eps (k, L) . eps (k, L)^c = -1 eps (k, R) . eps (k, L)^c = 0 [wxMaxima: comment end ] */ /* [wxMaxima: input start ] */ VP (k2, ek2R); VP (k2, ek2L); VP (ek2R, ek2Rc); VP (ek2L, ek2Lc); VP (ek2R, ek2Lc); VP (ek2L, ek2Rc); /* [wxMaxima: input end ] */ /* [wxMaxima: comment start ] These circular polarization 4-vectors can then be used in calculations of the amplitudes of polarized pair annihilation e(-) e(+) --> γ γ, for example, in the center of momentum frame. See the worksheet ee-gaga-HE.wxm for example. [wxMaxima: comment end ] */ /* [wxMaxima: comment start ] We observe the relations between the circular polarization 4-vectors associated with four vectors k1 and k2, in which k2_vec = - k1_vec relates the 3-vector components: ek2R^μ = ek1L^μ ek2L^μ = ek1R^μ We are using "Coulomb gauge" (or "transverse") photon polarization vector definitions throughout this worksheet. [wxMaxima: comment end ] */ /* Maxima can't load/batch files which end with a comment! */ "Created with wxMaxima"$