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INTRODUCTION

For more than a century the Miocene Monterey Formation
has fascinated geologists with its uniquely siliceous composi-
tion, complex diagenesis, and importance as both source and
reservoir of oil in California. The Monterey’s extensive and
excellent outcrops, exposed at different stages of alteration,
have served as laboratories for countless studies of silica, clay,
carbonate, phosphate, organic matter, and petroleum. Bram-
lette’s U.S. Geological Survey Professional Paper 212 (1946)
served as the foundation for all of these studies and provided
the detailed sedimentology, stratigraphy, and petrology to give
them context and meaning. For the most part, Bramlette had it
right, and an explosion of new research since the 1970s
advanced and refined understanding without disproving many
of Bramlette’s fundamental observations and assertions. One
hypothesis that did eventually fall was that abundant siliceous
volcanism was the essential source of the silica incorporated in
the frustules of diatoms and in the sediment of the Monterey
Formation; we have since learned that within zones of intense
upwelling, diatoms or radiolarians can extract enough silica
from normal seawater to produce highly siliceous sediments
when undiluted by other sedimentary components (Calvert,
1966, 1968).

Research since Bramlette’s has broadly focused on diagen-
esis (especially that of silica, carbonate, and organic matter),
petroleum generation and reservoirs, dating and stratigraphic
correlation, and the oceanographic context of deposition of the
Monterey Formation. Much of this work benefited from tech-
nological advances in X-ray diffraction, stable isotopic analy-
sis, electron microscopy, and the results of the Deep Sea
Drilling Project (DSDP) and Ocean Drilling Program (ODP). A
burst of research, initially proprietary, began about 1970 as oil
companies sought to explain and exploit major offshore discov-

eries in the Monterey Formation following the first sale of Fed-
eral Outer Continental Shelf leases in the Santa Barbara Chan-
nel in 1966. A tremendous amount of this work was published
in a series of American Association of Petroleum Geologists
(AAPG) and Society of Economic Paleontologists and Mineral-
ogists (SEPM; now the Society for Sedimentary Geology) spe-
cial publications and symposium volumes in the 1980s and
1990s (Isaacs, 1981a; Garrison and Douglas, 1981; Williams
and Graham, 1982; Isaacs and Garrison, 1983; Garrison et al.,
1984; Surdam, 1984; Casey and Barron, 1986; Dunham and
Blake, 1987; Schwalbach and Bohacs, 1992; Hornafius, 1994a;
Eichhubl, 1998) that coincided with the upturn in industry inter-
est in the petroleum potential of the offshore Monterey (Isaacs,
1984; Crain et al., 1985). An additional major volume focusing
on the organic geochemistry of the Monterey Formation (Isaacs
and Ruellkötter, 1999) should be published by the time this
review is published.

GEOLOGIC SETTING

The Miocene Monterey Formation was deposited along the
North American plate boundary during the transition of the Cal-
ifornia margin from a convergent to transform setting (Blake et
al., 1978; Barron, 1986a). Resulting tectonic subsidence and
landward transgression of the shoreline during the late Oligo-
cene to middle Miocene led to the development of middle
bathyal depocenters in which the Monterey sediments accumu-
lated (Figs. 1 and 2) (Ingle, 1980, 1981a). Presedimentary and
synsedimentary tectonic deformation (chiefly extension, shear-
ing, and rotation) during the Miocene has been overprinted by
Pliocene-Pleistocene shortening, making palinspastic recon-
struction of the location and extent of the Neogene sedimentary
basins extremely challenging (Ingersoll and Ernst, 1987;
Crouch and Suppe, 1993; Fritsche, 1998; Isaacs, 1999). In
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many cases, the geometry and bathymetry of individual
depocenters evolved from the Miocene through the Pleistocene,
with earlier deposited sediments, including the Monterey For-
mation, now forming the folded and faulted flanks of the
Pliocene and Quaternary depocenters (Teng and Gorsline,
1989; Blake, 1991). 

GEOGRAPHIC EXTENT

The Monterey Formation is part of a discontinuous belt of
fine-grained, notably siliceous (diatomaceous) sediments that
accumulated around the north Pacific Rim chiefly during the
Miocene (ca. 16–4 Ma) (Ingle, 1973, 1980, 1981b). On land,
well-studied Monterey strata form extensive outcrops and sub-
crops in the Coast Ranges and western parts of California (Bram-
lette, 1946; Pisciotto and Garrison, 1981), extending as an
irregular blanket some 1700 km north and south along the conti-
nental margin. Offshore equivalents of Monterey siliceous sedi-
ments have been cored by deep-sea drilling as far as 300 km
seaward from the modern coast and in water as deep as 4200 m
(ODP Sites 1010, 1016, 1021) (Lyle et al., 1997). The formation
is typically 300–500 m thick on land, but is locally much thinner
and thicker (Bramlette, 1946; Isaacs and Petersen, 1987).

AGE OF THE MONTEREY FORMATION

Like most lithostratigraphic units, the age of the middle to late
Miocene Monterey Formation varies with location, as sedimenta-
tion characteristic of the formation commenced and terminated at
different times in separate depocenters. If a typical duration could be
specified, it would be from about 16 Ma to 6 Ma (Barron, 1986b).
Initiation of Monterey deposition started as early as 17.8 Ma
(Saucesian stage, Naples Beach) (DePaolo and Finger, 1991) or as
late as 15 Ma (e.g., Relizian, Palos Verdes Hills, Berkeley Hills,
Monterey; Obradovich and Naeser, 1981). The youngest Monterey
strata at any one location range from about 13 Ma (Luisian, Berke-
ley Hills) to <5 Ma (Delmontian, Pliocene, Palos Verdes Hills;
Woodring et al., 1946; Obradovich and Naeser, 1981). In the
Cuyama basin, the Saltos Shale and Whiterock Bluff Shale, often
assigned as members of the Monterey Formation (Hill et al., 1958),
were apparently deposited entirely before initiation of Monterey
sedimentation in the type area (Obradovich and Naeser, 1981).

Biostratigraphy

Microfossils provide the primary basis for biostratigraphy
within the fine-grained Monterey Formation, with benthic
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foraminifers remaining the most commonly used taxa for corre-
lation. Because of downsection silica phase transformations and
upsection loss or dissolution of carbonate, none of the major bio-
stratigraphic groups are generally useful through the entire for-
mation. 

Monterey strata span the late Saucesian, Luisian, Mohnian,
and locally, the early Delmontian benthic foraminiferal stages
of California (Kleinpell, 1938, 1980). Since development of
these Neogene stages, however, it has become evident that ben-
thic assemblages were influenced by local paleobathymetry,
character of the impinging water mass, and benthic sedimentol-
ogy, making them time transgressive and often provincial in
nature (Crouch and Bukry, 1979; Ingle, 1980; Obradovich and
Naeser, 1981). Although still quite useful within individual
fields or basins because of their abundance (Finger, 1995;
Blake, 1991), benthic foraminifers had to be integrated with
planktonic foraminifers (Keller and Barron, 1981), diatoms
(Barron, 1986b; Barron and Isaacs, 1999), nannofossils (Poore
et al., 1981), magnetostratigraphy (Omarzai, 1992), radiomet-
ric geochronology (Obradovich and Naeser, 1981), and
chemostratigraphy (DePaolo and Finger, 1991; Flower and
Kennett, 1993, 1994).

LITHOLOGY AND COMPOSITION

The Monterey Formation is distinguished by its overall
highly biogenic composition, in which the average contribu-
tions of silica (chiefly the tests and frustules of diatoms and
radiolarians), carbonate (coccoliths and foraminifers), organic
matter (mostly type II kerogen, marine algae) and their diage-
netic equivalents greatly exceed those of other Neogene fine-
grained sedimentary units (Isaacs, 1985; Isaacs and Petersen,

1987). Although the highly diatomaceous and organic-rich
deposit has been interpreted to record unusually great plank-
tonic productivity along the eastern Pacific margin (Barron,
1986a; Ingle, 1980, 1981b; Pisciotto and Garrison, 1981), mass
accumulation rates show that the purest biogenic intervals
reflect decreased terrigenous input, and consequently less dilu-
tion of the biogenic component (Isaacs, 1985, 1999). Overall,
the Monterey Formation records sediment starvation in con-
junction with surface productivity associated with upwelling
along the California Current system. These sedimentary condi-
tions increased the relative proportions of silica, organic matter,
phosphate, or carbonate with respect to fine-grained detritus—
mainly illite-smectite mixed-layer clay minerals, feldspars, and
quartz (Isaacs, 1980; Pollastro, 1990; Compton, 1991). Periods
of extremely slow pelagic sedimentation, undiluted by much
fine-grained detritus and during which most of the primary bio-
genic hard components (SiO2 or CaCO3) dissolved or win-
nowed away, resulted in the extreme organic richness
characteristic of some condensed intervals (e.g., the carbona-
ceous marl–phosphatic shale facies of the Santa Barbara coastal
area) (Isaacs, 1985).

Bramlette (1946) described the typical Monterey litholo-
gies—diatomite, diatomaceous and siliceous mudrocks, porce-
lanite, chert, calcareous and phosphatic mudrocks, dolostone,
and limestone—in remarkable completeness and detail. He also
recognized the significance of graded, clastic to biogenic
“rhythmites” before the importance of fine-grained turbidites in
deep water was generally understood or accepted. Where clastic
siltstone and sandstone are common, they are usually assigned
to another formation or to a distinct member of the Monterey
(e.g., Point Sal Formation, Santa Maria basin, or the Stevens
Sands, southern San Joaquin basin) (Williams and Graham,
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Figure 2. Generalized upper Tertiary sedimentary facies of the California Coast Ranges, showing the
position and facies of the Monterey Formation (Pisciotto and Garrison, 1981).



1982). Conglomerates are even more rare (Garrison and
Ramirez, 1989). At scales from less than 1 mm to hundreds of
meters, the lithologies of the Monterey are characterized by
great compositional variability, making any individual sam-
ple usually unrepresentative of its own stratigraphic interval
(Fig. 3) (Isaacs, 1985). Compositional variation is expressed
by rhythmic alternation of clastic-biogenic, massive-lami-
nated, or diagenetically distinct lithologic cycles (Pisciotto
and Garrison, 1981; Govean and Garrison, 1981; Isaacs,
1985). Even with such lithologic variation, large-scale trends
in average composition, both vertically and laterally, are rel-
atively consistent within individual regions, giving rise to a
number of local stratigraphic subdivisions into informal
members (e.g., Canfield, 1939; Woodring et al., 1943; Foss
and Blaisdell, 1968; Isaacs, 1981b, 1983; Pisciotto and Garri-
son, 1981; MacKinnon, 1989a). Although there is a broad
similarity to some of the compositional trends—for example,
the widespread occurrence of middle Luisian to Relizian cal-
careous mudstones and late Luisian to early Delmontian
diatomaceous sediments—member-scale facies are clearly
time transgressive when compared between regions (Blake,
1981; White, 1989; Hornafius, 1991, 1994b; Schwalbach and
Bohacs, 1995).

DEPOSITIONAL ENVIRONMENTS

The Monterey Formation was chiefly deposited in lower
middle bathyal (1500–2300 m) to upper middle bathyal
(500–1500 m) environments (Fig. 2) (Ingle, 1973, 1980;

Isaacs, 1999), which shallowed upward in most sequences.
Preservation of organic matter, abundance of fine varve-like
laminations, and presence of dysaerobic benthic foraminifers
indicate that the Monterey was commonly deposited in or
associated with an oxygen-deficient environment. Conse-
quently, likely depositional environments for the Monterey
include basin plains, slopes, banktops, and shelf edges where
they intersect or are influenced by the mid-water oxygen min-
imum zone (Calvert, 1966; Garrison et al., 1979; Lagoe,
1981; Pisciotto and Garrison, 1981). Possible modern ana-
logues for these settings occur beneath upwelling zones asso-
ciated with the Southern California Borderland, the Gulf of
California, and the Peru and Pakistan margins (Calvert, 1966,
1968; Donegan and Schrader, 1981; Soutar et al., 1981).
Although the silled basins of the California Continental Bor-
derland have been most frequently cited as present-day exam-
ples, there is little direct evidence for the existence of such
steep-sided, silled basins during deposition of the Monterey
(Isaacs, 1999).

Thin, millimeter-scale laminations are only intermittently
present in the Monterey Formation. They are rare in the pre-
dominantly massive and thin- to thick-bedded lower portion of
the Monterey, and become increasing prevalent upsection
(Mohnian stage), while remaining rhythmically or irregularly
interbedded with massive (bioturbated or redeposited) strata
(Pisciotto and Garrison, 1981; Govean and Garrison, 1981;
Isaacs, 1985; Ozalas et al., 1994). Such alternation suggests
continuously fluctuating levels of paleo-oxygenation during
deposition (Behl and Kennett, 1996). The overall upward
increase in lamination indicates either that bottom water was
progressively (if inconsistently) depleted of oxygen through
time or that the Monterey Formation depositional environment
shoaled into the heart of the mid-water oxygen minimum zone
with progradation of the Miocene California margin (Isaacs et
al., 1996).

DIAGENESIS

The highly reactive biogenous components of the Mon-
terey Formation (i.e., opaline silica, calcite, phosphate, and
organic matter) have undergone a complex paragenetic
sequence of alteration with time, burial, and tectonic defor-
mation. Although it is simpler to examine mineralogic and
chemical systems in isolation, every stage of dissolution, pre-
cipitation, or alteration influenced simultaneous and subse-
quent reactions by altering pore-water chemistry, water-rock
ratios, and permeability (Kastner et al., 1984; Eichhubl and
Behl, 1998). Diagenetic modification by chemical migration
can enhance or suppress the physical and compositional con-
trasts that already existed in the originally heterogeneous
Monterey sediments, making it a wonderfully complicated
unit to work with (Pisciotto and Garrison, 1981; Govean and
Garrison, 1981; Grivetti, 1982; Murray and Jones, 1992;
Behl, 1992).
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Figure 3. Diagram showing the wide range of sedimentary compositions
in the Monterey Formation of the Santa Maria and Santa Barbara basins
(Isaacs, 1985).



Silica

Although Bramlette (1946) clearly documented the alter-
ation of soft diatomaceous sediments to hard porcelanite and
chert, we now know considerably more about the nature, con-
trols, and distribution of silica diagenesis. The sequence of
mineralogic alteration involves two steps of complete dissolu-
tion and reprecipitation. The first is from biogenic opal-A
(hydrous silica that is crystallographically amorphous to X-
ray diffraction) to diagenetic opal-CT (hydrous silica com-
posed of interlayered cristobalite and tridymite) (Fig. 4). The
second is from opal-CT to diagenetic quartz (generally cryp-
tocrystalline, microcrystalline, or chalcedonic quartz). Trans-
formation is controlled by temperature and burial depth
(Murata and Nakata, 1974; Murata and Larson, 1975; Isaacs,
1981c; Pisciotto, 1981a), bulk composition (Isaacs, 1982;
Behl and Garrison, 1994), and rock properties, such as poros-
ity and permeability (Behl, 1998; Eichhubl and Behl, 1998).
Within sediments of common compositions for the Monterey
Formation (i.e., diatomaceous or siliceous mudstones and
porcelanites), silica phase conversion takes place within two
relatively narrow temperature ranges and burial depths
(~40–50 °C and ~0.5–2 km for opal-A to opal-CT and ~65–80
°C and ~1.5–3 km for opal-CT to quartz; Fig. 5) (Pisciotto,
1981a; Keller and Isaacs, 1985). Within an individual strati-
graphic sequence, however, the silica phase transformation
may not be abrupt, but can occur across a broad transition
zone, to 300 m thick, of interbedded lithologies containing
different silica phases (Fig. 6) (Isaacs, 1982).

The stratigraphic co-occurrence of silica phases with
different thermal stabilities and solubilities is explained by
compositionally controlled variation in the kinetics of the
phase transformations, in which the opal-A to opal-CT tran-
sition is retarded and the opal-CT to quartz transition is
accelerated in more detrital- or clay-mineral–rich sediments

(Kastner etal., 1977; Isaacs, 1981c, 1982; Williams et al.,
1985). The purest siliceous sediments undergo diagenesis
even earlier than predicted (Bohrmann et al., 1994), with
hard, brittle opal-CT and quartz cherts forming at tempera-
tures as low as 2–33 °C and 36–76 °C, respectively (Fig. 5)
(Behl, 1992; Behl and Garrison, 1994). On a larger scale,
boundaries between silica phase zones are locally discordant
to stratigraphy, reflecting lateral variation in sediment accu-
mulation and burial depth, geothermal gradient, or tectonic
deformation (Figs. 6 and 7) (Bramlette, 1946; Murata and
Larson, 1975; Pisciotto, 1981a). Within each diagenetic
zone, silica becomes increasingly well ordered with depth,
temperature, or time, even though there may not be any lith-
ologic change. Opal-A becomes less soluble as higher sur-
face area diatoms dissolve and smaller submicroscopic
mineralogic domains give way to larger ones (Williams et
al., 1985). Ordering of opal-CT is revealed by decreased
spacing of the d101 lattice planes (Murata and Nakata, 1974;
Murata and Larson, 1975; Cady et al., 1996) and increased
crystallite size with growth (Grivetti, 1982; Williams et al.,
1985; Behl and Meike, 1990). Progressive growth of crystal-
lite domains in diagenetic quartz is shown by the height and
sharpness of X-ray diffraction peaks in the quartz crys-
tallinity index (Murata and Norman, 1976).

Complete dissolution and reprecipitation at the two sil-
ica phase transitions produce dramatic changes in the physi-
cal properties of the sediment as the rigid, but porous
framework collapses, or as internal pore spaces are filled with
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Figure 4. Scanning electron micrograph of nascent opal-CT lepispheres
growing within a partially dissolved opal-A test of a diatom. Field of
view = 15 µm.

Figure 5. Diagram showing the relative timing and temperatures of silica
phase changes (Keller and Isaacs, 1985), modified to include data on the
purest diatomites and cherts (Behl, 1992; Behl and Garrison, 1994).



silica cement (Fig. 4). These abrupt changes in bulk density
can be imaged locally by seismic methods as extensive cross-
cutting reflectors in the subsurface (Fig. 7) (Mayerson and
Crouch, 1994) and are associated with the expulsion, migra-
tion, and trapping of hydrocarbons as well as the potential for
forming fractured petroleum reservoirs (McGuire et al, 1983;
MacKinnon, 1989b; Mayerson et al., 1995).

Carbonate

Carbonate diagenesis in the Monterey Formation has been
studied by a wide variety of geochemical, isotopic, and sedimento-
logical means to determine its paragenesis with organic matter and
silica (Murata et al., 1967, 1972; Friedman and Murata, 1979; Pis-
ciotto, 1981b; Garrison et al., 1984; Burns and Baker, 1987; Mal-
one et al., 1996; Eichhubl and Boles, 1998). Although primary
carbonate components are mainly calcitic coccoliths and
foraminifers, the dominant secondary carbonate phase in the Mon-
terey is calcium-rich dolomite, whether occurring as finely dissem-
inated rhombs, cross-cutting veins, or as tightly cemented
concretions and beds (Pisciotto, 1981b). Dolomite forms in anoxic
or dysoxic conditions related to the diagenesis of organic matter,
within or below the zone of sulfate reduction (Pisciotto and
Mahoney, 1981). Low sedimentation rates during early burial dia-
genesis tend to increase the concentration of dolomite by providing
better conditions for continued precipitation in the zone of sulfate
reduction (Pisciotto and Mahoney, 1981; Burns and Baker, 1987).

Phosphate

Diagenetic sedimentary phosphate (cryptocrystalline car-
bonate fluorapatite) forms chiefly with the shallow degradation

of organic matter, probably via a number of physical, chemical,
and biological mechanisms (Garrison et al., 1990; Föllmi et al.,
1991). Most carbonate fluorapatite precipitation occurs within
a few tens of centimeters of the sediment surface and during
slow sedimentation or depositional hiatuses (Garrison et al.,
1994). The most prominent phosphatic facies in the bathyal
Monterey Formation are laminated, organic-rich phosphatic
marlstones that developed as the condensed residue of slowly
deposited, calcareous-siliceous muds and oozes (Garrison et
al., 1987) during sediment starvation (Isaacs, 1985, 1999). In
this facies, carbonate fluorapatite occurs as small nodules,
lenses, laminations, and peloids that formed in place with little
or no subsequent reworking. Shelfal and banktop phosphoritic
sands occur interbedded with hemipelagic sediments, and con-
sist mostly of phosphatic peloids (Garrison et al., 1987, 1994).
Conglomerates and hardgrounds composed of dense, dark
phosphatic pebbles, nodules, and concretions are less common
in the Monterey Formation, but record repeated episodes of
phosphatization, exhumation, winnowing, and reworking by
currents, slumping, and sea-level change (Föllmi et al., 1991;
Garrison et al., 1994).

SOURCE OF PETROLEUM

The Miocene Monterey Formation is widely considered to
be the primary source rock for hydrocarbons in California
(Woodring and Bramlette, 1950; Crawford, 1971; Taylor, 1976;
Lillis and Lagoe, 1983; Isaacs and Petersen, 1987). Total
organic carbon (TOC) in the Monterey can be as high as 23%
(34% organic matter by weight), but averages between 2% and
5%, with large sample to sample variation, depending on lithol-
ogy and depositional setting (Isaacs and Petersen, 1987).
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Figure 6. Schematic view of Santa Barbara coastal area, showing silica phase zones cutting across litho-
stratigraphic boundaries, the interbedded nature of the transition zones, and typical compaction with
increased physical and chemical diagenesis (modified from Isaacs, 1981).



Organic matter is overwhelmingly amorphous marine algal
debris, but locally includes significant portions of terrestrial ori-
gin (Isaacs and Magoon, 1984; Graham and Williams, 1985).
Biomarkers in both Monterey oil and rocks also indicate that
the organic matter is largely marine (King and Claypool, 1983;
Curiale et al., 1985). Kerogens in the highly biogenic Monterey
sediments are mostly sulfur-rich, oil-prone type II-S (Surdam
and Stanley, 1981; Kruge, 1983; Orr, 1986; Isaacs, 1988; Ruel-
lkötter and Isaacs, 1996).

Much of the oil sourced in the Monterey was generated in
rocks considered to be immature or marginally mature by con-
ventional methods of assessment, for example, vitrinite
reflectance (Ro <0.4), thermal alteration index (TAI <2.3),
Rock-eval pyrolysis (Tmax, variable and problematic), sapropel
fluorescence, hydrogen/carbon ratios, and silica diagenetic
grade (Taylor, 1976; McCulloh, 1979; Kablanow and Surdam,
1984; Global Geochemistry Corporation, 1985; Petersen and
Hickey, 1987; Ruellkötter and Isaacs, 1996), although some of
these indicators may not be reliable indicators of maturity in
Monterey-type rocks (Walker et al., 1983). Initiation of catage-
nesis as early as 60–80 °C is likely related to the high sulfur
content (up to 9% by weight) of the kerogen and the weakness
of its carbon-sulfur bonds (Hunt, 1979; Orr, 1984, 1986; Isaacs
and Petersen, 1987). The generally low API gravity (<20 API°)
of Californian oil is also related to early generation, low maxi-
mum temperatures, and bacterial degradation, both as organic
matter and as hydrocarbons (Petersen and Hickey, 1987; Ruel-
lkötter and Isaacs, 1996). The co-occurrence of both in situ
kerogen and migrated hydrocarbons within the rock matrix pre-

sents difficulties in assessing the true maturity of source rocks
in the Monterey Formation as well as the relative contributions
of oil from adjacent or distant (deeper) sources within the for-
mation (Dunham et al., 1991).

Although much of the Monterey Formation has suffi-
ciently high TOC and H/C ratios to be classified as good oil-
prone source rock, a proportionally large amount of the oil may
come from organic-rich carbonaceous marl (phosphatic shale)
strata (Orr, 1984; Dunham et al., 1991; Isaacs and Ruellkötter,
1999) at whatever stratigraphic level and location it is best
developed.

PETROLEUM RESERVOIRS

The Monterey Formation is unusual in that it is both source
and reservoir of oil (Crawford, 1971; Isaacs and Petersen,
1987). Typically, fine-grained organic-rich rocks lack the effec-
tive porosity and permeability to provide commercial petroleum
reservoirs. Consequently, petroleum reservoirs generally consist
of either adjacent or interfingered sandstone beds, members, or
formations, or they consist of naturally fractured, brittle diage-
netic siliceous and dolomitic rocks. Oil is also locally produced
from highly porous, opal-A diatomite in western parts of the
San Joaquin basin through natural and artificially induced frac-
tures.

The high diagenetic potential of the Monterey’s fine-
grained components (chiefly of silica, carbonate, and organic
matter), diagenetic embrittlement (of chert, porcelanite, and
dolomite) with burial, and location in a tectonically active set-
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Figure 7. Seismic-reflection profile showing the near-horizontal opal-A to opal-CT and opal-CT to
quartz silica phase transitions that cut across stratigraphy. After Crouch, Bachman, and associates, 1991.



ting combined to create many highly fractured or brecciated oil
reservoirs in the subsurface (Regan and Hughes, 1949; McGuire
et al., 1983; Dunham and Blake, 1987; MacKinnon, 1989b; Eich-
hubl and Behl, 1998). Depending on original depositional con-
straints, different lithologies may make up the important fractured
reservoirs in individual fields. Whereas fractured siliceous shale
and porcelanite provide important production in the San Joaquin
basin, chert and dolomite breccias form the most important reser-
voirs in the onshore and offshore Santa Maria basin (Redwine,
1981; Roehl, 1981; McGuire et al., 1983; Crain et al., 1985; Dun-
ham et al., 1991). In all cases, fractures are critical for fluid flow in
the otherwise extremely low permeability (<1 md) Monterey
lithologies. The distribution and density of fractures vary with
rock type, diagenetic grade, bed thickness, location on tectonic
structures, and the regional stress field (Snyder et al., 1983;
Belfield et al., 1983; Snyder, 1987; MacKinnon, 1989b; Narr,
1991; Gross, 1993; Gross et al., 1997; Finkbeiner et al., 1997) and
are also related to large-scale faulting (Eichhubl, 1997).

In addition to microscopic and macroscopic fracture porosity
and permeability, most highly siliceous rocks have substantial
(10%–35%) matrix porosity (Isaacs, 1981d), which can form the
major part of reservoir storage, but also contributes to a complex
production behavior. 

While much of the oil generated in the Monterey is pro-
duced from associated or overlying clastic reservoirs, frac-

tured reservoirs are locally very important. For example, Mon-
terey fractured reservoirs account for ~75% of the oil pro-
duced in the Santa Maria area (Crawford, 1971). In the most
recent assessment of hydrocarbon resources of the Pacific
Outer Continental Shelf region, fractured Monterey Formation
or equivalent strata are estimated to contain more than one-
half of the undiscovered conventionally recoverable oil (5.96
billion barrels) and more than one-third of the undiscovered
conventionally recoverable gas (6.32 trillion cubic feet) for a
total of 7.08 billion barrels of oil equivalent (Dunkel and
Piper, 1997).

PALEOCEANOGRAPHIC AND PALEOENVIRONMEN-
TAL SIGNIFICANCE

Deposition of the Monterey and its equivalents coincided
with or followed major changes in Miocene ocean circulation,
global climate, and tectonics (Ingle, 1980, 1981b; Pisciotto and
Garrison, 1981; Vincent and Berger, 1985; Barron, 1986a). The
diatomaceous and organic-rich Monterey sediments were
deposited following a major switch in marine thermohaline cir-
culation into approximately the modern configuration where
deep water that forms in the North Atlantic and circum-Antarctic
regions principally upwells in the Pacific and Indian Oceans
(Kennett, 1977; Keller and Barron, 1983; Woodruff and Savin,
1989). Monterey deposition also encompassed the important
middle Miocene cooling step in which the Southern Hemisphere
cryosphere expanded into western Antarctica (Fig. 8) (Kennett,
1977; Miller et al., 1987). Regional intensification of upwelling
and increased affinity with higher latitude assemblages in the late
Miocene is indicated by most planktonic taxa (Ingle, 1973,
1981b; Weaver et al., 1981; Barron, 1986a). The co-occurrence of
all these events in the middle to late Miocene has led many to
attribute or relate the character of Monterey deposits to this
important reorganization of the Earth’s cryosphere-hydrosphere-
atmosphere system, both as cause and as effect (Ingle, 1981b;
Pisciotto and Garrison, 1981; Vincent and Berger, 1985; Barron,
1986a). In particular, middle Miocene accumulation of organic
matter in marine sediments was great enough to perturb the car-
bon balance of the global ocean and atmosphere and produce a
prominent positive excursion in carbon isotopes that has been
recognized in deep-sea and Monterey sequences (Vincent and
Berger, 1985; Compton et al., 1990; Flower and Kennett,
1993;,1994; Raymo, 1994). Although the accumulation of
organic carbon in the Monterey Formation alone was probably
insufficient to account for this shift, the Monterey was clearly
deposited within the context of an important transition in Ceno-
zoic cooling associated with cryospheric expansion, thermoha-
line circulation reorganization (Fig. 8), and possibly accelerated
flux of nutrients to the ocean related to Himalayan uplift (Richter
et al., 1992). The widespread lower calcareous mudstone facies
of  the Monterey was largely deposited during an interval of early
to middle Miocene gradual warming. The phosphatic and
organic-rich facies correlate with a middle Miocene sea-level rise
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and highstand that occurred prior to expansion of the Antarctic
ice sheet (Pisciotto and Garrison, 1981), thus are in effect, con-
densed, “transgressive shales” (Isaacs, 1999).

Recently, major member-scale stratigraphic shifts in bulk
composition in the Monterey have been reinterpreted to reflect
shoaling and shoring of the Monterey depositional environment
as part of a prograding margin, modified by eustatic sea-level
changes, rather than regional or global changes in paleoceanog-
raphy and climate (Isaacs et al., 1996; Isaacs, 1999). In this
model, the time-transgressive nature of major compositional
lithofacies reflects proximity to loci of coastal or banktop
upwelling, sources of terrigenous detritus, as well as periods of
sediment starvation (Isaacs et al., 1996; Isaacs, 1999). For exam-
ple, the generally most siliceous middle to upper members of the
Monterey (late Miocene, Mohnian stage) are interpreted to reflect
deposition within the direct influence of shallow (~500 m or less)
coastal (~20 km from shore) upwelling or bathymetrically
induced upwelling, such as that adjacent to shallowly submerged
banks. This interpretation is difficult to reconcile, however, with
the presence of highly diatomaceous middle to late Miocene
deposits in offshore locations from Baja California to the Oregon
border that were deposited and remain at middle to lower bathyal
depths and are >100 km away from the modern prograded shore-
line (Ingle, 1973, 1980; Barron, 1986a, 1986b; Blake, 1981; Lyle
et al., 1997). The wide spatial distribution of the important and
unusual Monterey-type deposits likely reflects the unique co-
occurrence of paleoceanographic, paleoclimatic, and tectonic
events during the Miocene epoch.
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