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On a Converse of Sharkovsky’s Theorem

Saber Elaydi

In 1964, the Ukranian Mathematician Alexander Nikolaevich Sharkovsky [5] dis-
covered a spectacular result on continuous maps on intervals. For the convenience
of the reader we will state Sharkovsky’s Theorem in which he used the following
ordering of the set of natural numbers:

3IbS5D 7D ... 2X3D2XS5p2XT>... 22X3>p22XS5>22XTD...
odd integers 2 X odd integers 2% X odd integers
' D> 23p22p2p1

Here m > n signifies that m appears before n in the Sharkovsky ordering.

Theorem 1. (Sharkovsky [5]). Let f: I — I be a continuous map from the interval I
into itself. If k > r and f has a point of period k, then f must have a point of period r.

The question that we are going to address in this note is the following: Given
any positive integers k, r with k > r, is there a continuous map that has a point of
period r but no points of period k?

There are very few examples in the literature, which is scattered in many books
such as [2-4]. These examples deal mostly with maps that have points of period 5
but no points of period 3 and no pattern is given to generate more examples
Moreover, examples of maps that have pomts of period 2" seem missing in
textbooks on dynamical systems. However, in an article by Stefan [6], a general
scheme was given to generate maps that have points of period (2n + 1) but no
points of period (2n — 1). Furthermore, using the so-called “doubling” of maps, he
was able to construct maps that have points of period 2¥(2n + 1) but no points of
period 2¥(2n — 1) for any positive integer n and any nonnegative integer k.
Clearly, using this scheme one can generate maps that have points of period 2* but
no points of period 2k*1 In this note, however, we give new and simple construc-
tions for such maps. In addition, our proofs are very simple and should be
accessible to nonspecialists. We are now ready to state our main result, which we
call the Converse of Sharkovsky’s Theorem.

Theorem 2. For any positive integer r there exists a continuous map f,: I. — I on the
interval I such that f, has points of prime period r but no points of prime period s for
all positive integers s that precede r in the Sharkousky ordering, i.e., s> -+ D r.

Proof: The proof will be accomplished by the construction of the required maps.
Here we have three cases to consider:

(D) odd periods,
(IT) periods of the form 2" X odd natural number,
(III) periods that are powers of 2, i.e., 2".
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Case I. Odd Periods
(a) A map that has points of period 5 but no points of period 3.
Define a map f: [1,5] — [1, 5] as follows:
Let f(1) =3, f(2) =5, f(3) = 4, f(4) = 2, f(5) = 1 and on each interval

[n, n + 1] we assume f to be linear (see Figure 1).
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o 1 2 3 4

Figure 1

Observe first that none of the points 1,2, 3,4, 5 is a periodic point of period 3; they
all belong to a 5-cycle. Notice also that

£212]) =[2,5], £(12,3]) =[3,5], and f3([4,5]) = [1.4].

From these observations we conclude that the third iterate f> has no fixed points
in the intervals [1,2], [2,3], and [4,5]. The situation with the interval [3,4] is,
however, more involved, since f3([3, 4]) = [1, 5]. Then there are points a, b € [3,4]
such that f3(a) = 3, f3(b) = 4. Define a map h: [1,5] - R by letting h(x) = x —
f3(x). Then h(a) = 0, h(b) < 0. Hence by the intermediate value theorem, there
exists a point p € [3,4] with A(p) = 0 or f3(p) = p. We will show that p is unique
and is a fixed point of f. Now f(p) € [2,4]. So if f(p) € [2,3], then f2(p) € [4,5]
and thus p = f3(p) € [1,2), which is false. Thus f(p) € [3,4] and consequently
f2(p) € [2,4]. Again if f2(p) € [2,3], then p = f3(p) € [4,5), yet another contra-
diction. Therefore, p, f(p), and f2(p) all belong to the interval [3,4]. Now on the
interval [3,4], f(x) = 10 — 2x has the unique fixed point x* = 10/3. Moreover,
on [3,4], f3(x) = 30 — 8x, which has the unique fixed point x* = 10/3. Thus
p =x* =10/3, and consequently f has no points of period 3.

(b) Now one can generalize this construction to manufacture continuous maps
that have points of period 2n + 1 but no points of period 2n — 1 as follows:

Let f:[1,2n + 1] - [1,2n + 1] be defined by putting f(1) = n + 1, f(2) = 2n + 1,
f@®=2n, fA=2n-1,....,f()=n+3, fn+1)=n+2, f(n+2)=n,
f(n+3)=n-1,...,fQ2n + 1) = 1 (see Figure 2).

First we observe that all the integers in the interval [1,2n + 1] are of period
2n + 1. For example, the orbit of the point 1 is given by the string

f
1—>n+1£n—f>n+2—f>n—1—f>n+3—f>n—2—f9 —f->2—f>2n+1.

Observe that, in addition to 1, there are two sequences of length n; one increasing:
{n+2,n+3,...,2n + 1}; and another decreasing: {n + 1, n,...,2}. It remains
to show that there are no points of period 2n — 1 in the interval [1,2n + 1]. Let us
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Figure 2

start with the interval [1,2]. Now (2n — 1) iterations of the interval [1, 2] give rise
to the following string:

f f f f
2] bm+t,2n 41150 n+20 5 m2ns1150,n+3) 5

f f
[n—1,2n+1]5 - L2015 (2,20 + 1.

This shows that f2"~!([1,2]) N [1,2) = ¢. Hence the interval [1,2] contains no
points of period (2n — 1). Now, we can show that all the intervals [j, j + 1], with
the exception of the interval [n + 1, n + 2], display the same behavior as that of
the interval [1,2]. In particular, we can show that there exists an iterate of the
interval [ j, j + 1] that is precisely the interval [1, 2]. Since the interval [1, 2] has no
points of period (2n — 1), it follows that the interval [j, j + 1] has no points of
period (2n — 1). As for the interval [n + 1, n + 2], notice that f[n + 1,n + 2] =
[n, n + 2]. Hence there are two cases for x € [n + 1,n + 2].

Case (a) f*(x) €[n +1,n + 2] for all k € Z*. Since |f’|> 1 on the interval
[n + 1,n + 2], it follows that x is actually a fixed point of f.

Case (b) f¥(x) ¢ [n + 1,n + 2] for some positive integer k. Then f*(x) €
[n,n + 1] and by the previous analysis an iterate of x lies in the interval [1,2].

In either case, x cannot have period 2n — 1).

Ca(se II. Maps that have points of period 2¥(2n + 1) but no points of period
2k2n - 1).

Let us start with period 2 X 5 but not 2 X 3. We consider first the map
f: I - I, I =[1,5] which was considered in Case Ia (Figure 1).

Define a new map g: [1,13] — [1, 13] as follows:

x)+8, forl<x<$5
g(x)={f() *
x — 8, for9 <x <13

and for 5 <x < 9, we connect the points (5,9) and (9, 1) by a line (see Figure 3).
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Figure 3

The map g is called the “double of f.” Observe first that none of the points
1,2,3,4,5,9,10,11,12,13 is of period 6; they all belong to a 10-cycle. Moreover, if
x €[1,5], then g(x) €[9,13] and g(x) = f(x). Since f has no points of period 3,
it follows that g has no points of period 6 in the interval [1, 5]. Since g[9, 13] = [1, 5],
it follows that no point in the interval [9, 13] is of period 6. The situation with the
interval [5, 9] requires a different argument. Since g°[5, 9] = [4, 10), it follows by an
argument similar to that used in Case I(a) that g° has a fixed point p € (5,9).
Now for any n, 1 <n <5, g"(p) & (5,9), then g"*"(p) €[1,5] U [9, 13] for all
r > 0. This implies that g%(p) # p, a contradiction. Thus p, g(p),..., g%(p) €
(5,9). By simple computations, one can show that the only fixed point of
g 8%...,8%is p=19/3. Thus, g has no points of period 6.

The general procedure for constructing a map that has points of period
2(2n + 1) but no points of period 2(2n — 1), n = 1,2,3,... may be explained as
follows. We start with a map f: [1,1 + k] - [1,1 + h] with points of period
(2n +1) but no points of period (2n — 1). We define the double map g:
[1,1 + 3h] - [1,1 + 3h] as follows:

(x) = f(x) +2h, forl<x<1+h
8 x — 2h, forl1+2h<x<1+3h

and by linearity for 1 + 2 <x <1 + 2h. Repetition of the preceding scheme
would create maps with points of period 2¥(2n + 1) but no points of period
2¥2n - 1), k =2,3,4,...

Case III. Periods of the form 2"

(a) A map that has points of period 2 but no points of period 22. Let
f:[1,2] - [1,2] be defined by f(x) = —x + 3. Here every point, except the
fixed point 3/2, in the interval [1, 2] is of prime period 2. Hence there are
no points in the interval [1, 2] with prime period 22.
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(b) A map that has points of period 2% but no points of period 2% Let
f:[1,4] - [1, 4] be defined as follows: f(1) = 3, f(2) = 4, f(3) =2, f4) =1
and on each interval [n, n + 1] we assume f to be linear (Figure 4).

f(x)
4 &
3

2

0 1 2 3
Figure 4

Notice that f([1,2]) = [3,4] and f(3,4] = [1,2], and f is linear on [1,2] and
[3,4]. Thus f2((1,2D) = [1,2] and f2([3,4]) = [3,4]. Also, f? is decreasing, as f* is
increasing. Therefore f*(x) = x for all x € [1,2] U [3,4].

Hence every point in the interval [1, 2] is of prime period 4 except the point 3/2,
which is of prime period 2. Similarly, every point in the interval [3,4] is of prime
period 4 except the point 7/2, which is of prime period 2. Next we deal with the
interval [2,3]. Since f[2,3] = [2,4], points in the interval [2,3] either leave the
interval [2, 3] after many iterations or stay in the interval [2, 3] for all iterations.
Now if for a point x € [2, 3], and for some k € Z*, f*(x) € [1,2] U [3, 4], then its
orbit will be attracted to either a 4-cycle or a 2-cycle. On the other hand if the
orbit of x €[2,3] is a subset of the interval [2,3], then f"(x) = f;'(x), where
fo(x) = —2x + 8. But f8(x) = 256x — 680 has the fixed point x* = 8/3, which is
a fixed point of the map f. Hence the map f has no points of period 8 or any other
periods that precede it in the Sharkovsky order.

(c) To construct maps that have points of period 2" but no points of period
2"*1 we use the double map g that was used previously in Case II. Here we
start with the map f defined in Case IIIb, which has points of period 2% but
no points of period 2°. The double map g: [1,10] - [1,10] is defined as

follows:
x)+6, forl<xx<4d
g(x) = f(x)
x — 6, for7 <x < 10.
Then the map g has points of period 2 but no points of period 2*
(Figure 5).

This construction can be carried out indefinitely to produce maps that have
points of period 2" but no points of period 2"*!

Remark. There is still one more question to be settled. Can we construct maps
that have points of period 2" X 3 but no points of any period of the form
2"~1 X odd integer? Fortunately, using the double map one can give an affirma-
tive answer to this question. Let us first construct a map that has points of
period 2 X 3 but no points of odd periods. Define f: [1,3] — [1, 3] by letting
f(1) =2, f(2) = 3, and f(3) = 1 and on each interval [n, n + 1] we assume f to be
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linear. Clearly the points 1, 2, and 3 are all of period 3. Now the double map g:
[1,7] = [1,7] is defined as

x)+4, forl<x<3
g(x) = {7
— 4, forS<x<7.

Observe that the map g has points of period 2 X 3 but no points of odd period. By
repeating this process, one can construct continuous maps that have points of
period 2" X 3 but no points of period 2"~ X odd integer.

Addendum. After writing this note, I was informed by Dr. Hasfura of Trinity
University that Delahaye [1] had an example of a continuous map that has points
of period 2" for all nonnegative integers n and no other periods. For the sake of
completion, I include this example here.

Example. Let I =1[0,1] and I, = [1 — 1/3%,1 — 2/3¥*'], for all k > 0. For each
k let f.: I, = I, be a continuous map. Define a continuous map f: I = I by
letting f(1) = 1, f(x) = f,(x) if x € I, and by linearity elsewhere. Now for each
nonnegative integer k choose f, such that it has points of period 2* but no points
of period 2%*1. Then f has points of periods 2" for all nonnegative integers n but
no points of other periods.
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PICTURE PUZZLE
(from the collection of Paul Halmos)

...and a mathematician who knows physics.
(see page 440)
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