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MOTIVATION FOR RANDOM 
FOREST

• Random forest is a great 
statistical learning model. 

• It works well with small to 
medium data. Unlike Neural 
Network which requires large 
data to train. (1) 

• Example: Ted's Cancer Thesis 

• source: "An Empirical 
Comparison of Supervised 
Learning Algorithms" - https://
www.cs.cornell.edu/~caruana/
ctp/ct.papers/caruana.icml06.pdf

https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf
https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf
https://www.cs.cornell.edu/~caruana/ctp/ct.papers/caruana.icml06.pdf


EXAMPLE: PREDICTING CANCER

• Clinical data have few 
observations ranging from 5 
patients to 200 patients (for 
phase 3). 

• Medical data cost money. Very 
expensive to run trials and to 
find patient willing to volunteer, 
especially rare disease. 

• Of course 5 is small but 200 is 
great for random forest. Bad for 
Neural Network. 

• Ted's Thesis
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1. CART (CLASSIFICATION AND REGRESSION TREE)
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CLASSIFICATION TREE -  
(BINARY TREE DATA STRUCTURE)



CLASSIFICATION TREE - QUICK 
EXAMPLE

• We have several predictors (x's) and one response 
(y, the thing we're trying to predict) 

• Let's do cancer with a simple model. 

1. response Y is either 0,1 where the person 
have cancer or not 

2. predictor - age (value range: 0 year old to 99 
year old)







HOW CART (DATA PARTITION 
ALGORITHM) WORKS

1. For each predictor, all possible splits of the 
predictor values are considered 

2. For each predictor, the best split is selected. 
(we'll get to best split criteria) 

3. With the best split of each predictor is 
determined, we pick the best predictor in that 
group. 



 

CART Uses Binary Tree Data Structure



CART - DATA PARTITION 
EXAMPLES

• Examples of step 1: 

• marital status (categorical data: never married, married, and divorced) 

• never married vs [married and divorced] 

• married vs [never married and divorced] 

• divorced vs [never married and married] 

•  age (value range: 21 to 24) 

• So the possible split (maintaining order) 

• 21 vs 22-24 

• 21-22 vs 23-24 

• 21-23 vs 24 



VISUAL EXAMPLE

• The best way to do this is adding another predictor to our 
model. 

• We're going to add exercise per week (hours) 

• recap our response: 

•  y (0 - no cancer or 1- cancer) 

• our predictors: 

• age (value range: 0 to 99 year)  

• exercise per week (value: 0 to 168 hours).







Note here we can either partition the data 
horizontally or vertically. We're choosing the 

best split/partition.





REPEAT DATA PARTITION ALGORITHM, 
CART, AGAIN FOR THE PARTITIONED DATA
RECURSIVELY...







R - CODE
flowers_data <- iris 

flowers_data <- flowers_data[!
(flowers_data$Species == 
'virginica'),] 

library(rpart) 

tree.model <- rpart(Species ~ . , 
data = flowers_data) 

library(party) 

library(partykit) 

tree.model.party <- 
as.party(tree.model) 

plot(tree.model.party)



R - CODE

flowers_data <- iris 

library(rpart) 

tree.model <- rpart(Species 
~ . , data = flowers_data) 

library(party) 

library(partykit) 

tree.model.party <- 
as.party(tree.model) 

plot(tree.model.party)



BASIS FUNCTIONS

• X is a predictor 
• M transformations of X  
• β_m is the weight given to the mth transformation (the coefficient) 
• h_m is the m-th transformation of X 
• f(x) is the linear combination of transformed values of X 



BASIS FUNCTION EXAMPLE 



THE BASIS EXAMPLE WE CARE ABOUT



THIS IS CART BASIS FUNCTION

The new summation is for multiple predictors. P = total 
number of predictors.



 
 



NODE SPLITTING



QUESTION HOW IS SPLIT 
DETERMINED?

• The goal is to split/partition the data until each 
node is homogenous in data, or as little 
"impurity" (few outcomes that we want in the 
particular node and mostly outcome that we want).



HOW IS NODE IMPURITY 
CALCULATED?



NODE IMPURITY - SETUP

• Our data to train is a random sample from a well 
defined population 

• given a node, node A 

• p(y = 1 | A) 

• impurity of node A is the probability that y = 1 
given it is node A.



IMPURITY FUNCTION

• I(A) represent Impurity function that takes in a node 
as our parameter. 

• The restriction tells us that the impurity function is 
nonnegative, symmetric when A contains all 0s or 1s, 
and a maximum of half of each (coin toss).



IMPURITY - DEFINING Φ  (PHI)

• There are several Φ functions that people uses.  

• The most commonly use is the Gini Index: Φ(p) = p (1-p)  

• Others 

•  Bayes Error: Φ(p) = min(p, 1-p)  

• Cross Entropy Function: Φ(p) = -p log(p) - (1-p) log(1-p)  
 
 



GINI INDEX

• p(i|t) denote the fraction of records belonging to 
class i at a given node t 

• c is the number of classes (example: cancer, no 
cancer) 















PRUNING TREE



WHY PRUNE?

• Reduce complexity of the 
model 

• Reduce overfitting. 

• Note: Random Forest 
doesn't Prune trees so 
we're not going to go 
into Tree pruning. 
 



REGRESSION TREE



REGRESSION TREE - SPLITTING 
NODE
• The only difference is the impurity function of the 

node 

• Which is just a within-node sum of squares for the 
response 

• Where the summation of all cases in node τ minus 
the mean those cases squared.  

• This is SSTO (sum square total) in Linear Regression



REGRESSION TREE EXAMPLE



Warning:  

We're going to do it on classification data as an 
example to show how to use the equation. 

Because I don't believe I have time to go over 
linear regression in here to do a proper example.





• = (1/n)*sum(y_i) 

• = (1/6)*(0+0+0+0+1+1) 

• = 2/6 

• = 1/3 

•   represents one data 
point in the partition 
(0,0,0,1,1)



REGRESSION TREE - PRUNING

• Uses AIC or some other regression criteria, it's a 
penalty function for using too many predictors and 
sacrificing degree of freedom. 

• AIC and such are outside the scope of this talk 
because it's a huge topic and rabbit hole into 
linear regression.



2. BAGGING (BOOTSTRAP AGGREGATION)



BAGGING 
SECTION OVERVIEW

1. Benefit  

2. Bootstrap Algorithm 

3. Bootstrap example 

4. Bagging Algorithm 

5. Flaws 

6. Why does this work?



WHY? BENEFITS.

• Reduce overfitting 

• Reduce bias 

• Break the bias-variance trade-off



BOOTSTRAP

• Before we dive into 
bagging algorithm we 
should go over bootstrap 

• Bootstrap is a statistical 
resample method. 

• When you can't afford 
to get more sample 
(think medical data, 
poor grad student, cost, 
etc..)



BOOTSTRAP ALGORITHM

1. Used in statistic when you want to estimate a statistic of a random sample 
(a statistic: mean, variance, mode, etc...) 

2. Using bootstrap we diverge from traditional parametric statistic, we do not 
assume a distribution of the random sample 

3. What we do is sample our only data set (aka random sample) with 
replacement. We take up to the number of observations in our original 
data. 

4. We repeat step 3 for a large number of time, B times. Once done we have 
B number of bootstrap random samples.   

5. We then take the statistic of each bootstrap random sample and average it 



BOOTSTRAP EXAMPLE

• Original data (random sample): 

• {1,2,3,1,2,1,1,1} (n = 8) 

• Bootstrap random sample data: 

• {1,2,1,2,1,1,3} (n = 8); mean = 1.375 

• {1,1,2,2,3,1,1} (n = 8);  mean = 1.375 

• {1,2,1,2,1,1,2} (n = 8); mean = 1.25 

• The estimated mean for our original data is the mean of the statistic for 
each bootstrap sample (1.375+1.375+1.25)/3 = ~1.3333 
 



BAGGING (BOOTSTRAP 
AGGREGATION) ALGORITHM

1. Take a random sample of size N with replacement 
from the data 

2. Construct a classification tree as usual but do not 
prune 

3. Assign a class to each terminal node, and store the 
class attached to each case coupled with the 
predictor values for each observation



BAGGING ALGORITHM

4. Repeat Steps 1-3 a large number of times. 

5. For each observation in the dataset, count the number of 
times over tress that it is classified in one category and the 
number of times over trees it is classified in the other category 

6. Assign each observation to a final category by a majority 
vote over the set of tress. Thus, if 51% of the time over a large 
number of trees a given observation is classified as a "1", that 
becomes its classification. 

7. Construct the confusion table from these class assignments.



FLAWS

• The problem with Bagging algorithm is it's using 
CART.  

• CART uses Gini-Index, a greedy algorithm to find the 
best split. 

• So we end up with trees that are structurally similar to 
each other. The trees are highly correlated among the 
predictions. 

• Random Forest address this.



WHY DOES THIS WORK?

• Outside the scope of this talk.



3. RANDOM FOREST



RANDOM FOREST 
SECTION OVERVIEW

1. Problem RF solve 

2. Building Random Forest 
Algorithm 

3. Breaking Down Random 
Forest Algorithm Parts by 
Parts 

4. How to use Random Forest to 
Predict 

5. R Code



1. PROBLEM RANDOM FOREST 
IS TRYING TO SOLVE



BAGGING PROBLEM

With bagging we have an ensemble of 
structurally similar trees. This causes 
highly correlated trees.    

 



RANDOM FOREST SOLUTION

Create trees that have no correlation or weak 
correlation.

 



2. BUILDING RANDOM FOREST 
ALGORITHM



RANDOM FOREST ALGORITHM

1. Take a random sample of size N with 
replacement from the data.  

2. Take a random sample without replacement of 
the predictors.  

3. Construct the first CART partition of the data.  

 



BUILDING RANDOM FOREST 
ALGORITHM

 4.  Repeat Step 2 for each subsequent 
split until the tree is as large as desired. 
Do not prune. 

5.  Repeat Steps 1–4 a large number of 
times (e.g., 500).  



3. BREAKING DOWN RANDOM 
FOREST ALGORITHM PARTS BY PARTS



1. TAKE A RANDOM SAMPLE OF SIZE 
N WITH REPLACEMENT FROM DATA

• This is just bootstrapping on our data (recall 
bagging section)



2. TAKE A RANDOM SAMPLE WITHOUT 
REPLACEMENT OF THE PREDICTORS

• Predictor sampling / bootstrapping  

• Notice this is bootstrapping our predictors and it's 
without replacement. 

• This is Random Forest solution to highly correlated 
trees that arises from bagging algorithm.



Question (for step 2): 
Max number when sampling predictors/

features?



Answer: 

2 to 3 sample for predictors/features



3. CONSTRUCT THE FIRST CART 
PARTITION OF DATA

• We partitioned our first bootstrap and use Gini-
index on our bootstrapped predictors sample in 
step 2 to decided the split.



4. REPEAT STEP 2 FOR EACH SUBSEQUENT 
SPLIT UNTIL THE TREE IS AS LARGE AS 
DESIRED. DO NOT PRUNE. 

• Self explanatory.



5. REPEAT STEPS 1–4 A LARGE NUMBER OF 
TIMES (E.G., 500).  
 

• Steps 1 to 4 is to build one tree. 

• You repeat step 1 to 4 a large number of times to build a 
forest. 

• There's no magic number for large number. You can build 
101, 201, 501, 1001, etc.. There's research paper that suggest 
certain numbers but it base on your data. So just check model 
performance via  model evaluation using cross validation. 

• I have no idea why suggested numbers are usually even, but I 
choose odd number of trees in case of ties. 



4. HOW TO USE RANDOM 
FOREST TO PREDICT



• You have an observation that you want to predict 

• Say the observation is x = male, z = 23 year old 

• You plug that in your your random forest.  

• Random Forest takes those predictors and give it to each decision 
trees. 

• Each decision trees give one prediction, cancer or no cancer (0,1). 

• You take all of those predictions (aka votes) and take the majority.  

• This is why I suggest odd number of trees to break ties for binary 
responses. 



5. R CODE



set.seed(415) 

library(randomForest) 

iris_train <- iris[-1,] 

iris_test <- iris[1,] 

rf.model <- randomForest(Species ~ ., data = iris_train) 

predict(rf.model,iris_test)
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