8.3 Positive (terms) series. \(\sum_{n=1}^{\infty} a_n \) where \(a_n \geq 0 \). In this case, \(s_n \) is an increasing sequence, \(\sum_{n=1}^{\infty} a_n \) is C if its partial sums remain bounded.

- Left-hand Riemann sum overestimates the integral of a decreasing function. (1a on N6)

b. Direct Comparison Test\(^{45}\),

\[\sum_{n=1}^{\infty} \frac{1}{n^p} \]

- If \(p < 1 \), \(\frac{1}{n^p} \) diverges.
- If \(p > 1 \), \(\frac{1}{n^p} \) converges.
- If \(p = 1 \), the test is inconclusive.

Example: \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges (Harmonic Series).

- L'Hôpital's Rule: If \(\lim_{n \to \infty} \frac{a_n}{b_n} = L \), then \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) converge or both diverge.

Ex. 3, 4, 17, 38b, 39b [Hint: L<\(\mathbb{P}\)]

c. Integral test\(^{43}\),

\[\int_{1}^{\infty} f(x) \, dx \]

Example: \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) is convergent if \(p > 1 \). Otherwise, it diverges.

Ex. 13, 15

d. Limit Comparison Test\(^{44}\), (also see Ex. 38a, 39a)

\[\lim_{n \to \infty} \frac{a_n}{b_n} \]

- If \(\lim_{n \to \infty} \frac{a_n}{b_n} = L \), where \(L > 0 \) and finite, then \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) both converge or both diverge.

Ex. 14, 22, 26

e. Which series can be found convergent by comparison (direct or limit) with a \(p \)-series? \(\sum_{n=1}^{\infty} \frac{1}{n^p} \)

- Example: \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) is convergent.

Ex. 41, 42

8.4 Non positive series.

- A series \(\sum_{n=1}^{\infty} a_n \) is \textit{absolutely convergent} (write \(\text{C} \)) if the positive series \(\sum_{n=1}^{\infty} |a_n| \) is convergent.

- Example: \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) is \text{C}.

- The converse is false! Counterexample: \(\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} \) is \text{D}, but \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) is \text{C}.

- Example: \(\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2} \) is \text{D}.

Ex. 3