
Dowling20fit.wxmx 1 / 29

Dowling20.wxmx: Dynamic Optimization

TABLE OF CONTENTS

Preface -- 1
References --- 1
Calculus of Variations, Euler's Equation --- 2
Sufficient Conditions for Dynamic Optimization -- 5
Symbolic Economic Applications --- 11
Constrained Dynamic Optimization -- 23

load(draw)$ set_draw_defaults(line_width=2, grid = [2,2], point_type = filled_circle,
 head_type = 'nofilled, head_angle = 20, head_length = 0.5,
 background_color = light_gray, draw_realpart=false)$

(%i2)

(%o3) c:/work5/Econ2.mac

load ("Econ2.mac");(%i3)

Preface 1

Dowling20.wxmx is one of a number of wxMaxima files available in the section
 Economic Analysis with Maxima
on my CSULB webpage.

In Dowling20.wxmx, we use Maxima to discuss the optimization of an integral over time
containing functions (of time) whose form is sought using the calculus of variations,
following Dowling's Chapter 20: "The Calculus of Variations". Dowling's Sec. 8,
"Applications to Economics" is mainly treated as a symbolic problem, with numerical
examples. Maxima functions written for this chapter are in our file Econ2.mac.

We have changed some of the symbols used in particular problems. An approximate
pdf translation (using Microsoft print to pdf) is available as Dowling20fit.pdf. That pdf file
can be searched using Ctrl-F.

Ted Woollett
https://home.csulb.edu/~woollett/
woollett@charter.net
April 7, 2022

References 2

Dowling20fit.wxmx 2 / 29

Introduction to Mathematical Economics, 3rd ed., Edward T. Dowling, 2012, Schaum's
Outline Series, McGraw-Hill.

Fundamental Methods of Mathematical Economics, Alpha C. Chiang and Kevin Wainwright,
4th ed., 2005, McGraw-Hill

Elements of Dynamic Optimization, Alpha C. Chiang, 2012, Waveland Press

The Calculus of Variations and Euler's Equation 3

Quoting roughly Dowling's Sec. 20.1:
"In the *static* optimization problems studied in Chapters 4 and 5, we sought a *point* or
points that would maximize a given function [for example, profit] at a particular point or period
of time. Given a function y = y(x), the first-order condition for an optimal point x* is simply
y'(x*) = 0. In *dynamic optimization* we seek a *curve* x*(t) which will maximize or minimize a
given integral expression [an integral over time]."

"...In brief, assuming a time period from t0 = 0 to t1 = T and using xp to represent the first
derivative of x with respect to time: xp = dx/dt, we seek to maximize or minimize the integral:
 J = integrate (F[t, x(t), xp(t)], t, 0, T)
having fixed endpoint limits of integration, and assuming that F is a continuous function of t, x,
and xp, F has continuous partial derivatives with respect to t, x, and xp."

"An integral such as J which assumes a numerical value for each of a class of functions x(t) is
called a *functional*. A curve x*(t) that maximizes or minimizes the value of a functional is called
an *extremal*. Acceptable candidates for an extremal are the class of functions x(t) which are
continuously differentiable on the given time interval and which typically satisfy some fixed
endpoint conditions."

Example 1 3.1

"A firm wishing to maximize profits π from time t0 = 0 to t1 = T finds that demand for its product
depends on not only the price p of the product but also the rate of change of the price dp/dt.
By assuming that costs are fixed and that both p and dp/dt are functions of time, and using pd
to stand for dp/dt (pd = "p-dot"), the objective is to maximize the numerical value of the integral
 J1 = integrate (π[t, p(t), pd(t)], t, 0, T)."

"A second firm has found that its total cost C depends on the level of production x(t) and the
rate of change of production dx/dt, represented by xp (for x-prime), due to start-up and tapering-
off costs. Assuming this second firm wishes to minimize costs, and that x and xp are functions
of time, the objective is to minimize the numerical value of the integral
 J2 = integrate (C[t, x(t), xp(t)], t, 0, T), subject to: x(t0) = x0, and x(T) = xT.
These initial and terminal constraints are known as 'endpoint conditions'."

Dowling20fit.wxmx 3 / 29

Euler's Equation: The Necessary Condition 3.2

"For a curve x*(t) connecting the points (t0, x0) and (t1, x1) to be an 'extremal' for (i.e., to
optimize) the functional (here xp stands for dx/dt):

 J = integrate (F[t, x(t), xp(t)],

the necessary condition, called Euler's equation, is

 ∂F/∂x = d/dt (∂F/∂xp).

Using the chain rule to take the total derivative of ∂F/∂xp with respect to time t, and omitting
the arguments for simplicity, we get on the right hand side:

 d/dt (∂F/∂xp) = ∂ (∂F/∂xp)/∂t + ∂ (∂F/∂xp)/∂x * dx/dt + ∂ (∂F/∂xp)/∂xp * d²x/dt²,

or using subscript-like notation for partial derivatives and xpp for d²x/dt²,

 d/dt (∂F/∂xp) = Fxp,t + Fxp,x*xp + Fxp,xp*xpp,

we can write Euler's equation in the explicit form:

 ∂F/∂x == Fx = Fxp,t + Fxp,x*xp + Fxp,xp*xpp."

Euler's equation, in most cases, produces a second order ordinary differential equation for
x(t), which the candidate extremal must satisfy. In Example 3, Euler's equation leads to the
candidate extremal immediately, without any further integration.

Example 3 4

Optimize the functional of x(t) represented by the definite integral:
 J = integrate (6*x^2*exp(3*t) + 4*t*xp, t, 0, T).

Dowling20fit.wxmx 4 / 29

We first work this "by hand", and then use our Extremal function.

Using the expanded form of Euler's equation, we first find the needed derivatives.
F (t, x, xp) = 6*x^2*exp(3*t) + 4*t*xp.

 Fx == ∂F/∂x = 12*x*exp(3*t),
 Fxp == diff (F, dx/dt) = 4*t,
 Fxp,t == ∂ (Fxp)/∂t = 4,
 Fxp,x == ∂ (Fxp)/∂x = 0,
 Fxp,xp == ∂ (Fxp)/∂xp = 0.

 Then, assembling the pieces:
 12*x*exp(3*t) = 4 + 0 = 4,
whence we can solve for x(t): x = (1/3)*exp(- 3*t), which is the candidate extremal without any
further integration. This satisfies the necessary condition for dynamic optimization, which only
makes the solution a candidate for an extremal. The sufficiency conditions, which follow, must
also be applied.

Using Extremal (F(t, x, xp)) 4.1

The Maxima function Extremal (F(t, x, xp)) is defined in Econ2.mac. The code requires the use
of t, x, xp as variables. Using this function for Ex. 3:

(%o4) x =
%e− 3 t

3

Extremal (6*x^2*exp(3*t) + 4*t*xp);(%i4)

which agrees with our hand solution.

Example 4 5

Optimize the functional of x(t) represented by the definite integral:
 J = integrate (4*xp^2 + 12*x*t - 5*t, t, 0, 2),
 subject to x(0) = 1 and x(2) = 4.

Dowling20fit.wxmx 5 / 29

Here, F (t, x(t), xp(t)) = 4*xp^2 + 12*x*t - 5*t.

We start with a hand calculation. Using the expanded form of Euler's equation, we first find
the partial derivatives needed:
 Fx == ∂F/∂x = 12*t,
 Fxp == diff (F, dx/dt) = 8*xp,
 Fxp,t == ∂ (Fxp)/∂t = 0,
 Fxp,x == ∂ (Fxp)/∂x = 0,
 Fxp,xp == ∂ (Fxp)/∂xp = 8.
 Then, assembling the pieces:
 12*t = 8*xpp,
whence we can solve for x(t): x = t^3/4 + k1*t + k2, which is the candidate extremal.
This satisfies the necessary condition for dynamic optimization, which only makes the
solution a candidate for an extremal. The sufficiency conditions, which follow, must also be
applied.

When Euler's equation includes a term proportional to xpp == d²x/dt², the differential equation is
displayed (in terms of xpp) by Extremal.

ode: xpp =
3 t

2

(%o5) x =
t3

4
+%k2 t +%k1

Extremal (4*xp^2 + 12*x*t - 5*t);(%i5)

x = t^3/4+%k2*t+%k1$

grind(%)$(%i6)

Sufficient Conditions for an Optimum Solution x*(t) 6

Dowling20fit.wxmx 6 / 29

Quoting Dowling, Sec. 20.5:
"Assuming the necessary conditions for an extremal are satisfied [x(t) satisfies Euler's Equation],
1. If the functional F(t, x(t), xp(t)) is jointly concave in x(t) and xp(t), then the necessary conditions
are sufficient for a maximum.
2. If the functional F(t, x(t), xp(t)) is jointly convex in x(t) and xp(t), then the necessary conditions
are sufficient for a minimum.

Joint concavity and convexity are easily determined in terms of the sign definiteness of the
quadratic form of the second derivatives of the functional F. Given the discriminant matrix
 D = matrix ([Fx,x, Fx,xp], [Fxp,x, Fxp,xp]),

1. a) If Fx,x < 0 and |D| > 0, D is the discriminant of a negative definite quadratic form and
F is strictly concave, making the extremal a global maximum.
 b) If Fx,x <= 0 and |D| >= 0, when tested for both possible ordering of the variables x, xp,
D is the discriminant of a negative semidefinite quadratic form and F is simply concave, which
is sufficient for a relative maximum.

2. a) If Fx,x > 0 and |D| > 0, D is the discriminant of a positive definite quadratic form and
F is strictly convex, making the extremal a global mimimum.
 b) If Fx,x >= 0 and |D| >= 0, when tested for both possible ordering of the variables x, xp,
D is the discriminant of a positive semidefinite quadratic form and F is simply convex, which
is sufficient for a relative minimum.

Using NumSuffCond (F(t, x, xp)) 6.1

The Maxima function NumSuffCond (F (t, x, xp)), defined in Econ2.mac, uses the standard
Maxima function hessian to define the discriminant matrices H1 : hessian (F, [x, xp]) and
H2 : hessian (F, [xp, x]), to evaluate the signs of D11 : H1[1,1] and D1 : determinant (H1) and
similarly for H2, and then calls NumSufficient (D11, D1, D21, D2) for analysis of the nature of
the candidate extremal.

You must use the variables t, x, xp for this function. This function prints either 'global maximum',
'relative maximum', 'global minimum', 'relative minimum', or 'neither maximized nor minimized:
 saddle point'.

In Example 3 we have F (t, x, xp) = 6*x^2*exp(3*t) + 4*t*xp. We can first form the discriminant
matrix by hand and then take the determinant:

(H1)
12 %e3 t

0

0

0

H1 : hessian(6*x^2*exp(3*t) + 4*t*xp, [x, xp]);(%i7)

(D1) 0

D1 : determinant(H1);(%i8)

Dowling20fit.wxmx 7 / 29

(H2)
0

0

0

12 %e3 t

H2 : hessian(6*x^2*exp(3*t) + 4*t*xp, [xp, x]);(%i9)

(D2) 0

D2 : determinant(H2);(%i10)

In Ex. 3 we have Fx,xp = 12*exp(3*t) > 0 and D1 = 0, and looking at the other possible ordering
of the variables (x, xp), we have Fxp,x = 0 and D2 = 0, which together imply a positive
semidefinite case and a simply convex F, a sufficient condition for a relative minimum.

Using our Maxima function NumSuffCond:

d11=12 %e3 t

relative minimum

NumSuffCond (6*x^2*exp(3*t) + 4*t*xp)$(%i11)

For Ex. 4 we also get sufficient conditions for a relative minimum.

relative minimum

NumSuffCond(4*xp^2 + 12*x*t - 5*t)$(%i12)

Here is an example of a case in which no sufficient conditions for an optimum are present:

neither maximized nor minimized: saddle point

NumSuffCond (5*x^2 + 27*x - 8*x*xp - xp^2)$(%i13)

Using NumDynamic (F(t, x, xp)) 6.2

The syntax of NumDynamic, defined in Econ2.mac, requires the use of (t, x, xp)
variables, in which x(t) is the desired solution, and xp (x-prime) means the first
derivative dx/dt = x'(t). In the code output, xpp stands for x''(t), the second derivative
of x(t) with respect to the time t. This function first calls Extremal, and then calls NumSuffCond.

(%o14) NumDynamic ()F :=block ([cdex] ,cdex :Extremal ()F ,

print () candidate extremal: ,cdex ,NumSuffCond ()F ,done)

fundef (NumDynamic);(%i14)

Using NumDynamic(F) for Ex. 3:

Dowling20fit.wxmx 8 / 29

 candidate extremal: x =
%e− 3 t

3

d11=12 %e3 t

relative minimum

NumDynamic (6*x^2*exp(3*t) + 4*t*xp)$(%i15)

Using NumDynamic(F) for Ex. 4:

ode: xpp =
3 t

2

 candidate extremal: x =
t3

4
+%k2 t +%k1

relative minimum

NumDynamic (4*xp^2 + 12*x*t - 5*t)$(%i16)

Using NumDynamic with Dowling prob 20.15:

ode: xpp +5 x =−
27

2

 candidate extremal: x =%k1 sin ()5 t +%k2 cos ()5 t −
27

10

neither maximized nor minimized: saddle point

NumDynamic (5*x^2 + 27*x - 8*x*xp - xp^2)$(%i17)

Using NumSuffCond (F) with details = true 6.3

The code file Econ2.mac sets details : false, which is then the "default" behavior.
However, by setting details to true, you are able to see the values of the various
Hessian matrices and the resulting discriminants (until you reset details to false).

Dowling20fit.wxmx 9 / 29

H1=
10

− 8

− 8

− 2

D11=10
D1=−84.0

H2=
− 2

− 8

− 8

10

D21=−2
D2=−84.0
neither maximized nor minimized: saddle point

details : true$
NumSuffCond (5*x^2 + 27*x - 8*x*xp - xp^2)$
details : false$

(%i20)

Numerical Practice Problems 6.4

Dowling prob 20.14

ode: xpp +9 x =0

 candidate extremal: x =%k1 sin ()3 t +%k2 cos ()3 t

neither maximized nor minimized: saddle point

NumDynamic (7*xp^2 + 4*x*xp - 63*x^2)$(%i21)

Dowling prob 20.13

ode: xpp −2 x =0

 candidate extremal: x =%k1 %e 2 t +%k2 %e− 2 t
global minimum

NumDynamic (16*x^2 + 9*x*xp + 8*xp^2)$(%i22)

Dowling prob 20.12

ode: xpp −4 x =−18

 candidate extremal: x =%k1 %e2 t +%k2 %e− 2 t +
9

2

global maximum

NumDynamic (- 16*x^2 + 144*x + 11*x*xp - 4*xp^2)$(%i23)

Dowling prob 20.11

Dowling20fit.wxmx 10 / 29

ode: xpp −
5 x

4
=−

11

2

 candidate extremal: x =%k1 %e

5 t

2 +%k2 %e
−

5 t

2 +
22

5

global minimum

NumDynamic (15*x^2 - 132*x + 19*x*xp + 12*xp^2)$(%i24)

Dowling prob 20.16

ode: xpp +0.12 xp=−
9

5

 candidate extremal: x =%k2 %e
−

3 t

25 −15 t +%k1+125

d21=10 %e0.12 t

relative minimum

NumDynamic (exp (0.12*t)*(5*xp^2 - 18*x))$(%i25)

We can clearly redefine %k1 (arbitrary so far) to write the last two terms as %k1.

Dowling prob 20.17

ode: xpp −0.05 xp=
15

8

 candidate extremal: x =%k1 %et 20/ −
75 t +1500

2
+%k2

d21=8 %e− 0.05 t

relative minimum

NumDynamic (exp (- 0.05*t)*(4*xp^2 + 15*x))$(%i26)

Again we can combine %k2 - 750 as %k2.

Because 8*exp(- 0.05*t) depends on the parameter t, Maxima regards the whole expression
as non-numerical, and numberp(expr) returns false. Inside our Maxima function
NumSufficient(d11,d1,d21,d2) such arguments are displayed to the user, as we see just above,
where d21 is Fxp,xp = diff (F, xp, 2), and we may well distrust the logic of the code being used.

(%o27) false

numberp (8*exp(- 0.05*t));(%i27)

We can double-check the sufficient condtions ourselves by setting details to true.

Dowling20fit.wxmx 11 / 29

ffx =15 %e− 0.05 t

ffxp=8 %e− 0.05 t xp

ffxpt =−0.4 %e− 0.05 t xp
ffxpx=0

ffxpxp=8 %e
−

t

20

varOde=−8 %e
−

t

20 xpp +0.4 %e− 0.05 t xp+15 %e− 0.05 t

varOde=xpp −0.05 xp−
15

8

AA =−0.05
BB=0

CCL= [
15

8
]

CC=
15

8

ode: xpp −0.05 xp=
15

8

 candidate extremal: x =%k1 %et 20/ −
75 t +1500

2
+%k2

H1=
0

0

0

8 %e− 0.05 t

D11=0
D1=0.0

H2=
8 %e− 0.05 t

0

0

0

D21=8 %e− 0.05 t

D2=0.0

d21=8 %e− 0.05 t

relative minimum

details : true$
NumDynamic (exp (- 0.05*t)*(4*xp^2 + 15*x))$
details : false$

(%i30)

Since Fx,x = 0, determinant (H1) = 0, Fxp,xp > 0, and determinant (H2) = 0, we have sufficient
conditions for a relative minimum.

Symbolic Economic Applications 7

Dowling20fit.wxmx 12 / 29

Minimizing production and inventory costs over time. 7.1

Quoting Dowling in his Sec. 20.8:
"A firm wishes to minimize the present value at discount rate r of an order of N units to be
delivered at time T. The firm's costs consist of production costs a*(dx/dt)^2 and inventory costs
b*x(t), where a and b are positive constants; x(t) is the accumulated inventory by time t; the rate
of change of inventory is the 'production rate" xp = dx/dt, where dx/dt >= 0; and a*dx/dt == a*xp
is the per unit cost of production. Assuming x(0) = 0 and the firm wishes to achieve x(T) = N, in
terms of the calculus of variations the firm must:
 minimize J = integrate (exp(- r*t)*(a*xp^2 + b*x), t, 0, T)
 subject to: x(0) = 0 and x(T) = N."

ode: xpp −r xp=
b

2 a

Is r zero or nonzero?nonzero;

(xsoln) x =%k1 %er t −
b r t +b

2 a r 2
+%k2

xsoln : Extremal (exp (-r*t)*(a*xp^2 + b*x));(%i31)

(sx) %k1 %er t −
b r t +b

2 a r 2
+%k2

sx : rhs (xsoln);(%i32)

(ksolns) [[%k1=
2 N a r +T b

a r ()2 %eT r −2
,%k2=−

b ()1−%eT r +2 N a r 2 +T b r

a r 2 ()2 %eT r −2
]]

ksolns : solve ([at (sx, t = 0) = 0, at (sx, t = T) = N], [%k1, %k2]);(%i33)

(ksolns) [%k1=
2 N a r +T b

a r ()2 %eT r −2
,%k2=−

b ()1−%eT r +2 N a r 2 +T b r

a r 2 ()2 %eT r −2
]

ksolns : ksolns[1];(%i34)

(sx)
()2 N a r +T b %er t

a r ()2 %eT r −2
−

b r t +b

2 a r 2
−

b ()1−%eT r +2 N a r 2 +T b r

a r 2 ()2 %eT r −2

sx : at (sx, ksolns);(%i35)

(%o36)
()2 N a r +T b %er t + ()b−b %eT r t −2 N a r −T b

2 a r %eT r −2 a r

ratsimp (sx);(%i36)

Dowling has the solution for x(t) in the form of sxcompare:

Dowling20fit.wxmx 13 / 29

(sxcompare)

T b

2 a r
+N ()%er t −1

%eT r −1
−

b t

2 a r

sxcompare : (N + b*T/(2*a*r))*(exp(r*t) - 1)/(exp(r*T) - 1) - b*t/(2*a*r);(%i37)

Here we verify that our solution sx is algebraically the same, if both comparison expressions
are expanded out and then the difference is taken.

(%o38) true

is (equal (sx, sxcompare));(%i38)

(%o39) 0

ratsimp (expand (sx - sxcompare));(%i39)

Prob. 20.19: Dynamic Maximization of Firm's Profit 7.2

The demand for a monopolist's product in terms of the number of units x(t) she can sell per unit
time depends on both the price p(t) of the good and the rate of change of the price dp/dt (we will
use the symbol pd (for p-dot) in Maxima to stand for dp/dt:
 x(t) = a p(t) + b dp/dt + c.

Production costs per unit time z(x) as a function of the rate of production x are assumed to be
given by z(x) = m x^2 + n x + k.

We will assume a < 0, and m > 0, as one would expect from economic theory, independently of
the sign of b.

(z) m x2+n x +k

z : m*x^2 + n*x + k;(%i40)

The firm's revenue per unit time F is price per unit (p) times the number of units sold per unit time
(x), and the problem is to determine the time path of price per unit p(t) by maximizing the integral
of F(t, p, pd) over some finite specified time interval, in which F stands for the time dependent
profit per unit time, given by the difference of revenue per unit time and costs per unit time.
The product F*dt then yields the profit over the infinitesimal time interval dt and the finite time
integral: integrate (F, t, 0, T) gives the profit over the time interval (0,T). Because this is not a
purely numerical dynamical optimization problem, we work out the calculation steps "by hand",
arriving at a symbolic Euler's Equation which will lead to an optimal p(t).

(F) −m x2+p x −n x −k

F : p*x - z;(%i41)

Here we insert our assumption about x as a function of p and dp/dt.

Dowling20fit.wxmx 14 / 29

(F) −b2 m pd 2−2 a b m p pd +b p pd −b n pd −2 b c m pd −a2 m p2+a p2−

a n p−2 a c m p+c p−c n−c2 m−k

F : at (F, x = a*p + b*pd + c), expand;(%i42)

Let Fp stand for the partial derivative of F(t, p, pd) with respect to p.

(Fp) −2 a b m pd +b pd −2 a2 m p+2 a p−a n−2 a c m+c

Fp : diff (F, p);(%i43)

Let Fpd stand for the partial derivative of F(t, p, pd) with respect to pd.

(Fpd) −2 b2 m pd −2 a b m p+b p−b n−2 b c m

Fpd : diff (F, pd);(%i44)

The Euler equation can be written in the form
Fp = Fpd,t + Fpd,p*pd + Fpd,pd*pdd,
where pdd stands for ∂²p/∂t² (p-double-dot).

Let Fpdt stand for the partial derivative of Fpd with respect to time t, Fpd,t.

(Fpdt) 0

Fpdt : diff (Fpd, t);(%i45)

Let Fpdp stand for the partial derivative of Fpd with respect to p, Fpd,p.

(Fpdp) b−2 a b m

Fpdp : diff (Fpd, p);(%i46)

Let Fpdpd stand for the partial derivative of Fpd with respect to pd, Fpd,pd.

(Fpdpd) −2 b2 m

Fpdpd : diff (Fpd, pd);(%i47)

If we bring all terms over to the left hand side, we get the Euler equation in the form
eqn = 0.

(ode) 2 b2 m pdd −2 a2 m p+2 a p−a n−2 a c m+c

ode : Fp - Fpdt - Fpdp*pd - Fpdpd*pdd, expand;(%i48)

Dowling20fit.wxmx 15 / 29

We want to identify the quantities A, B, C if the second order ode is written in the form
 d²p/dt² + A dp/dt + B p = C, or
 pdd + A*pd + B*p = C.

First, divide all terms by the coefficient of pdd

(ode) pdd +
a p

b2 m
−

a2 p

b2
−

a n

2 b2 m
+

c

2 b2 m
−

a c

b2

ode : expand (ode/coeff (ode,pdd));(%i49)

There is no dp/dt term, so A = 0. We next pick off B as the coeffecient of p.

(B) −
a2 m−a

b2 m

B : ratsimp (coeff (ode, p));(%i50)

Factoring out a in the numerator of B, we get B = - a*(m*a -1)/(b^2*m).

Because we assume a < 0 and m > 0, m*a < 0, (m*a - 1) < 0, and a*(m*a - 1) > 0, so B < 0.

We can use part (expr, j) to get access to individual parts in a sum of terms.

(%o51) −
a n

2 b2 m

part (ode, 4);(%i51)

We can then use sum (expr, j, jstart, jend) to get the remaining terms (with a minus sign)
which define C:

(C)
a n

2 b2 m
−

c

2 b2 m
+

a c

b2

C : - sum (part (ode,j), j, 4, 6);(%i52)

Dowling20fit.wxmx 16 / 29

With our second order differential equation for p(t) reduced to the form
 d²p/dt² + B*p = C,
we can use our basic rules, p is the sum of the solution (pc) of the complementary equation
 d²pc/dt² + B*pc = 0
and the particular solution (pp), which in this case is
 pp = C/B.
Returning to finding pc, we use the trial solution pc = exp(r*t) to get the characteristic equation
r^2 + B = 0, or r = +/- sqrt(- B). Recall that we found B < 0 above, so - B > 0 and we have a
double real root, +/- R, where R = sqrt (a*(m*a -1)/(b^2*m)).

The complementary solution is then
 pc(t) = k1*exp(R*t) + k2*exp (-R*t).

(pp) −
a n+ 2 a c m−c

2 a2 m−2 a

pp : C/B, ratsimp;(%i53)

Absorbing the overall minus sign into the denominator, and factoring the denominator, the
particular solution has the form
 pp = (2*m*a*c + n*a - c)/(2*a)*(1 - m*a).

Then the predicted profit as a function of time is

 p(t) = k1*exp(R*t) + k2*exp (-R*t) + (2*m*a*c + n*a - c)/(2*a)*(1 - m*a),

which agrees with Dowling's solution. In our solution, k1 and k2 are arbitrary constants, which
can be assigned numerical values given p(0) and pd(0), for example.

Prob. 20.20: Maximize Stream of Utility U(C(t)) 7.3

With K(t) the capital available for production at time t, and with G(K(t)) the value of the resulting
production at time t (G(K) is an unspecified function), and with C(t) the amount of consumption
at time t, and dK/dt the investment made at time t, we start with the assumption that the fruits of
production are divided between consumption and investment (in capital for increased production):
 G(K(t) = C(t) + dK/dt
so that
 C(t) = G(K(t) - dK/dt, which implies ∂C/dK = dG/dK.

We also assume some unspecified function U(C) is adopted which reflects the desireability of a
given level of consumption (we call U(C) the instantaneous utility from the flow of consumption
C(t)), and we seek a differential equation for K(t) which will maximize the integral
 I = ∫ U(C(t)) dt
taken over some finite time interval [t0, tf], such that the capital K available for production
takes on specified end point values K(t0) = K0 and K(tf) = Kf.

Dowling20fit.wxmx 17 / 29

Letting Kd stand for dK/dt and Kdd stand for d²K/dt², and letting U' stand for dU/dC and
G' stand for dG/dK, the variational Euler equation is,

 with F(t,K,Kd) = U(C(t)) = U(G(K) - dK/dt) = U(G(K) - Kd),
∂F/∂K = ∂ (∂F/∂Kd)/∂t + ∂ (∂F/∂Kd)/∂K * Kd + ∂ (∂F/∂Kd)/∂Kd * Kdd.

To make use of Euler's equation we need the derivatives:

 F_K = ∂F/∂K = dU/dC * ∂C/∂K = U' * dG/dK = U' * G',
 F_Kd = ∂F/∂Kd = dU/dC * ∂C/∂Kd = dU/dC * (-1) = - U',
 ∂ (∂F/∂Kd)/∂t = 0,
 F_{Kd, K} = ∂ (∂F/∂Kd)/∂K = d (F_Kd)/dC * ∂C/∂K = - U'' * G'
 F_{Kd, Kd} = ∂ (∂F/∂Kd)/∂Kd = d (F_Kd))/dC * ∂C/∂Kd = - d(- U')/dC = U''.

Euler's equation for the candidate extremal K(t) then becomes
 U'(C)*G'(K) = - U''(C)* (G'(K)*dK/dt - d²K/dt²).
The result, given the functions U(C) and G(K), would then be a second order ordinary
differential equation for K(t) which maximizes the given integral I.

Prob. 20.21: Maximize Discounted Stream of Utility U(C(t)) 7.4

We alter the expression assumed for production capital investment from dK/dt to
 investment = dK/dt + b*K(t), where b is a constant "rate of capital depreciation", so
 that now the consumption C = G(K) - dK/dt - b*K(t), so ∂C/∂K = G'(K) - b,
and ∂C/∂Kd = -1.

We seek a differential equation for K(t) whose solution will maximize the discounted
stream of utility U(C) from consumption over the finite time interval 0 <= t <= T:
 I = ∫ exp(-r*t)*U(C(t)) dt = ∫ F(t, K, dK/dt) dt.

F_K = ∂F/∂K = exp(-r*t)*dU/dC*∂C/∂K = exp(-r*t)*U'(C)*(G'(K) - b),
F_Kd = ∂F/∂Kd = exp(-r*t)*dU/dC * ∂C/∂Kd = exp(-r*t)*dU/dC * (-1) = - exp(-r*t)*U'(C),
F_{Kd, t} = ∂ (∂F/∂Kd)/∂t = r*exp(-r*t)*U'(C),
F_{Kd, K} = ∂ (∂F/∂Kd)/∂K = - exp(-r*t)*U''(C)*(G'(K) - b),
F_{Kd, Kd} = ∂ (∂F/∂Kd)/∂Kd = exp(-r*t)*U''(C).

Substituting into Euler's equation:
exp(-r*t)*U'(C)*(G'(K) - b) = r*exp(-r*t)*U'(C) - exp(-r*t)*U''(C)*(G'(K) - b)*Kd +
 exp(-r*t)*U''(C)*Kdd.

Cancelling the common factor exp(-r*t), we get
U'(C)*(G'(K) - b) = r*U'(C) - U''(C)*(G'(K) - b)*Kd + U''(C)*Kdd, or

U'(C) * (G'(K) - b) = r*U'(C) - U''(C) * (G'(K)*Kd - b*Kd - Kdd).

Dowling20fit.wxmx 18 / 29

Without specification of the functions U(C) and G(K), we cannot proceed further.
However if we write the variational Euler's equation in the alternative (and
equivalent) form involving the total derivative with respect to the time t:
 ∂F/∂K = d (∂F/∂Kd) /dt
we can write:
 exp(-r*t)*U'(C)*(G'(K) - b) = - d (exp(-r*t)*U'(C))/ dt
 = r*exp(-r*t)*U'(C) - exp(-r*t)* d (U'(C))/dt.
Cancelling the common factor exp (-r*t), we get
 U'(C)*(G' - b) = r*U'(C) - d (U'(C))/dt, or
 d (U'(C))/dt = U'(C)*(r + b - G'), or
 (1/U')*d U' /dt = (r + b - G'), or
 d (ln (U'))/dt = (r + b - G'),

where the term on the left, the rate of change of the natural logarithm of the marginal
utility U'(C), equals the discount rate plus the depreciation rate minus the marginal
product of capital G'(K).

In brief, if we consider the term on the left as capital gains, the optimal time path
of capital K(t) suggests that if capital gains are greater than the discount rate
plus the depreciation rate minus the marginal product of capital, then more capital and
hence more consumption will be forthcoming. If it is less, then capital accumulation
and consumption will be scaled back.

Note that Maxima's log(y) means the natural logarithm of y.
Maxima knows that diff (log(y), t) = (1/y)*dy/dt:

(%o54) a

log(exp(a));(%i54)

(%o55) [y ()t]

(%o56)

d

d t
y

y

depends(y, t);
diff (log (y), t);

(%i56)

(%o57) done

remove (y, dependency);(%i57)

Prob. 20.22: Specific Model for Prob. 20.21 7.5

Dowling20fit.wxmx 19 / 29

Extending Prob. 20.21, we assume U(C) = C^n, where 0 <= n <= 1.
Again we have C(t) = G(K) - I(t), with I(t) = production capital investment.
We also assume G(K) = a*K(t) with a > 0.
Finally we assume capital investment for further production takes the form:
 I(t) = dK/dt + B + b*K(t), with 0 <= b =< 1 and B > 0.
This last assumption comes from comes from the statement:
 (increase in K stock) = investment - (linear depreciation), or
 dK/dt = I(t) - (B + b*K(t)).

We now have F = exp(-r*t)*U(C) = exp(-r*t)*C^n and
 C = a*K - dK/dt - B - b*K(t),
so F (t, K, Kd) = exp (-r*t)*(a*K - Kd - B - b*K)^n, or defining
 m = a - b,
F (t, K, Kd) = exp (-r*t)*(m*K - Kd - B)^n

Then the needed derivatives are
 F_K = n*m*exp (-r*t)*(m*K - Kd - B)^(n - 1),
 F_Kd = - n*exp (-r*t)*(m*K - Kd - B)^(n - 1),
 F_{Kd, t} = n*r*exp (-r*t)*(m*K - Kd - B)^(n - 1),
 F_{Kd, K} = - m*n*(n - 1)*exp (-r*t)*(m*K - Kd - B)^(n - 2),
 F_{Kd, Kd} = n*(n - 1)*exp (-r*t)*(m*K - Kd - B)^(n - 2).

Using these derivatives in the expanded form of Euler's equation:
 F_K = F_{Kd, t} + F_{Kd, K}*Kd + F_{Kd, Kd}*Kdd,
 n*m*exp (-r*t)*(m*K - Kd - B)^(n - 1) = n*r*exp (-r*t)*(m*K - Kd - B)^(n - 1)
 - m*n*(n - 1)*exp (-r*t)*(m*K - Kd - B)^(n - 2)* Kd
 + n*(n - 1)*exp (-r*t)*(m*K - Kd - B)^(n - 2)*Kdd.

Using x^(n-1) = x*x^(n-2), we can cancel the common factor n*exp(-r*t)*x^(n-2) to
get:
 m*(m*K - Kd - B) = r*(m*K - Kd - B) - m*(n - 1)*Kd + (n -1)*Kdd
 = r*(m*K - Kd - B) + m*(1- n)*Kd - (1- n)*Kdd
 = r*(m*K - Kd - B) + (1- n)* (m*Kd - Kdd), or
(m - r)*(m*K - Kd - B) = (1- n)* (m*Kd - Kdd).
Dividing by (1-n), we can write this as

 Kdd + Z1*Kd + Z2*K = Z3,

where

 Z1 = (r + m*n - 2*m)/(1 - n),
 Z2 = (m^2 - r*m)/(1 - n),
 Z3 = (m - r)*B/(1 - n).
Here m = a - b, a is the marginal product of capital (dG/dK = a) and
b is the constant rate of depreciation.

Dowling20fit.wxmx 20 / 29

The exptremal solution K(t) is then Kp + Kc.

The particular solution Kp = Z3/Z2 = B/m.

The complementary solution Kc is the solution of
 d²Kc/dt² + Z1*dKc/dt + Z2*Kc = 0.

Taking as a trial solution Kc(t) = exp(R*t), R must satisfy the characteristic
equation
 R^2 + Z1*R + Z2 = 0, with solutions
 R1, R2 = (-Z1 +/- sqrt (Z1^2 - 4*Z2))/2,
and Kc(t) = A1*exp(R1*t) + A2*exp(R2*t)
in terms of constants A1 and A2 which can be specified using K(t=0) and K(t=T)
boundary condition values.

Prob. 20.23: Numerical Example of Prob. 20.22 7.6

Require the endpoint values K(0) = 320 and K(5) = 480.
Assume the discount rate r = 0.12, and n = 0.5, a = 0.25, B = 60, and b = 0.05.
Then m = a - b = 0.25 - 0.05 = 0.2.

Method 1: Substitution of numerical values 7.6.1

We substitute numerical values into the expressions Z1, Z2, Z3, in terms of which (as we saw
just above) Euler's equation can be written: Kdd + Z1*Kd + Z2*K = Z3.

(case) [r =0.12 ,n=0.5 ,B=60 ,m=0.2]

kill (r, n, B, m)$
case : [r = 0.12, n = 0.5, B = 60, m = 0.2];

(%i59)

(Z1) −0.36

Z1 : at ((r + m*n - 2*m)/(1 - n), case);(%i60)

(Z2) 0.032

Z2 : at ((m^2 - r*m)/(1 - n), case);(%i61)

(Z3) 9.6

Z3 : at ((m - r)*B/(1 - n), case);(%i62)

(Kp) 300.0

Kp : Z3/Z2;(%i63)

Dowling20fit.wxmx 21 / 29

croots (A, B), defined in Econ2.mac, returns the pair of roots of the characteristic
equation r^2 + A*r + B = 0.

(%o64) [
1

5
,

4

25
]

[R1, R2] : croots (Z1, Z2);(%i64)

(%o65) [0.2 ,0.16]

float (%);(%i65)

(Kindef) %k1 %et 5/ +%k2 %e

4 t

25 +300.0

Kindef : %k1*exp(R1*t) + %k2*exp(R2*t) + Kp;(%i66)

Apply boundary conditions to determine the constants %k1 and %k2.

(eqn1) %k2+%k1+300.0=320

(eqn2) %e4 5/ %k2+%e %k1+300.0=480

eqn1 : at (Kindef, t = 0) = 320;
eqn2 : at (Kindef, t = 5) = 480;

(%i68)

(solns) [[%k2=−254.97 ,%k1=274.97]]

solns : solve ([eqn1, eqn2]), numer;(%i69)

(Kdef) 274.97 %et 5/ −254.97 %e

4 t

25 +300.0

Kdef : at (Kindef, solns[1]);(%i70)

So K(t) = 274.97*exp(t/5) - 254.97*exp(4*t/25) + 300, which agrees with Dowling's answer.

Method 2: Starting with F(t, K, Kd) 7.6.2

We start with: F (t, K, Kd) = exp (-r*t)*(m*K - Kd - B)^n
 = exp (- 0.12*t)*(0.2*K - Kd - 60)^0.5,
and take the needed partial derivatives to obtain Euler's equation in expanded form.

(F) ()−Kd +0.2 K −60 0.5 %e− 0.12 t

F : exp (- 0.12*t)*(0.2*K - Kd - 60)^0.5;(%i71)

Dowling20fit.wxmx 22 / 29

(FK)
0.1 %e− 0.12 t

()−Kd + 0.2 K −60 0.5

FK : diff (F, K);(%i72)

(FKd) −
0.5 %e− 0.12 t

()−Kd + 0.2 K −60 0.5

FKd : diff (F, Kd);(%i73)

(FKdK)
0.05 %e− 0.12 t

()−Kd + 0.2 K −60 1.5

FKdK : diff (FKd, K);(%i74)

(FKdKd) −
0.25 %e− 0.12 t

()−Kd + 0.2 K −60 1.5

FKdKd : diff (FKd, Kd);(%i75)

(FKdt)
0.06 %e− 0.12 t

()−Kd + 0.2 K −60 0.5

FKdt : diff (FKd, t);(%i76)

Bringing all terms to the left hand side:

(ode)
0.25 Kdd %e− 0.12 t

()−Kd + 0.2 K −60 1.5
−

0.05 Kd %e− 0.12 t

()−Kd + 0.2 K −60 1.5
+

0.04 %e− 0.12 t

()−Kd + 0.2 K −60 0.5

ode : FK - FKdt - FKdK*Kd - FKdKd*Kdd;(%i77)

(ode) 1.0 Kdd −0.36 Kd +0.032 K −9.6

ode : expand (ode/coeff (ode,Kdd));(%i78)

(A) −0.36

A : coeff(ode, Kd);(%i79)

(B) 0.032

B : coeff (ode,K);(%i80)

(C) 9.6

C : 9.6;(%i81)

Dowling20fit.wxmx 23 / 29

(eqn)
d2

d t2
K −0.36

d

d t
K +0.032 K =9.6

eqn : 'diff (K, t, 2) + A*'diff (K, t) + B*K = C;(%i82)

(soln) K =%k1 %et 5/ +%k2 %e

4 t

25 +300

soln : ode2(eqn, K, t);(%i83)

(Kindef) %k1 %et 5/ +%k2 %e

4 t

25 +300

Kindef : rhs (soln);(%i84)

Solve for the constants using the values of K(t) at t = 0 and t = 5.

(eqn1) %k2+%k1+300=320

(eqn2) %e4 5/ %k2+%e %k1+300=480

eqn1 : at (Kindef, t = 0) = 320;
eqn2 : at (Kindef, t = 5) = 480;

(%i86)

(solns) [[%k2=−254.97 ,%k1=274.97]]

solns : solve ([eqn1, eqn2]),numer;(%i87)

(Kdef) 274.97 %et 5/ −254.97 %e

4 t

25 +300

Kdef : at (Kindef, solns[1]);(%i88)

which agrees with our previous result.

Constrained Dynamic Optimization 8

Dowling introduces constrained dynamic optimization in Sec. 20.6 "Dynamic Optimization
Subject to Functional Constraints".

The only type of functional constraint Dowling considers in an integral constraint, which is what
we have in Prob. 20.25. (Other types of constraints are discussed in the text:
 Alpha C. Chiang, Elements of Dynamic Optimization, Waveland Press, Ch. 6.)

Prob. 20.25 8.1

Minimize J = integrate (exp (-r*t) * (a*xp^2 + b*x), t, 0, T)
 subject to: x(0) = 0, x(T) = N, KK = integrate (xp, t, 0, T) = N.

Dowling20fit.wxmx 24 / 29

Let H (t, x, xp) = exp (-r*t) * (a*xp^2 + b*x) + λ*xp, using a Lagrange multiplier constant λ,
and minimize the integral: integrate (H(t,x,xp), t, 0, T) for an arbitrary value of λ and
subject to x(0) = 0, x(T) = N. After finding a solution x*(t) we use xp = dx*/dt to require that
the integral: integrate (xp, t, 0, T) = N in order to fix the value of the Lagrange multiplier λ (in
principle, and assuming the solution contains the parameter λ).

We require x(t) satisfy Euler's Equation as a necessary condition. In the following, ode
represents Euler's Equation with all the terms brought over to the left hand side, so ode = 0.

Using Extremal (H) 8.1.1

(H) xp λ+%e− r t ()a xp2+b x

ode: xpp −r xp=
b

2 a

Is r zero or nonzero?nonzero;

(soln) x =%k1 %er t −
b r t +b

2 a r 2
+%k2

kill(r,a,b,N,T)$
H : exp (-r*t)*(a*xp^2 + b*x) + λ*xp;
soln : Extremal (H);

(%i91)

(sx) %k1 %er t −
b t

2 a r
−

b

2 a r 2
+%k2

sx : expand (rhs (soln));(%i92)

Determine the constants %k1 and %k2 using x(0) = 0 and x(T) = N.

(ksolns) [[%k1=
2 N a r +T b

a r ()2 %eT r −2
,%k2=−

b ()1−%eT r +2 N a r 2 +T b r

a r 2 ()2 %eT r −2
]]

ksolns : solve ([at (sx, t = 0) = 0, at (sx, t = T) = N],[%k1, %k2]);(%i93)

(ksolns) [%k1=
2 N a r +T b

a r ()2 %eT r −2
,%k2=−

b ()1−%eT r +2 N a r 2 +T b r

a r 2 ()2 %eT r −2
]

ksolns : ksolns[1];(%i94)

(sx)
2 N a r %er t

2 a r %eT r −2 a r
+

T b %er t

2 a r %eT r −2 a r
−

b t

2 a r
+

b %eT r

2 a r 2 %eT r −2 a r 2
−

2 N a r 2

2 a r 2 %eT r −2 a r 2
−

T b r

2 a r 2 %eT r −2 a r 2
−

b

2 a r 2 %eT r −2 a r 2
−

b

2 a r 2

sx : at (sx, ksolns), expand;(%i95)

Dowling20fit.wxmx 25 / 29

x*(t) looks a little simpler if we put everything over a common denominator using ratsimp.

(%o96)
()2 N a r +T b %er t + ()b−b %eT r t −2 N a r −T b

2 a r %eT r −2 a r

ratsimp(sx);(%i96)

We want to check that the integral constraint integrate (xp, t, 0, T) = N has been achieved with
this solution, so let sxp = dx*/dt.

(sxp)
2 N a r 2 %er t

2 a r %eT r −2 a r
+

T b r %er t

2 a r %eT r −2 a r
−

b

2 a r

sxp : diff(sx, t);(%i97)

KK is our constraint integral relation which should equal N.

(KK)
2 N a r %eT r +T b

2 a r %eT r −2 a r
−

2 N a r +T b

2 a r %eT r −2 a r

KK : integrate(sxp, t, 0, T);(%i98)

(%o99) N

ratsimp(KK);(%i99)

which says we have a solution which satisfies all the constraints, and the value of the Lagrange
multiplier plays no role.

Using Lode2 (x, t, type, A, B, C) 8.1.2

Dowling20fit.wxmx 26 / 29

(H) xp λ+%e− r t ()a xp2+b x

(Hx) b %e− r t

(Hxp) λ+2 a %e− r t xp

(Hxpt) −2 a r %e− r t xp
(Hxpx) 0

(Hxpxp) 2 a %e− r t

(ode) −2 a %e− r t xpp +2 a r %e− r t xp+b %e− r t

kill(r,a,b,N,T)$
H : exp (-r*t)*(a*xp^2 + b*x) + λ*xp;
Hx : diff (H,x);
Hxp : diff (H, xp);
Hxpt : diff (Hxp, t);
Hxpx : diff (Hxp, x);
Hxpxp : diff (Hxp, xp);
ode : Hx - Hxpt - Hxpx*xp - Hxpxp*xpp;

(%i107)

(%o108) λ+2 a %e− r t xp

Hxp;(%i108)

(%o109) 2 a %e− r t

Hxpxp;(%i109)

(%o110) 2 a %e− r t

diff (H, xp, 2);(%i110)

(ode) −2 a xpp +2 a r xp+b

ode : exp(r*t)*ode, expand;(%i111)

Write the ode is standard form
x'' + A*x' + B*x = C,

(ode) xpp −r xp−
b

2 a

ode : ode/(-2*a), expand;(%i112)

So A = -r, B = 0, and C = b/(2*a), and we have A^2 > 4*B = 0, so "type" is real and we use
the Maxima function Lode2 (x, t, type, A, B, C) defined in Econ2.mac, which can be used with
linear 2nd order odes. Notice that λ does not appear as a parameter in our ode.

Dowling20fit.wxmx 27 / 29

Is r zero or nonzero?nonzero;

(soln) x =%k1 %er t −
b r t +b

2 a r 2
+%k2

soln : Lode2(x, t, real, -r, 0, b/(2*a));(%i113)

(sx) %k1 %er t −
b t

2 a r
−

b

2 a r 2
+%k2

sx : expand (rhs (soln));(%i114)

Determine the constants %k1 and %k2 using x(0) = 0 and x(T) = N.

(ksolns) [[%k1=
2 N a r +T b

a r ()2 %eT r −2
,%k2=−

b ()1−%eT r +2 N a r 2 +T b r

a r 2 ()2 %eT r −2
]]

ksolns : solve ([at (sx, t = 0) = 0, at (sx, t = T) = N],[%k1, %k2]);(%i115)

(ksolns) [%k1=
2 N a r +T b

a r ()2 %eT r −2
,%k2=−

b ()1−%eT r +2 N a r 2 +T b r

a r 2 ()2 %eT r −2
]

ksolns : ksolns[1];(%i116)

(sx)
2 N a r %er t

2 a r %eT r −2 a r
+

T b %er t

2 a r %eT r −2 a r
−

b t

2 a r
+

b %eT r

2 a r 2 %eT r −2 a r 2
−

2 N a r 2

2 a r 2 %eT r −2 a r 2
−

T b r

2 a r 2 %eT r −2 a r 2
−

b

2 a r 2 %eT r −2 a r 2
−

b

2 a r 2

sx : at (sx, ksolns), expand;(%i117)

x*(t) looks a little simpler if we put everything over a common denominator using ratsimp.

(%o118)
()2 N a r +T b %er t + ()b−b %eT r t −2 N a r −T b

2 a r %eT r −2 a r

ratsimp(sx);(%i118)

We want to check that the integral constraint integrate (xp, t, 0, T) = N has been achieved with
this solution, so let sxp = dx*/dt.

(sxp)
2 N a r 2 %er t

2 a r %eT r −2 a r
+

T b r %er t

2 a r %eT r −2 a r
−

b

2 a r

sxp : diff(sx, t);(%i119)

KK is our constraint integral relation which should equal N.

Dowling20fit.wxmx 28 / 29

(KK)
2 N a r %eT r +T b

2 a r %eT r −2 a r
−

2 N a r +T b

2 a r %eT r −2 a r

KK : integrate(sxp, t, 0, T);(%i120)

(%o121) N

ratsimp(KK);(%i121)

which says we have a solution which satisfies all the constraints, and the value of the Lagrange
multiplier plays no role.

Check Sufficient Conditions 8.1.3

(Hxx) 0

Hxx : diff (H, x, 2);(%i122)

(%o123) 2 a %e− r t

Hxpxp;(%i123)

Thus Hxpxp > 0 if a > 0.

(H1)
0

0

0

2 a %e− r t

H1 : hessian (H, [x, xp]);(%i124)

(H2)
2 a %e− r t

0

0

0

H2 : hessian (H,[xp, x]);(%i125)

Since determinant(H1) = 0, determinant(H2) = 0, Hxx = 0, and Hxpxp > 0 if a > 0, we conclude
we have sufficient conditions for a relative minimum if a > 0. (See our section above on
"Sufficient Conditions for an Optimum Solution."

(%o126) xp λ+%e− r t ()a xp2+b x

H;(%i126)

If some elements of the discriminant are symbolic (not purely numeric), then no automatic
judgement about signs can be made when we call NumSuffCond (H). The 'Num' prefix
emphasizes that the function works with purely numerical expressions depending on (t, x, xp).

Dowling20fit.wxmx 29 / 29

d21=2 a %e− r t

(%o127) done

NumSuffCond (H);(%i127)

