An Elliptic Proof of Heron's Area Formula

Abstract

The standard proof of Heron's formula makes use of Law of Cosines. In this article we give a proof based on elementary properties of the ellipse. This approach may be suitable as an exploration/enrichment project in a Precalculus or Geometry class.

Heron's (side-side) area formula expresses the area of $\triangle ABC$ in terms of the lengths of its sides a = BC, b = AC, c = AB:

$$\mathcal{A}(\triangle ABC) = \sqrt{s(s-a)(s-b)(s-c)}, \quad \text{where} \quad s = \frac{1}{2}(a + b + c).$$

Let $f = \frac{c}{2}$. Then we may assume that A, B, C have coordinates A(f, 0), B(-f, 0), C(g, h) with g, h > 0 (Figure 1). By Pythagorean Theorem, $a^2 - b^2 = ((f+g)^2 + h^2) - (|f-g|^2 + h^2) = 4fg$, or

$$\left(\frac{a-b}{2}\right)\left(\frac{a+b}{2}\right) = fg. \tag{1}$$

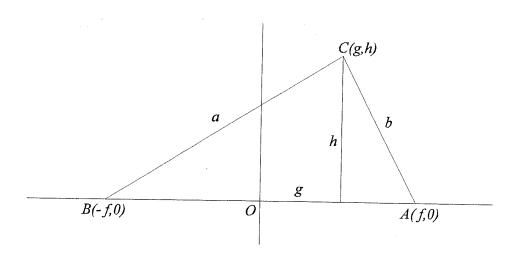


Figure 1.

The Elliptic shell \mathcal{E} of $\triangle ABC$. Consider the ellipse \mathcal{E} which contains the vertex C and has foci at the vertices A, B (see Figure 2). Let ℓ (resp. m) be the length of the semimajor axis OL (resp. semiminor axis OM) of \mathcal{E} . Since the ellipse \mathcal{E} is the locus of points with constant distance sum 2ℓ from its foci A, B ([1], [4]) we have $CA + CB = b + a = 2\ell$ and $MA + MB = 2\ell$. Thus

$$\ell = \frac{a+b}{2}$$
 and $MA = MB = \ell$ (2)

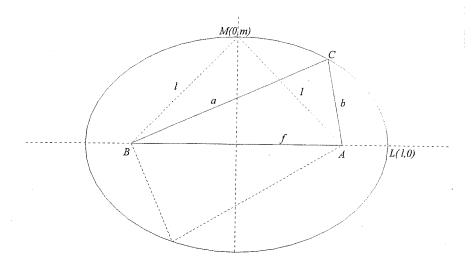


Figure 2.

Lemma 1 $\sqrt{s(s-c)} = m$, the length of the semiminor axis of the elliptic shell \mathcal{E} of $\triangle ABC$.

Proof.
$$s(s-c) = (\frac{a+b+c}{2})(\frac{a+b-c}{2}) = (\ell+f)(\ell-f) = \ell^2 - f^2 = MA^2 - OA^2 = OM^2 = m^2.$$

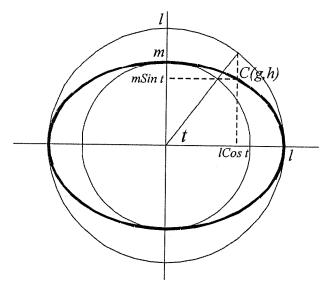


Figure 3.

The eccentric angle of C on the ellipse \mathcal{E} . Since \mathcal{E} has equation $x^2/\ell^2 + y^2/m^2 = 1$ the point C has coordinates: $(g,h) = (\ell \cos t, \, m \sin t)$, for some $0 < t < \pi/2$ (Figure 3). By (1) and (2),

$$\frac{a-b}{2} = \frac{fg}{\ell} = \frac{f\ell\cos t}{\ell} = f\cos t. \tag{3}$$

Moreover, since $A(\triangle ABC) = ch/2 = fh = fm \sin t$, Heron's formula follows immediately from Lemma 1 and the next Lemma.

Lemma 2 $\sqrt{(s-a)(s-b)} = \frac{c}{2}\sin t = f\sin t$, where t is the eccentric angle of C on \mathcal{E} .

Proof. Since (s-a)+(s-b)=2s-a-b=c there is a (unique) point T on \overline{AB} with TA=s-a and TB=s-b. (In fact, T is a point of tangency of the incircle, see Figure 4.)

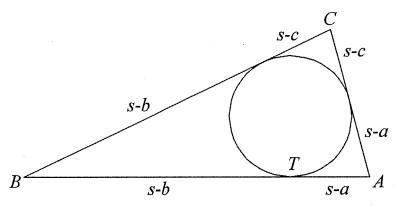


Figure 4.

Let D be the point on the semicircle with diameter AB = c = 2f such that $\overline{DT} \perp \overline{AB}$ (Figure 5). Then DT is the geometric mean of AT and BT: $DT = \sqrt{(AT)(BT)} = \sqrt{(s-a)(s-b)}$. (Since $\triangle ABD$ is a right triangle with height \overline{DT} , $\triangle DTB$ is similar to $\triangle ATD$ and DT/AT = BT/DT.)

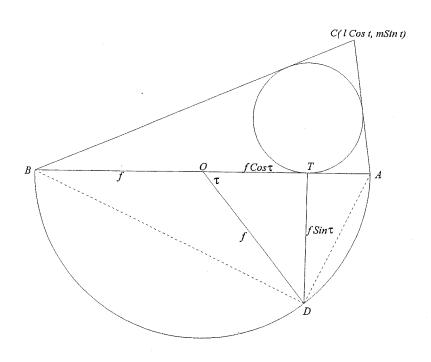


Figure 5.

On the other hand, letting $\tau = \angle DOT$, $DT = OD \sin \tau = f \sin \tau$. Hence $\sqrt{(s-a)(s-b)} = f \sin \tau$ and, to complete the proof of Lemma 2 (and Heron's formula), we need only show " $\tau = t$ ". Proof of " $\tau = t$ ". Clearly, $f \cos \tau = OD \cos \tau = OT$. On the other hand, in view of Figure 4 and equation (3),

$$OT = OA - TA = f - (s - a) = \frac{c}{2} - \frac{a + b + c}{2} + \frac{2a}{2} = \frac{a - b}{2} = \frac{a - b}{2}$$

Thus $f \cos \tau = f \cos t$ or $\tau = t$ (as both t and τ are between 0 and $\pi/2$).

Remark For a "proof without words" of Heron's formula and other proofs with geometric flavor, see [3] and the references given there. The proof in [5] makes use of more sophiscated properties of ellipse and hyperbola. In [2] it is shown that (s-b)(s-c) equals rr_a , where r is the radius of the incircle of $\triangle ABC$ and r_a is the radius of the tritangent circle outside $\triangle ABC$ and opposite vertex A.

References

- [1] C. G. Gibson, Elementary Euclidean Geometry, Cambridge University Press, 2003.
- [2] Sidney H. Kung, Another elementary proof of Heron's formula, *Mathematics Magazine* **65**(1992), 337-338.
- [3] Roger B. Nelson, Heron's formula via proofs without words, *College Mathematics Journal* **32**(2001), 290-292.
- [4] J. Stewart, R. Redlin and S. Watson: Precalculus, 4-th ed. Thomson, 2002.
- [5] Victor Thébault, The Area of a triangle as a function of the sides, *The American Mathematical Monthly* **52**(1945), 508-509.