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A Secure Radio Environment Map
Database to Share Spectrum

Shabnam Sodagari, Senior Member, IEEE

Abstract—A robust and secure database for spectrum sharing
in cognitive radio networks that is obscured from the viewpoint
of secondary users is presented. The database allocations secure
features of white space resource usage from being learned. The
design of non-inferable database is based on two cases. In the first
case, the primary or spectrum lender has no knowledge of sec-
ondary users or potential jammers among them. In this case, the
problem is modeled as a Markov decision process. In the second
case, the primary system has some knowledge about spectrum
borrowers and the problem is modeled as a Bayesian Stackelberg
game. Mutual information interpretation of the Bayesian Stack-
elberg game is also presented. The solutions facilitate releasing
more bandwidth as required by US National Broadband Plan.
Applications of this scheme are manifold. This design can be used
for securing spectrum resources, for example radar white spaces,
while being shared with LTE and commercial communication
systems. Further, it provides jammer-proof spectrum sharing
among various communication, detection, and navigation systems.
Simulation results verify this scheme improves system throughput
while maintaining desired obfuscation level or entropy.

Index Terms—Cognitive radio (CR), dynamic spectrum access,
radio environment map database, security.

I. INTRODUCTION

C OGNITIVE radio (CR) entered the lexicon of wireless
communication as a means to enable dynamic spectrum

access to increase spectral efficiency in wireless systems. In a
cognitive radio network (CRN) the spectrum license holder is
called a primary user (PU). Other devices that try to dynami-
cally access the unused resources of PU, without affecting its
performance, are called secondary users (SUs) or CRs. We in-
terchangeably use the terms secondary user and CR.
The traffic pattern of PUs is varying, because PUs are ei-

ther busy, i.e., using the link, or idle. In addition, due to in-
herent lower priority of CRs, they should adjust their trans-
mission parameters to comply with PU interference require-
ments. There are two main approaches toward this requirement.
First, CRs can sense the spectral resources of primary system
and start transmitting when they find those to be idle, i.e., not
being utilized by PU. However, spectrum sensing results may
be inaccurate due to shadowing and fading effects in wireless
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channels. In the second approach, the PU plays an active role
and provides a database containing information of its spare re-
sources. In this case, the database can further include a policy
reasoner to manage allocation of spare resources to secondary
users. Throughout this paper, the terms database and policy rea-
soner are used interchangeably.

A. Problem Statement
Security is a major barrier that discourages both commercial

and federal applications, including radar, to be willing to share
their spectral/temporal and spatial resources with other com-
munication, detection, and navigation systems, such as LTE or
WiMAX. For example, classified features, e.g., bandwidth, cen-
tral frequency, azimuth, etc of radars may be revealed or learned
by the secondary system, such as commercial communication
users, during sharing. This is due to the risk of potential jam-
mers. During the sharing process, jammers might be able to
establish a learning mechanism to find out what parameters in
these domains are being used and to what extent. Therefore, to
solve this problem the challenge is finding methods for securing
the features of white space resource usage and openings from
being learned by an outside observer, while at the same time en-
abling the spectral, temporal, and spatial resources to be shared
with commercial communication systems. This is the holy grail
to realize the National Broadband Plan. In order to solve this
problem, several challenges need to be overcome:
• Challenge 1: The non-learnable allocation and scheduling
module should guarantee to use resources optimally.

• Challenge 2: The obscured allocation and scheduling
module should take into account uncertainties in the infor-
mation about the radio environment map (REM).

• Challenge 3: The obscured allocation and scheduling
module should take into consideration the needs input by
the commercial communication side as much as possible.

• Challenge 4: The complexity of computations for the ob-
scured allocation and scheduling module should be low to
allow real time implementations and update of policy, as
the REM changes.

This paper explains a solution that makes spectrum usage
patterns obfuscated, for security and public safety reasons,
while benefiting commercial consumers of bandwidth, through
sharing spectral resources with them. This is a breakthrough,
because once implemented it provides incentives for releasing
a considerable amount of bandwidth for sharing.
The organization of this paper is as follows. Section II re-

views relevant work. In Section III we present the systemmodel
and the solution to the problem. Simulation results are presented
in Section IV and Section V concludes.
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TABLE I
NOTATION AND ABBREVIATION

Table I contains the notation and abbreviations used
throughout this paper.

II. REVIEW OF RELEVANT WORK

Spectrum sharing is an enabling technology for the United
States' National Broadband Plan, which is expected to reallo-
cate the spectrum in the 3500–3650MHz band. Some of the 500
MHz of extra spectrum to be made available in accordance with
this plan is probably going to be provided by license-holder
applications. One major source of fixed license spectrum usage
is radar. Therefore, enabling radars to share white spaces with
commercial communication systems is vital. On the other side,
future broadband wireless access systems would fall in the
S-band, which according to IEEE standard spans from 2 GHz
to 4 GHz. Traditionally, S-band is used by radars for various
purposes that can include weather forecast, surveillance, and
aviation.
Spectrum sharing can bemade possible by using a database in

which organizations and agencies could declare regions where
other signals may interfere with their own use of spectrum.
As such, they are letting other applications know which parts
of their spectrum to avoid and which resources can be safely
shared [2].
The need for optimal policies for realizing dynamic spectrum

access and sharing among different radio platforms is still to be
fulfilled. In policy based architecture there is an element named
policy reasoner [3], which is the intelligent decision making en-
tity for resource allocation. This is exactly what this paper is
targeting, i.e., design of a novel policy reasoner that random-
izes and conceals the spectrum usage patterns during the sharing
process. To this end, we take advantage of Bayesian Stackel-
berg game modeling and Markov Decision Processes, as will be
explained in details. We will also address computational com-
plexity to come up with fast solutions suitable for real-time ap-
plications. The policy reasoner takes care that resource alloca-
tion matches to policies.
We are inserting cognition and intelligence in the policy rea-

soner, to conceal the sharing patterns from the secondary system
side. The major benefit of this approach is that we do not force
commercial radio manufacturers to embed some sort of fixed
regulatory parameters into their products, which in itself makes
reconfiguration of radios costly for consumers when policies
and parameters change [4], [5]. DARPA's neXt Generation or
DARPA XG program [1], [6] contains system guidelines and
enabling technologies for dynamic spectrum access. The XG

Fig. 1. Block diagram of database policy reasoner for intelligent randomization
of primary resources during resource sharing with secondary users.

radio architecture is shown in Fig. 2 [1]. This architecture spec-
ifies the role of policy reasoner and its interactions with other
cognitive radio elements. This structure offers flexibility and
agility for adapting to varying conditions by letting us load poli-
cies in a dynamic manner, without requiring extra provisions
on radio firmware. The RF component of an XG radio is used
to transmit and receive various signals. In order to ensure that
the radio's behavior is in accordance with currently active poli-
cies and does not cause harmful interference [7], a set of Policy
Conformance Components (PCCs) are contained in each XG
radio. The major inference and reasoning component of PCC is
the policy reasoner. The hardware controlling component is the
system strategy reasoner (SSR). The SSRmanages the hardware
by collecting sensory information and formulating transmission
strategies. It is also an interface for transmitting and receiving
signals. The SSR interacts with the policy reasoner to determine
the available spectrum access opportunities that conform to the
currently active set of policies. For example, the SSR formulates
a transmission strategy, based on collected sensory information
and its current state, and sends this information to the policy rea-
soner in the form of a transmission request. The policy reasoner
assesses the transmission request against the policies to confirm
if the transmission strategy is in accordance with the policies. As
an example, a mixture of different reasoning techniques, such as
partial evaluation, backward chaining, constraint propagation,
and forward reasoning have been used in [5] to come up with a
suitable policy.
Next, details of applying game and decision theory tech-

niques for obfuscation of spectrum sharing database are
explained.

III. SYSTEM MODEL AND SOLUTION

A. Objectives
We seek solutions to secure the patterns and features of

communication, detection, and navigation systems, while they
are sharing resources with secondary systems. To this end, we
propose to equip the policy reasoner that administers, through a
database, the sharing process between the two parties with both
a Bayesian Stackelberg game modeling and Markov Decision
Process (MDP) tools to randomize the resource allocation and
also account for uncertainties in knowledge about the commer-
cial communication users. Fig. 1 shows the functionality of
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Fig. 2. XG radio architecture [1].

Fig. 3. Hierarchy of the solution for securing spectrum usage and white space
patterns.

the database reasoner and Fig. 3 is a snapshot of the solution
to insert in DSA architecture for implementing the database
reasoner to conceal the resource allocation structure, using
randomization, obtained by MDPs and Bayesian Stackelberg
game model.

B. Solution

In this section, we explain how we plan to overcome chal-
lenges mentioned earlier. So far, randomized solutions based on
game and decision theory have not been applied to database ob-
fuscation in DSA and CRN environments. To this end, it is ob-
served that this system shows a similar structure to scheduling of
security forces in Los Angeles airport [8]–[10]. There are mul-
tiple places in the airport, but the number of security forces to
cover those areas is limited. Therefore, security officials in the
airport should come up with optimal patrol scheduling policies,
within the above mentioned constraints, but in adversarial en-
vironments. Hence, patrolling officer scheduling should be ran-
domized in a manner that outside observers cannot learn over
time what areas tend to be less covered.
We assume the white space borrower system might include

some jammers that can learn about resource allocation of policy

reasoner to use it to their advantage. Therefore, the policy rea-
soner should make the structure of white spaces as impercep-
tible as possible. When we have no information about jam-
mers, we use MDP to identify randomized solutions that min-
imize the information exposed to the commercial communica-
tion side. In some cases, some limited information about po-
tential jammers exists. For example in sharing with LTE sys-
tems, we know that potential jammers have capabilities dictated
by LTE consumer profiles. For these cases, we propose using
Bayesian-Stackelberg games, considering that we are the lead
player. This problem can beNP hard in general. Therefore, some
mixed integer programming (MIP)-based solvers like Decom-
posed Optimal Bayesian Stackelberg Solver and Agent Secu-
rity via Approximate Policies [8], [9], [11], [12] can be used to
make this problem tractable, as applied for securing Los An-
geles Airport. Fig. 3 summarizes the essence of the solution for
a non-learnable REM database with optimal resource allocation
policy [13].
We use two major approaches to tackle the stated problem:

game theoretic modeling and decision theoretic models. We
then show how it can be related to imperceptible randomization
policy. Decision theory and MDPs are useful tools to model
stochastic actions when we are making decisions in uncertain
environments, e.g., for constraints imposed by REM. How-
ever, here, unlike deterministic algorithms that are based on
reward maximization [14] for calculating the optimal decision
in uncertain conditions, existence of jammers should also be
considered. In this regard, policy randomization [15], [16]
in adversarial environments [10], [11], [17], [18], where we
do not want the decision making process to be learned are
investigated.
Stackelberg games modeling is one major framework for se-

curity games and modeling two opponents' interactions within
the realm of game theory [19], [20]. For example, assuming
complete information about adversaries, authors in [21] have
developed countermeasures for protecting critical infrastructure
against attacks. In this regard, they exploit Stackelberg game
models. In real world, the information about adversaries is likely
to be incomplete. Bayesian game models and Bayes-Nash equi-
librium [22] are useful tools for taking into account incomplete
information in a problem [23], [24]. In the following, we explain
the above mentioned techniques in more details.

C. Design of Non-Learnable Database With no Knowledge
of Jammers

The optimal deterministic policy in a MDP, which is about
taking action in state , is obtained by [25]

(1)

In (1) is the set of world states , is the
set of actions, is the transition prob-
ability of going from state to state by taking action



SODAGARI: SECURE RADIO ENVIRONMENT MAP DATABASE TO SHARE SPECTRUM 1301

, and is the reward of taking action at state . The
set of states is the set of resources that can be allocated by data-
base policy reasoner. The set of actions is related to changing
allocated resources. For example, states can represent allocated
channels. An action taken at a state means transition from allo-
cating one channel to allocating another channel. With de-
noting the number of times the MDP starts in each state
and being the number of times the MDP visits state
and takes action , the optimal policy that maximizes the
expected reward is obtained by:

(2)

where is the solution to (1).
To insert randomness in MDP policy, one can define the

weighted entropy function [13], inspired by Shannon entropy
[26]. In simple words, the weighted entropy in (3) is defined by
taking the sum of the entropy for the distributions at every state
weighted by the likelihood the MDP visits that state.

(3)

Equation (4) defines the maximum entropy solution forMDP.
In (4) there is a constraint on reward threshold , which can
be adjusted by the user. For example, If we input ,
where denotes the maximum possible expected throughput,
solving (4) yields the maximum expected throughput policy
with largest entropy.

(4)

For the above problem finds the maximum
weighted entropy policy, without consideration for throughput.
As can be seen, there is a tradeoff between reward and ran-
domness. The weighted entropy function is neither convex nor
concave in . This leads to finding other simpler and easily
solvable formulations that still take care of both randomness
and reward. To this end, consider (5).

(5)

Randomized policy MDPs with a high expected reward solu-
tion can be characterized by introducing a randomness indicator

variable . Solving equation (5) maximizes the expec-
tation of throughput for a given and a high entropy solution
. In other terms, is the amount of randomness in (5).
For policy reasoner to be able to make real time decisions,

(5) should be solved in polynomial time. Two existing poly-
nomial time solutions to (5) are Convex Combination for Ran-
domization Linear Programming (CRLP) and Binary Search for
Randomization Linear Programming (BRLP) [13]. These algo-
rithms aim at balancing reward and randomness. The inputs
to these two algorithms are a minimal expected reward value

(equivalent to throughput) and a randomized solution
(or policy ). The role of input is to enforce some level of
randomness on the high expected reward output, through linear
constraints, and it can be any solution with high entropy. For
example, uniform policy can be an input to the
algorithm. Our objective function is composed of both random-
ness and reward, and we have to address the tradeoff between
these two parameters.
The randomness constraint of the solution is a monotonically

increasing function of . As increases the expected reward
decreases and entropy increases. represents the special
case of deterministicMDP as in (1). Therefore, the solution for

corresponds to maximum expected reward . When
the problem gives the highest possible expected throughput

reward only among rewards obtained by entropy dictated by
. In other words, corresponds to no obfuscation, i.e.,

only maximizing SU throughput. At the other extreme,
corresponds to highest entropy (obfuscation), deprioritizing SU
throughput.
Constraint

in (5) can be written as

where is a matrix, is a dimensional
vector, and is a dimensional vector.
The difference between two algorithms of CRLP and BRLP

[10] stems from the fact that the latter is based on reformulating
(5) by replacing the flow constraints by policy constraints at
each stage, as in (6).

(6)

By constraining policy in (6) instead of the constraint of at
least flows reaching each state , one can
make sure that the obtained obfuscation is not restricted.
The two following theorems justify CRLP and BRLP poly-

nomial time algorithms.
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Theorem 1: If is a feasible solution to problem (1), then
is an optimal solution to problem (5) when , yielding

reward .
Proof: For brevity, the proof is not presented. The inter-

ested reader is referred to [13].
Theorem 2: Consider a solution , which satisfies

and . Let be the solution to (1) and . If is
the solution to (1), then .

Proof: The proof is based on defining a slack variable for
inequality constraint of (5). For brevity, details of the proof are
omitted. The interested reader is referred to [13].
According to Theorem 2 solution to problem (5) is a convex

combination of the deterministic and random input solutions.
Theorem 2 also implies the relationship between and is
linear and gives .
This leads to the following solution, which has tractable com-
putational complexity, making it suitable for real time decision
making of resource allocation by the database.

Algorithm 1 CRLP [10]
Take and as input
Obtain optimal solution to (1) and call it
Set
Set
return

In Algorithm 1 is a dimensional vector of rewards
and is a dimensional vector. For at values 0 and 1,
optimizations (5) and (6) yield the same solution if policy is
the policy obtained from the flow function . However, in the
intermediate range of 0 to 1 for , the policy obtained by equa-
tions (5) and (6) are different even if is obtained from . Thus,
theorem 2 holds for (5) but not for (6). For solving (6) BRLP al-
gorithm is used. This algorithm also takes values of minimum
reward and a minimum obfuscation level (entropy) as input and
iteratively solves (6). In this algorithm, value of is initialized
as 0.5. The algorithm continues by setting as average of a
lower bound and an upper bound. Initial values of lower and
upper bound for randomization coefficient are 0 and 1, respec-
tively. If throughput obtained by solving (6) using is greater
than the input minimum reward value by a threshold, BRLP al-
gorithm updates the lower bound for randomization coefficient
to be equal to . Otherwise, it updates the upper bound to be
equal to and, in the next iteration, updated is average of up-
dated lower and upper bounds. Iterations are stopped when the
difference between throughput and user input becomes less than
the threshold.
If the policy reasoner is confident that a specific white space

is not under risk of attack, then the database can set the
entropy for that state to 0.

D. Design of Non-Learnable Database With Partial
Information about Jammers

In this case, deriving the randomized policy is based on
Bayesian-Stackelberg games. In contrast to Nash equilibrium
that assumes a simultaneous choice of strategies, fortunately,

here, the policy reasoner on the primary cognitive engine is the
leader. First, the policy reasoner initiates a strategy of resource
allocation decision as the leader. Potential jammers' actions
are based on observing the policy reasoner's strategies, i.e.,
action chosen by the leader. Followers (jammers) optimize their
utilities in a selfish manner after observing policy reasoner's
resource allocation decision.
Authors in [24] investigate the problem of choosing an op-

timal strategy for the leader to adapt to in a Stackelberg game,
which is NP-hard in the case of a Bayesian game with multiple
types of followers. Also, their multiple linear programs (LPs)
method involves solving many linear programs. Some of the
many linear programs may even be infeasible. According to
theorem 2 of [24] finding an optimal pure strategy to commit
to, in a 2-player Bayesian game, is NP-hard, even when the
follower has only a single type. For proof interested reader
may refer to [24]. Hence, authors in [27] resort to methods
for finding optimal leader strategies for non-Bayesian games
by using Harsanyi transformation to reformulate the Bayesian
game into a normal-form game. However, one disadvantage
associated with this transformation is losing the compact struc-
ture of the Bayesian game. Some methods using mixed-integer
linear programs (MILPs) [28] compute the highest-reward Nash
equilibrium. This is owing to the fact that the highest-reward
Bayes-Nash equilibrium is equivalent to the corresponding
Nash equilibrium in the transformed game.
There are both exact and approximate solutions to such

games. In contrast to multiple linear programs method [24], the
decomposed optimal Bayesian Stackelberg solver provides an
exact solution for the choice of optimal policy reasoner strate-
gies, by only solving one LP [8]. This solver does not search
for Nash or Bayes-Nash equilibrium. Instead, it searches for
optimal high reward non-equilibrium strategies. If the followers
act independently, the leader strategy can be decomposed and
evaluated against each follower and in the next step, with
no need to converting the game to a normal form one (e.g.,
Harsanyi transformation), the solver expresses the Bayes-Nash
game in a compact form.
Denote by and the non-learnable database and SU poli-

cies, respectively. consists of a vector of pure strategies of
resource allocation of the non-learnable database. The value
is the proportion of times in which pure strategy is used in
the policy. Let and denote the index sets of the leader and
follower's pure strategies, respectively. The payoff matrices
and are defined such that is the reward of the leader PU
and is the reward of the follower (jammer) when the data-
base takes pure strategy and the jammer takes pure strategy .
Fixing the policy of the database to a policy , gives the LP op-
timization problem as in (7), which the follower solves to find
its optimal response to database policy .

(7)
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Denoting the jammer's optimal response to database strategy ,
by vector , the leader (database policy reasoner) maximizes
its payoff by the following optimization:

(8)

Constraints related to a feasible policy for the database are the
first and third ones. Constraints of a feasible pure strategy for
the jammer are the second and fourth. When the database is
dealing with multiple resource borrower secondary systems,
amongwhich some jammersmay exist, denote by the vector of
strategies of the leader and thevector of strategies of secondary
system , with denoting the index set of SU system types.
Similar to the single SU case, and represent the index sets
of database and SU system 's pure strategies, respectively. The
payoff matrices related to each SU system , would be and
. Given a priori probabilities , with , of facing each

SU system, the database can decompose the optimization into:

(9)

E. Mutual Information Stackelberg Game
The goal of obfuscating actions of PU can translate into min-

imizing mutual information between the database content and
the state of PU. When the database allocates some white spaces
to a SU, or when it does not fulfill request of SU for a resource, it
is inevitably revealing some information to SU about the set of
resources generally available to PU. In the simple case of only
one SU, if the database always allocates open channels to the
SU, then the SU will know the precise allocation of PU spec-
trum. Resource allocations to SU may have high entropy, but
when conditioned on the knowledge that all open channels are
allocated to SUs, the mutual information between the database
and PU activities becomes maximum. In this case, the jammer
gains knowledge of what resources are available to PU.
Therefore, another perspective to look at this problem is to

consider a mutual information Stackelberg game. To reduce mu-
tual information between PU activity and database allocations,
policy reasoner must make sure its allocations to a particular
SU do not span entire set of PU white space. This strategy limits
choice of allocations to a SU to a subset of PU resources, but
decreases mutual information between PU activity and database
allocations, fromtheviewpointofSU.Forclarity, considerFig.4.

Fig. 4. Venn diagram of strategy for reducing mutual information between PU
activities and database allocations.

To decrease mutual information between PU activities and allo-
cated resources to SU,we suggest that the database allocations to
a single SU do not span the whole set of available white spaces.
This can raise interesting problems to consider. For example, if
multiple SUs collude and inform each other of their allocations,
they can jointly build an understanding of the entire set of PU
resources. Studying this and similar problems are beyond the
scope of this paper. Obviously, when the two sets of PU white
spaces and PUwhite spaces allocated to SU, in Fig. 4, are empty,
one obtains the extreme case of PU performance maximization,
without consideration for obfuscation. Another extreme case is
obtained when, in Fig. 4, the set of PU white spaces equals set of
all PU resources. Considering that database reasoner is a leader
and SU is a follower, SU and database can enter a Stackelberg
game in which database tries to minimize mutual information
between its decisions and PU usage of resources. On the other
hand, SU tries to maximize the above mentioned mutual infor-
mation by intelligently selecting its submitted resource request
to the database. This mutual information game can be zero-sum.
Detailed analysis of this scenario is a subject of further research.

IV. PERFORMANCE EVALUATION

A. No Knowledge About Jammers

Simulations were performed, using cvx toolbox for Matlab
[29] and IBMCPLEX, for number of channels (or white spaces)
representing states varying between 3 to 10 with the number of
actions at each state varying between 1 to 8, respectively. Re-
wards of taking action at state were generated randomly as
logarithm base 2 of SNRs varying from 10 to 20 dB to repre-
sent throughput. Rewards were averaged for 100 realizations.
Without loss of generality, possible reward functions can be pa-
rameters such as beamforming gain, diversity degree, or ratio
of mainlobe to first sidelobe level in angular directions, for ex-
ample, for radar white spaces. Furthermore, white spaces span a
broad possibilities, including but not limited to, frequency chan-
nels, spatial/temporal resources, and angular directions.
Fig. 5 shows amount of randomness or entropy obtained by

using CRLP algorithm compared with simply allocating the
channels in a uniform manner. In Fig. 5 the horizontal axis
represents number of channels, which varies between 3 to 10.
This algorithm gives almost twice obfuscation in comparison
with uniformly distributed resource allocation.
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Fig. 5. Comparison of database obfuscation (entropy) obtained by using CRLP
and uniform strategy vs. number of channels.

Fig. 6. Comparison of CRLP throughput with throughput of uniform strategy
and maximum throughput (no obfuscation) vs. number of channels.

Fig. 7. Comparison of database obfuscation (entropy) using BRLP and uniform
strategy vs. number of channels and actions.

Fig. 6 compares overall throughput reward obtained by using
CRLP algorithm with maximum throughput strategy, which se-
lects channels with better SNRs and with simply using the uni-
form strategy. As can be seen, this method ismore robust against
jamming by yielding more than twice the throughput obtained
by uniform strategy, especially as number of white spaces (chan-
nels) increases. At the same time, throughput of this method is
not very different than the baseline case that allocates channels
based on maximum throughput, without obfuscation.
Fig. 7 demonstrates obfuscation level of resource allocation

database, expressed as entropy, obtained by using BRLP algo-
rithm to solve (6) and using uniform strategy. Fig. 8 compares
the throughput (reward) obtained by optimal randomized re-
source allocation database using BRLPwith the baseline case of
allocating for maximum throughput, based on channel SNR, and
also with allocating channels in a uniformly random manner.
While results are not very different from maximum throughput
strategy, they tremendously outperform uniformly distributed
randomization.

Fig. 8. Comparison of BRLP throughput with uniform and maximum
throughput (no obfuscation) vs. number of channels.

Fig. 9. Comparison of throughput of Bayesian Stackelberg game modeling
with uniform and maximum throughput (no obfuscation) strategies.

B. Partial Knowledge About Jammers
We performed experiments with the policy reasoner selecting

certain number of subbands to be shared. These may be free sub-
bands or spatial and temporal resources. The Bayesian-Stackel-
berg game model consists of two players: the policy reasoner
and the jammer. The set of pure strategies of policy reasoner
consists of a set of white spaces to select and share with SUs
such that the SU is not able to learn the structure of availability
of primary resources. The policy reasoner can choose a mixed
strategy so that the potential jammer will be uncertain of exactly
what subbands may be available, but the jammer will know the
mixed strategy the policy reasoner has chosen. With this knowl-
edge, the jammer is capable to jam a single subband. If the sub-
band selected by the jammer is not assigned by the database
policy reasoner, then the jammer successfully jams that channel.
The payoffs are modeled as capacity in bits/s/Hz with nor-

malized bandwidth, i.e., . Primary system and jammer
each have valuations of each channel based on the capacity or
throughput of that channel. Jammers may have different valua-
tions for different channels and different costs of getting caught.
The database policy reasoner's set of possible pure strategies

or channel selection and allocation can be the set comprising of
single channels, or the set comprising tuples of possible com-
binations of two or more channels. Simulations in this section
were performed with the set of single channels as the database
pure strategy. The jammer's set of possible pure strategies or
subbands to select is denoted by and includes integers con-
tained in .
Fig. 9 compares throughput obtained by channel allocation

based on Bayesian Stackelberg game model with the extreme
case of only maximizing throughput, without obfuscation, by al-
locating higher quality channels, and also allocating channels in
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a uniformly randommanner. Results were averaged over 100 re-
alizations of reward matrix corresponding to channels' through-
puts. As Fig. 9 shows this approach always outperforms uniform
channel allocation strategy, while closely following maximum
throughput.

V. CONCLUSION
Anon-learnable databasewas developed for resource sharing.

This provides jammer-proof sharing among various commu-
nication, detection, and navigation systems. Depending on the
knowledge of SU system by PU to which the database belongs,
two methods were used. With no knowledge about secondary
system, the database decisionmaking process is based onMDPs.
When there is some knowledge of SUs, it was shown how the
primary system database can be equipped with compact tech-
nique for choosing optimal strategies in Bayesian Stackelberg
games. The solutions can also be used in CRNs to facilitate re-
leasing more bandwidth as required by US National Broadband
Plan. We benchmarked the system performance in terms of two
parameters of throughput and obfuscation quantity or entropy.
Simulations verify enhancement of overall system efficiency
by balancing the performance and desired obfuscation level.
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