
Application of Asynchronous Weak Commitment Search in Self
Organized Cognitive Radio Networks

Shabnam Sodagari1

Received: 20 August 2016 / Accepted: 28 February 2017 / Published online: 6 March 2017

� Springer Science+Business Media New York 2017

Abstract This article presents a distributed solution to

autonomous quality of service provision. This method

paves the way for decentralized and autonomous quality of

service (QoS) provision in capillary networks that reach

end nodes at Internet of Things, when, due to any reason,

central management is either unavailable or not efficient.

As case studies, cognitive spatial reuse time division access

and code division multiple access communication networks

are investigated. Based on asynchronous weak commit-

ment search the task of QoS provision is distributed among

different network nodes. This application of artificial

intelligence in wireless and mobile communications can be

used in home automation and networking, and vehicular

technology. Extensions of this approach can be used in self

organizing networks, specifically for machine to machine

communications.

Keywords Quality of service � Internet of Things �
Autonomous networks � Distributed constraint satisfaction �
Cognitive radio � Asynchronous weak commitment search �
Self-organizing networks (SONs)

1 Introduction

Cognitive radio (CR) entered the lexicon of wireless

communication to enable dynamic spectrum access to

increase spectral efficiency. In a cognitive radio network

(CRN) the spectrum license holder is called a primary user

(PU) and other devices that try to dynamically access

unused resources of PU, without affecting its performance,

are called secondary users or CRs. The terms secondary

and CR are used interchangeably.

In underlay CRN scheme CRs simultaneously use the

bands with primary, conditioned on avoiding interference

to PUs.

To provide quality of service (QoS) in CRNs the con-

straint of avoiding interference with legacy license holders,

i.e., PUs is inevitable. There are several drawbacks asso-

ciated with centralized control of CRNs for QoS provision.

A central management entity might not always be feasible,

especially in CRNs, where the topology of the network and

spectrum usage patterns are varying. Also, when the central

management entity fails, the whole network experiences

failure. Once a major link failure or disaster happens, the

network should go to autonomous mode. Above reasons

are convincing to migrate toward a distributed and auton-

omous management of QoS in CRNs. The distributed

approach has further advantage of breaking down the load

of coordination among all nodes. Here, inspired by asyn-

chronous weak commitment search (AWCS) [1], a method

for autonomous network management and recovery is put

forward. This method distributes the task of providing QoS

among different network nodes. Table 1 contains the

notation and abbreviations used throughout this paper.

Example 1 To elucidate the many potential applications

of distributed constraint satisfaction algorithms to realize

self-organizing wireless communication systems, a sim-

plified example is depicted in Figs. 1, 2, 3, 4, 5 and 6. The

method used in this example facilitates automatic self-

configuration of parameters, such as antenna tilt and power

in cellular networks. It can replace tedious manual

adjustments for SON dynamic radio configuration (DRC).
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Sets of variables and domains for each base station include

power p 2 ½Pmin;Pmax� and antenna tilt h 2 ½hmin; hmax�, as
in Fig. 1. Values in parentheses are priority values in

Figs. 1, 2, 3, 4, 5 and 6. Since initially all priorities are

equal, the priority of CRs can be determined by a con-

ventional order of base stations, e.g., their number. Nodes

exchange assignments using ok? messages. At the start,

each base station selects its initial variables, and sends

them with ok? to other base stations. Figure 1 shows the

number of each base station beside its priority value, which

is initially 0. In Figs. 2, 3, 4, 5 and 6, number of each base

Table 1 Abbreviations

CR Cognitive radio

CRN Cognitive radio network

PU Primary user

SU Secondary user

AWCS Asynchronous weak commitment search

SON Self organizing networks

SCMA Sparse code multiple access

STDMA Spatial reuse time division multiple access

CDMA Code division multiple access

SINR Signal to interference plus noise ratio

CSP Constraint satisfaction problem

Fig. 1 Initial setup for example 1

Fig. 2 First cycle of self-organized parameter configuration using

AWCS in example 1

Fig. 3 Second cycle of self-organized parameter configuration using

AWCS in example 1

Fig. 4 Third cycle of self-organized parameter configuration using

AWCS in example 1

Fig. 5 Fourth cycle of self-organized parameter configuration using

AWCS in example 1
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station is omitted and only priority of each base station is

shown in parentheses. In Fig. 2, all base stations have sent

their initial values along with ok? messages to each other.

Assume base station 4 finds constraint violation with base

station 2, e.g., its antenna tilt and that of base station 2

interfere. It sends nogood messages to other base stations

and increments its priority value by 1. In the third cycle,

shown in Fig. 3, base station 4 chooses a value minimizing

constraint violations, which only conflicts with base station

3. Base station 4 sends its value along with ok? messages to

other agents. In the fourth cycle, shown in Fig. 4, con-

straint of base station 3 is violated. Therefore, base station

3 increments its priority to 2 and sends nogood messages.

A value minimizing constraint is a tilt angle that is not in

the nogood list received so far and is also among possible

options for the base station.

In the fifth cycle, as in Fig. 5, base station 3 selects a

value that minimizes constraint violations, but still violat-

ing base station 1, and sends it with ok? messages to other

base stations. In the sixth cycle, depicted in Fig. 6, base

station 1 changes its value and after sending ok? messages,

other base stations find it not violating and a solution is

obtained.

The goal is to derive a solution that satisfies all QoS

constraints in PU and CRs coexistence in the shortest

possible time. To this end, CRs use AWCS, which is an

efficient method to solve distributed constraint satisfaction

problems in comparison with other similar methods in that

it offers shorter convergence time and less message

exchange overhead [2].

The method of this paper is advantageous over dis-

tributed control using game theory, especially in large scale

systems. Using game theory approach with local, scalable,

and budget-balanced utility functions results in extra

computational complexity [3]. This stems from the

requirement to compute Shapley value to find a pure Nash

equilibrium. As a result, computational burden can become

intractable in such approach.

The contributions of this article can be summarized as

follows:

– A multi-stage protocol for decentralized QoS provision

in cognitive radio networks, which utilizes AWCS at

one of the stages.

– Bypassing the need to estimate mutual interference

channel gains.

– Controlled messaging overhead.

– Discussing effects of delay in passing messages on the

performance.

In Sect. 2 models and constraints for QoS provision in

cognitive cellular networks are presented. Section 3 con-

tains details of decentralized QoS protocol. Simulation

results are presented in Sects. 4 and 5 concludes.

2 System Model and Problem Statement

To show applications of AWCS algorithm in providing

distributed QoS in cognitive radio networks the following

subsections consider scenarios related to cognitive under-

lay spatial reuse time division multiple access (STDMA)

networks and cognitive underlay code division multiple

access (CDMA) networks. These system models involve

optimal scheduling, power and rate allocations to satisfy

required QoS constraints of each CR, while avoiding vio-

lation of constraints of other network nodes.

2.1 QoS in Cognitive STDMA Networks

In a cognitive underlay STDMA network a set of CR links

(a transmitter receiver pair) coexists with a set of PU links

[4]. Each frame contains a scheduling period for CR links

and a transmission period. The CR transmitter receiver

pairs communicate in an ad-hoc manner. CRs use spatial

resources to transmit at the same time at their scheduled

time slots. One QoS requirement for each CR’s traffic

involves a minimum number of time-slots within a frame.

CRs should avoid interference to PUs, because transmis-

sion slots of CRs are underlaid with the transmissions from

PUs. Using AWCS signaling messages during the

scheduling period CRs find optimal schedules and trans-

mission powers to be used during the transmission period.

Another QoS constraint is the signal to interference plus

noise (SINR) level at the receiver, which must be above a

certain threshold for the data to be transmitted successfully

over a link.

Within a time-slot a subset of the CR links can simul-

taneously transmit data, i.e., have transmission powers

greater than zero, to spatially reuse the frequencies,

Fig. 6 Solution obtained at fifth cycle of self-organized parameter

configuration using AWCS in example 1
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provided that they meet the interference limit constraints of

PUs and the minimum SINR requirements of CR links.

CRs should meet their traffic demands and at the same time

minimize their transmission length in terms of number of

time slots within a frame. In addition to CR minimum

SINR constraints and SINR constraints of PUs, power

budget of CRs is also limited [4].

2.2 QoS for Cognitive CDMA Cellular Networks

SCMA or sparse code multiple access is a multiple access

scheme that combines QAM symbol mapping and spreading

of CDMA [5]. Due to resemblance of SCMA and CDMA in

this aspect, it is noteworthy to consider QoS in CDMA net-

works. Here, providing QoS is considered in terms of rate and

power allocation for cognitive CDMA cellular networks [6],

where PUs and CRs can transmit simultaneously in a shared

frequency band. PUs in a cellular wireless network commu-

nicate with their corresponding base stations [7]. Rates and

power values selected by CRs should satisfy QoS require-

ments in terms of SINR and minimum data rates, while at the

same time the interference to PUs must be kept below a

certain threshold. In addition to power levels, SINR in CDMA

is affected by processing gain or bandwidth divided by rate. It

is assumed that each user has equal bandwidth and therefore,

processing gain depends only on each user’s rate.

In contrast with [6], where it is assumed that a central

controller in the CR network performs the joint admission

control, and rate/power allocation for CRs, here, a decen-

tralized method using distributed constraint satisfaction is

deployed, which does not need knowledge of channel gains

among PUs and CRs and peer CRs. The goal is to maxi-

mize the proportionally fair data rates of CRs [8]. The

problem involves finding fair resource allocations for CRs

subject to interference constraints introduced to PUs in a

cognitive cellular CDMA network [6].

To keep interference to PUs below the desired threshold,

the PU informs CRs if their selected transmit powers are

above the threshold. Accordingly, CRs decrease their power

to the next lower quantized level until the interference con-

straint of PU is met. Nevertheless, if through some mecha-

nisms, channel gains or their statistics can be estimated by

CR nodes (using e.g., pilot signals and channel reciprocity),

the algorithm would converge faster to a solution because of

the insight into selection of initial values.

3 QoS Using Asynchronous Weak Commitment
Search for Distributed Constraint Satisfaction

A constraint satisfaction problem (CSP) consists of n

variables x1; x2; . . .; xn, whose values are taken from finite,

discrete domains D1;D2; . . .;Dn, respectively, and a set of

constraints on their values [1]. Solving a CSP is equivalent

to finding an assignment of values to all variables such that

all constraints are satisfied.

In distributed CSP variables and constraints are dis-

tributed among autonomous agents. Agents that are related

by constraints are called neighbors and communicate by

sending messages. The random delay in delivering a

message is finite. Furthermore, for the transmission

between any two agents, messages are received in the order

in which they were sent.

Each agent records its own agent–view and nogood [9].

Here, agents are associated to different CR nodes. The

agent–view of a CRi is the set of values (e.g., transmission

power) of other CRs communicated to CRi. A nogood is a

conflicting arrangement of parameter values of CRs. It is

used as a constraint. Since agent–view is a record of

parameter values from the viewpoint of a CR, a nogood is

also a subset of agent-view. If a nogood exists, it means the

agent cannot find a value from the domain of its variable to

be consistent with the nogood. When the agent–view of a

node contains a nogood, the values of other agents must be

changed. When a CR receives new variable assignments

initiated by other CRs, it updates its agent–view accord-

ingly. When a CR cannot take any value consistent with its

agent–view, because of the original constraints or because

of received nogoods, new nogoods are generated as

inconsistent subsets of the agent–view, and sent to other

CRs. The process terminates when a solution has been

found, or when the empty nogood is generated, which

means the problem has no solution [9]. Empty nogood is

generated when a CR receives nogood messages for all

possible values of its parameter. In this case, the problem

has no solution because any choice leads to a constraint

violation. When a CR finds empty nogood, it will announce

to other CRs that the problem has no solution and the

protocol terminates. AWCS is an efficient algorithm for

solving distributed constraint satisfaction problems

involving multiple agents. AWCS algorithm uses the two

types of ok? and nogood messages, with the same signifi-

cance. When an agent receives an ok? message, it updates

its agent–view list and checks if its constraints are violated.

If no nogood value of higher priority agents is violated, no

action is required. If there are a few higher priority nogood

values that have inconsistent values and these values could

be eliminated by changing the variable assignment, the CR

will change this value and will send the ok? message [1, 9].

Nogood learning can improve the performance of AWCS

algorithm, in terms of required cycles to solve the problem

[10].

AWCS algorithm uses the min-conflict heuristic as a

value ordering heuristic. In min-conflict heuristic when

selecting a variable value, if there exist multiple values

consistent with the agent–view, i.e., those that satisfy the
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constraints with variables of higher priority CRs, the agent

prefers the value that minimizes the number of constraint

violations with variables of lower priority agents. Using

this method without any CR having exact information on

the partial solution, CRs can operate concurrently and

asynchronously.

For each CR, a non-negative integer value representing

the priority order of the CR is defined. This is called the

priority value. Any CR with a larger priority value has

higher priority. In case the priority values of multiple CRs

are the same, the order is determined by an agreed upon

convention. For each CR the initial priority value is 0. If

there exists no consistent value for CRi, the priority value

of CRi is changed to l þ 1, where l is the largest priority

value among CRs [2]. When a CR makes a mistake in

selecting a value for its variables, e.g., transmit power

level, the priority of another CR becomes higher and

consequently, the CR that made the bad decision will not

commit to it, and the selected value is changed. This

implies giving up the partial solution if there exists no

consistent value with the partial solution and restarting the

search process. This is obtained through dynamically

changing the priority order.

Asynchronous backtracking is another distributed con-

straint satisfaction method. Table 2 compares AWCS with

asynchronous backtracking [11]. As in Table 2, AWCS

outperforms the other distributed constraint satisfaction

solution for SON by converging faster and having lower

signaling overhead.

3.1 QoS Solution for Cognitive STDMA Networks

As shown in Fig. 7, CRs first exchange their minimum

required SINR levels to be able to find out, right from the

beginning, if the problem has a solution. If the required

SINR level of CRs does not result in mutual interference,

no messages are exchanged. Otherwise, a one bit message

is sent from the victim CR. This way, CRs find out which

groups of them can use same timeslots for transmission.

Then, each group of non-interfering CRs uses AWCS to

find out what maximum possible power levels they can use,

besides each other, while keeping it below the power

budget of each CR and still causing no interference to other

CRs. They start with selecting their maximum power

budget and if a constraint violation occurs, they decrement

their selected power to the next lower level. This process

iterates by exchanging ok? and nogood messages until

AWCS terminates with a solution. After adjusting power

levels, interfering subsets of CRs should schedule trans-

mission timeslots based on their traffic demands and

interference. For this part of proposed protocol, CRs use a

conventional order (e.g., using a number assigned to each

CR) at the beginning of the first frame. Disjoint sets of

interfering CRs, not allowed to use same time slots within a

frame, form a partition. Each set is specified by its head,

i.e., the CR in the set with lowest identification number. At

each frame, sets update their order in a circular fashion.

Within a single frame, the set with lowest head number

uses its required time slots, then, the next set and so forth.

Consider, for instance, 7 CRs partitioned into 3 disjoint

sets, based on interference, i.e., fCR1;CR2;CR4g; fCR3;

CR6g; fCR5;CR7g. In other words, CR5 and CR7 are

spatially apart so they can use the same frequencies for

transmission in the same time slots. The heads are CR1,

CR3 and CR5. In the first frame, the set containing CR1 is

scheduled first to use its required time slots, based on its

users’ minimum traffic demands. In the next frame, the set

containing CR3 uses timeslots. At last, CR5 and CR7 get to

use time slots. In each frame, the priority of sets to use time

slots is re-ordered in a round robin manner. The new order

of heads is CR5, CR1, CR3. After the set containing the last

head uses the frame, the set of fCR1;CR2;CR4g is

scheduled again.

Table 2 Main differences of distributed constraint satisfaction algorithms

Signaling Priority order ok? messages sent Convergence

AWCS Lower Dynamic To lower and higher priority CRs Faster

Asynchronous backtracking Higher Static To lower priority CRs Slower

Fig. 7 Steps of the proposed decentralized QoS protocol for

cognitive STDMA networks
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3.2 Decentralized QoS Provision in Cognitive

CDMA Networks with Unequal Rates

So far, it was shown how AWCS can be used for optimal

power allocation among CRs in CDMA networks with

equal rates. A modified version of AWCS with optimizing

two or more local variables, e.g., rate and power, can also

be used [2]. AWCS for multiple local variables [2] origi-

nates from AWCS for one local variable, but a CR

sequentially performs the computation for each variable,

and communicates with other CRs only when it can find a

local solution that satisfies all local constraints. A bad local

solution can be modified without forcing other CRs to

exhaustively search their local solutions, and the number of

interactions among CRs can be decreased. Every CR

changes the values of its local variables in order. It selects a

variable that has the highest priority among variables that

are violating constraints with higher priority variables, and

modifies its value so that constraints with higher priority

variables are satisfied. When all local variables satisfy

constraints with higher priority variables, the CR sends

changes to other CRs.

CRs choose initial values by starting from the maximum

allowed power levels. Each CR communicates these initial

values via ok? messages. After that, CRs wait for and

respond to messages they receive. Any CR can handle

multiple messages concurrently.

By sending messages to other CRs only when a CR finds

a consistent local solution, the number of messages

exchanged among CRs decreases. In the first phase of

proposed protocol, CRs send their values to PUs. PUs, on

the other hand, check if the value selection of CRs violates

their QoS requirements by exceeding the interference

threshold. If not, they do not send any messages; however,

if they find the value selection of CRs to be violating, they

send a one bit message to the corresponding CR. The CR

then decreases its selected value to next quantized lower

level and iterates the process until the constraints of PUs

are met. CRs then enter the second phase to satisfy the

constraints among themselves by using AWCS algorithm.

Figure 8 shows the proposed decentralized QoS provi-

sioning scheme for cognitive CDMA networks.

3.3 Effects of Delay in Message Exchange

In practice, messages do not arrive instantaneously but are

delayed due to network properties [9]. Delays can vary on

account of different network factors, such as hardware and

topology. Effects of message delays on distributed con-

straint satisfaction algorithms have been measured using

controlled simulation environments that apply randomly

generated delays [12]. Main results are described with

respect to CRNs applications.

For asynchronous algorithms, such as AWCS, two

messages between the same pair of agents must arrive in the

same order they were sent. AWCS is a single process

algorithm in that all variables have exactly one assignment

at each instant of algorithm run [12]. AWCS reads multiple

messages at each step, based on their instantaneous arrival.

Agents perform assignments asynchronously, and when the

updating message is randomly delayed, some of their

computation can be irrelevant due to inconsistent agent–

views [13]. This is a consequence of the fact that with

random message delays, agents might respond to a single

message, instead of all messages sent in the previous cycle,

and since messages in AWCS are sometimes conflicting,

agents perform more unnecessary computations when

responding to fewer messages in each cycle. Hence, the

improvement that results from reading all incoming mes-

sages in each step [11], which is intrinsic to AWCS, is no

longer useful in the case of random message delays. In sum,

there exists a tradeoff between selecting either a non-con-

current algorithm, such as AWCS, or a concurrent algo-

rithm. When delays happen, concurrent algorithms perform

better, however, concurrent algorithms require each CR to

be equipped with more processing power to handle con-

current computations, in terms of breaking the variable

search space into multiple sub-spaces and keeping track of

multiple assignments to a variable all at the same time.

4 Numerical Observations

Many problems related to SONs, e.g., tilt adjustment of

neighboring antennas, power allocation of neighboring

nodes, etc can be cast to distributed constraint satisfaction

Fig. 8 Proposed decentralized QoS protocol for cognitive CDMA

networks
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models. AWCS is an efficient method of distributed con-

straint satisfaction that outperforms several other graph

coloring methods, in terms of e.g., delay and number of

messages.

Another distributed graph coloring scheme, i.e., asyn-

chronous backtracking is different from AWCS in various

aspects. In asynchronous backtracking, priority order of

nodes is fixed, whereas in AWCS there is weak commit-

ment to priority of a node with a conflicting parameter. In

AWCS, when a node finds violation to its constraints, it

increases its priority value, whereas in asynchronous

backtracking, priorities do not change from initial values.

Analysis of different distributed constraint satisfaction

schemes [11, 14] show that time needed to converge to

final solution is considerably shorter for AWCS than for

other distributed SON algorithms, such as asynchronous

backtracking. Also, number of cycles to converge to the

final solution in AWCS is tremendously fewer than that of

asynchronous backtracking, especially when the number of

nodes grows. For instance, asynchronous backtracking

does not always converge even after more than 1000 cycles

for 90 nodes (Fig. 9). Figure 10 shows probability distri-

butions of length of time to converge to final solution for

AWCS and asynchronous backtracking. Using AWCS final

solution is obtained with probability of almost 1 (certain

event) by 200 time units, whereas this figure is 1000 time

units for the other distributed constraint satisfaction

method, i.e., asynchronous backtracking. In terms of sig-

naling overhead, average number of messages passed

among nodes to obtain final solution in AWCS is lower

than the other SON solution, or asynchronous backtrack-

ing, by a ratio of \1%. Furthermore, AWCS is more

reliable to yield a solution within a time limit in that its

time length shows less deviation from the average time to

converge to a solution. On top of this, as in Fig. 11, in the

lengthiest case, which happens with a very low probability,

total signaling overhead of AWCS is still better than

average signaling overhead for asynchronous backtracking.
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5 Conclusion

A lightweight decentralized protocol for robust scheduling

and power control in ad-hoc cognitive STDMA and CDMA

networks is developed. This method, which is based on

exchanging local messages, removes the need for knowl-

edge of channel gains. In STDMA networks this

scheme has two stages. As a first step, CRs interact with

primary, in an iterative manner, to make sure they do not

impose interference in underlay PU and SU coexistence.

Then, CRs use AWCS among themselves to reach optimal

resource allocations. For cognitive CDMA networks it is

shown how AWCS can be used for optimal power allo-

cation meeting QoS needs of nodes, considering their

constraints on each other. AWCS with multiple local

variables is applied to assign optimal rate and powers to

CR nodes, without a central management.

For cognitive STDMA networks, where multiple CRs

can use same time slots and frequencies, provided they are

spatially apart to avoid interference, this protocol includes

a third step for scheduling, in addition to the first and

second steps envisioned for cognitive CDMA networks. To

this end, disjoint sets of interfering CRs are identified with

their CR head and use inter-frame circular round robin

ordering.

Numerical observations corroborate benefits of this

protocol for practical applications in terms of lower algo-

rithm cycles, meeting QoS constraints of nodes, and

overcoming the need to know mutual interference channel

gains. This method is applicable in situations where cen-

tralized management and control is not functional, for

various reasons, such as cost and remote access.

This method of autonomous network management, or its

modified variants, can be applied to SONs or for vehicular

communications, and also capillary networks that realize

Internet of Things.
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