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1 Introduction

The major project proposed in Chapter 2 of Steven Koonixxs@@mputational Physics applies numerical integration of ordinary
differential equations to the prediction of the structurevbite dwarf stars.

The model chosen, for simplicity, is a system at zero degfe&sn temperature (throughout the star, including thdesee region) in
which the electrons are a degenerate gas (similar to the@hsdn a metal) and are responsible for the internal preqsine heavy
nucei random motion and degeneracy pressure is negledtdw star, and the heavy nuclei are responsible for the foirgeavity

holding the star together (neglecting the relatively smabs of the electrons).

1.1 TheEquationsof Equilibrium
Quoting Koonin

If the star is in mechanical (hydrostatic) equilibrium, #@vitational force on each bit of matter is balanced by the
force due to the spatial variation of the pressiteThe [radial component of the] gravitational force actingaounit
volume of matter at a radiusis

Fyrav = —Gm(r) p(r)/r?, (1.1)

whereG is the gravitational constant(r) is the mass density, and(r) is the mass of the star interior to the radius

m(r) = /OT p(rYdmr?dr’ 1.2)

The [radial component of the] force per unit volume of mathee to the changing pressure-ig P/d r. When the star
is in equilibrium, the net [radial component of the] forcedgitational plus pressure) on each bit of matter vanisbes,
that, using Eq.(1.1), we have
dpP Gm(r)
- 1.3
e = Pr) (1.3)
A differential relation between the mass and the densitybeanbtained by differentiating the integral definimgr)
with respect to-:

A _ g rr? p(r). (1.4)
dr

The description is completed by specifying the “equatiostafe”, an intrinsic property of the matter giving the pres-
sure,P(p), required to maintain it at a given density. Using the idgnti
dP _dpdP

ar drdp’ (1.5)

Eq.(1.3) can be written as

1
fr (%) Enl o), (L6)

Equations (1.4) and (1.6) are two coupled first-order défiftial equations that determine the structure of the star fo
a given equation of state. The values of the dependent Vesialbr = 0 arep = p.., the central density, aneg = 0.
Integration outward im then gives the density profile, the radius of the sRabeing determined by the point at which

p vanishes. (On very general grounds, we expect the denditydiease with increasing distance from the center.) The
total mass of the star is theévd = m(R). Since bothR and A/ depend upom,, variation of this parameter allows stars
of different mass to be studied.
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1.2 Background on Quantum Mechanics and Pressure |onization

Some introductory background material is well summarizethe on-line notes of Mike Guidry (Physics, U. of Tennessddhe
web page:

http://eagle.phys.utk.edu/guidry/astro615/

With some light editing we quote portions of Guidry’s Chag@éere:

Quantum Mechanics and Equations of State

Stellar equations of state reflect microscopic propertfidb@gas in stars. At low densities this gas tends to behave
classically, but the correct microscopic theory of matsequantum mechanics and at higher densities a quantum de-
scription becomes essential to an accurate treatment.efjuésite physics can be understood conceptually in terms of
three basic ideas.

1. de Broglie Wavelength: A particle at the microscopic ld¢a&es on wave properties characterized by a de Broglie
wavelength\ = h/p, wherep is the momentum [magnitude] of the particle @né Planck’s constant. Thus in quan-
tum mechanics the location of a particle becomes fuzzyaspoet over a spatial interval comparable to the de Broglie
wavelength

2. Quantum Statistics: All elementary particles may besifesl as either fermion or bosons. These classifications
have to do with how aggregates of elementary particles elrmions (such as electrons, or neutrons and protons if
we neglect their internal quark and gluon structure) obaey®irac statistics. The most notable consequence is the
Pauli exclusion principle: no two fermions can have an igahset of quantum numbers. All elementary particles of
half-integer spin are fermions. Bosons (photons are the most important exafopbur purposes) obey Bose-Einstein
statistics. Unlike fermions, there is no restriction on hmany bosons can occupy the same quantum state. All ele-
mentary particles ainteger spin are bosons. Matter is made from fermions (electrons, pstogutrons,. . . ). Forces
between particles are mediated by the exchange of bosansx@mple, the electromagnetic force results from an ex-
change of photons between charged particles).

3. Degeneracy: The Pauli exclusion principle implies tinaé imany-fermion system each fermion must be in a dif-
ferent quantum state. Thus the lowest energy state [of thieis) results from filling energy levels from the bottom
up. Degenerate matter corresponds to a many-fermion stathich all the lowest energy levels are filled and all the
higher ones are unoccupied. Degenerate matter occursefmdygat high densities and has a very unusual equation of
state with a number of implications for astrophysics.

Equations of State for Degenerate Gases

Degenerate equations of state play an important role iniatyaof astrophysical applications. For example, in white
dwarf stars the electrons are highly degenerate, and imorestars the neutrons are highly degenerate. Let us look at
this in a little more detail for the case of degenerate ebestr We first demonstrate that (as a consequence of quan-
tum mechanics) most stars are completely ionized over mbdhed volume because ionization can be induced by
sufficiently high pressure, even at low temperature. Thigligs the possibility of producing a (relatively) cold g&s o
electrons, which is the necessary condition for a degemetattron equation of state.

Pressure lonization

Suppose the radius of each atomr iand the average spacing between atomk M/e assume that the stellar material
consists only of ions of a single species and the electroodymed by ionizing that species. Electrons in the atoms
obey Heisenberg relations of the foutp, - Az > A, with A = h/(2 ), and with Az, Ap, being respectively the
uncertainty in the: component of electron position and the uncertainty inittemponent of the electron momentum,
with similar relations for they andz components.

In terms of the electron momentum magnitydend the corresponding electron de Broglie wavelengtha conse-
quence of the Heisenberg relations is thad. > /. Taking the average volume needed per electron figybe (\.)3,

we can write this ap > h/ Vol/S
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The uncertainty principle produces ionization when the@fe volume of the atoms becomes too small to confine the
electrons. The average volume needed per eledfyamrelated to the average volume needed pelidoy Z V, = V;,

since there aré& electrons per ion. Thys > (1 2'/3)/V,'/?,

From atomic physics, the atomic radiusnay be approximated by ~ ay Z~'/3, whereay = 5.3 x 10~ cm is the
Bohr radius. If the star is composed entirely of an elemetit wiomic numbet, and mass numbet, there areZ
electrons in each sphere of radili§the average spacing between atoms) and the average nuens#ydf electrons
n. is related tal by n, = Z/(3 wd?).

This can be solved faf to gived = ((3 Z)/(4 7 n.))*/3, which shows that becomes smaller as. becomes larger. If
d < r we expect pressure ionization. With increasing densityefdacally bound states are possible until none remain
and the electrons are all ionized. Thus, sufficiently highsity can cause complete ionization, even at zero temperatu

Since there arel nucleons in each volume of radidsthe mass densityis p ~ (A M,)/(3 = d*), in which M,, is the
proton mass. and requiring thét- r ~ ao Z~'/3 defines a critical density.,., = (Z A M,)/(3ma3). We may expect
that for densities greater thag,.;; there will be almost complete pressure ionization, irreipe of the temperature.

For pure CarboniZ = 6, A = 12), perit = 230 gem 3. For pure OxygenZ = 8, A = 16), perit = 410 gem ™3,
For pure Iron(Z = 26, A = 56), perit = 4660 gcm 3. The actual typical density of a half Carbon and half Oxygen
white dwarf is of the ordet0® g cm =3, much greater thap,.,.;;.

These considerations imply that Saha ionization equatishich are derived assuming ionization to be caused by
thermal effects, are no longer reliable in the deep intexictars.

1.3 TheApproximate Equation of State

Koonin assumes the reader is aware of the rules for courttemgiumber of momentum microstates available to a particause of
guantum mechanics. A quick and dirty argument is to say

Since the uncertainty principle requirés:Ap > 27h, we can associatel*zd®p)/(2wh)? micro-states with a phase
space voluméd>zd3p). Therefore, the number of momentum states withatttemponent of momentum in the range
(pz, p= + dps), they component of momentum in the ran@s,, p, + dp, ), thez component of momentum in the range
(pz,p- + dp.), and the position vector somewhere in a volumes Vd*p/(27h)?, whered®p = dp,, dp, dp..

You can find a better discussion in any text covering quantatistics, such aBundamentals of Statistical and Thermal Physics
by Frederick Reif, (1965), Sec. 9.9: Quantum States of alSiRgrticle, where periodic boundary conditions are emfdren the
guantum wave function of a particle.

Again quoting Koonin (with considerable editing, and retag c.g.s. units):

We must now determine the equation of state appropriate vanite dwarf. ...we will assume that the matter con-
sists of large nuclei and their electrons. The nuclei, béiegvy, contribute nearly all of the mass but make almost
no contribution to the pressure since they hardly move daall are non-degenerate]. The electrons, however, con-
tribute virtually all of the pressure but essentially norfi¢he mass. We will be interested in densities far greatan tha
that of ordinary matter, where the electrons are no longentdo individual nuclei, but rather move freely through
the material. A good modelis then a free Fermi gas of elestabaero temperature, treated with relativistic kinensatic

The number of nucleons per unit volume at radius approximatelyp(r)/M,, where M, is the proton mass (we
neglect the small difference between the neutron and protmsses). I, is the number of electrons per nucleon, then
the number density (concentration) of electrons at radiss

n(r) ~ Y, plr) (1.7)

If the nuclei are alP® Fe, thenY, = 26/56 = 0.464, while Y, = 1/2 if the nuclei are'?C; electrical neutrality of the
matter requires one electron for every proton.

The free Fermi gas — independent identical fermions obelyargni-Dirac statistics (shielding effects allow us to ap-
proximately ignore Coulomb interactions) — is studied bgisidering a small but macroscopic voluiiecontaining a
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group of N electrons at a given direction and located in the intepyal + dr| that occupy the lowest available energy
plane-wave states with magnitude of momenturs p < p;. Remembering the two-fold spin degeneracy of each

plane wave, we have
ps Ps 4mp?dp
=2V 2V — 1.8
/ 27Tﬁ /0 (27 h)3 (1.8)

which determines the value of the local “Fermi momentum” maglep in terms of the local electron density:

ps(r) = [37% B2 n(r)]t/3 (1.9)
wheren(r) = N/V. The total kinetic plus rest mass energy of this group/a¢lectrons occupying the lowest possible
momentum eigenstates is Y

E:2V/0 %ap (1.10)
wheres, = [p? c* + m2 ¢ 4]11/2 is the relativistic energy of an electron with mass and momentum magnituge

Changing the variable of integration fromto y = p/(m. ¢), we need the integral

Pf x
/ prdp/p2 2 +m2ct=micd / y2dy /1 + 12 (2.11)
0

0

in which dimensionless is:

1/3 1/3
Me C no £o
nyg is the local electron density at which the local Fermi moraemg/(r) = me ¢
1 1 29 -3
ng=— — = 5.87x 10" em ™", (1.13)
32 A3
A is the electron Compton wavelength
h
Ao = =3.86 x 107 em (1.14)
Me C
andp is the local mass density of matter when the local electromsitgis n:
M
po = ;—no =9.82x10°Y,  gmem™3. (1.15)

e

The indefinite integral needed is a standard integral, butamealso practice using Maxima:

(%il) assume(x>0);

(%01) [x > 0]

(%i2) ival:iintegrate(y"2 *sqrt(1+y°2),y,0,x);
(%02) (sqrt(x"2+1) * (2 *X"3+x)-asinh(x))/8
(%i3) display2d:true$

(%i4) ival;
2 3
sgrt(x  + 1) (2 x + Xx) - asinh(x)
(%04)
8
We can then use the identity (far> 0):
2 2
In (“7 ”““’) — sinh ™! (z/a). (1.16)
a
to finally get the local energy of this group of electrons ia thrm
E =Vnomec®z®e(x) (1.17)
in which 5
e(r) = 53 {x(1+2:172) V1+22—1In (x—i— 1+x2)} . (1.18)
x

In the usual thermodynamic manner, the local pressuredteto how the energy of this groupdfelectrons changes with volume
V at fixed N: o

P(r)= 7

— (nomec?) {x3 e(x)+V % [2° ()] g—‘i} (1.19)
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From Eq.(1.12)z = [n(r)/no]"/? = [N/(no V)]'/3, so

oz x
=~ 1.20
ov 3V ( )
and the local pressure then takes the form
P(z) = % nome ¢zt &' (z) (1.21)

wheres’(z) = de/dx. The pressure has the units: energy per unit volume or faeceipit area (since energy has the units: force
times distance).

We then need the derivativld?/dp to make use of Eq.(1.6). We use the chain rule

dP  dP dx
From Eq.(1.12)z = [p(r)/po]*/3, or p/po = 2*, and differentiating both sides of the latter equation witbpect tg yields
dx Y.
9 3oL A, 2 (1.23)
S0 )
dP Me C
d_p — le Mp 7($) (124)
in which dimensionless(z) is
(@) = 7o et )] = s (1.25)
T =902 dx 3V + a2 '
If you check the final simplified form of(x) by hand, you can use
g'(z) = 3 (V14 22 —e(2)]. (1.26)
X
We can also use Maxima (after some trial and error) to vehiy t
V14 a2 di (2% (z)] = 3. (1.27)
X

In our Maxima work we letldx be the quantityd [z &’(z)], and letrn be+/1 + 22 times the numerator afdx , and letrd be the
denominator ofldx . We then want the ratim/rd  to be3* x"4 . Some experimentation is needed to find a path to a simplified f
which results from cancellation of factors in the numeratiah factors in the denominator. The Maxima functiongm, denom,
expand , factor , andratsimp are useful things to experiment with when starting with a pbcated expression. Often, it is
useful to work with the numerator and denominator separaaeld combine the results at the end. In our work (alwaysgusia
Xmaxima interface), we routinely sdisplay2d:false in our startup file.

(%i1) eps : 3 *((x+2 *X"3) *sqrt(1+x°2) - log(x+sqrt(1+x72)))/8/x"3%

(%i2) ddx : ratsimp(diff(x"4 * diff(eps,x),x));

(%02) (12 *X"7+sqrt(x"2+1) * (12 *X'6+3 *xX'4)+9 *X'5)

(4 * X 4+sqrt(x"2+1) * (4 *X"3+3 *X)+5 *X"2+1)

(%i3) rn : factor(expand(sqrt(1+x°2) * num(ddx)));

(%03) 3 *X'4 * (4 *X'3 *sqrt(x"2+1)+3  *x*sqrt(X"2+1)+4  *xX'4+5 *xX"2+1)
(%i4) rd : factor(expand(denom(ddx)));

(%04) 4 *xX'3 *sqrt(x"2+1)+3  *x*sqrt(X"2+1)+4  *xX'4+5 *x2+1

(%i5) rnd : rn/rd;

(%05) 3 *x'4

Using Eq.(1.3) in Eq.(1.6) we get an explicit differentigjuation governing the evolution ¢f (recall that dimensionless is a
function ofx which is a function ofp which is a function of-):

G
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1.4 Internal Kinetic Energy of the Star

Using the same type of calculation as done in Eq.(1.10),ithetik energy of the group a¥ electrons in a given direction and having
radii in the rangér, 4+ dr] and occupying a small but macroscopic volubés

Pi 4 p?dp
E inetic — 2V
Finet /0 (27 h)3

(ep — me c?), (1.29)
wheres, = [p? ¢ + m? ¢*]'/2 is the relativistic energy of an electron with mass and momentum magnitugle Dividing Ex;netic
by V yields the local kinetic energy densityr)

k(r) = ngme c® 2® (e(x) — 1), (1.30)

in whiche(x) is defined in Eq.(1.18). The internal kinetic energy of tta §heglecting the nucleii) is then

K = /OR k(r)4mr®dr. (1.31)

1.5 Internal Gravitational Energy of the Star

The gravitational energy due to adding a small mass element= p(r) § V with center af(r, 6, ¢) to a body of massn(r) and
radiusr is 6 U = —GmT(") dm. With §V = (rdf)(r sinfdg)dr = r?dQdr, integration over the solid angh? yields 4 .
Integration over- from 0 to R then accumulates the total internal gravitational enefdlgestar:

B B Gm(r)
U= —/O " p(r)4mr?dr (1.32)

2 Scaling the Differential Equations

Quoting Koonin again:

It is often useful to reduce equations describing a physigstem to dimensionless form, both for physical insight and
for numerical convenience (i.e., to avoid dealing with viange or very small numbers in the computer). To do this for
the equations of white dwarf structure, we introduce din@riess radius, density, and mass variables:

T:Rofv P = pop, m = Mym (21)

with the radius and mass scalég, and M, to be determined for convenience. Substituting into Eqst, (1.28) yields

dm 47TR8 Po _9 _
0 (2R 2.2
dr ( M, )7 (2:2)
and dp G M, M, np
P p 0 mp
—=—|—— ] —. 2.3
dr (mGCQYeRO) v 7?2 (2:3)
If we now choosél/, and R, so that the coefficients in parentheses in these two eqsadi@nunity, we find
me 2 Y,
Ry=|——F—]=771x10%Y, 2.4
! <4MOGMP) % 10°Y, cm, (2.4)
and
My =47 RS po = 5.66 x 10*3Y? gm, (2.5)
and the dimensionless differential equations are
dm 5 dp mp
- L= 2.6
a P ar 72 (26)
These equations are completed by recalling thiatgiven by Eq. (1.25) with: = 5/3.
~2/3
p 2.7)

e 31+ p2/3

This pair of equations is then integrated frors 0, p = p., m = 0to the value of* at whichp = 0, which defines the dimensionless
radius of the staR, and the dimensionless mass of the star is thea m(R). The scaled solution then depends on the dimensionless
central mass density,.
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3 Scaling the Kinetic and Gravitational Energy

We can write the sum of the kinetic and gravitational energihe starF ;- (neglecting electrostatic contributions) in terms of an
energy scale factaf, which carries the dimensions, and is defined in term&/gf R, andpy.

Estar =K+U= EO Estar (31)

in which
Eo=4mngmec® RS =47nG Mypo R2 =2.77Y2 x 10°! ergs (3.2)

Then the dimensionless energy of the star (neglecting rass mnergy) is
Egor =K +U (3.3)

in which K is the dimensionless internal kinetic energy of the elerighe nuclei kinetic energy is ignored), aids the dimen-
sionless gravitational energy due to the nuclei (ignorirggrhass of the electrons).

R
= k(7)d7 3.4
K= [k (3.4)
in which
k(r) =7 p(e(p) — 1) (3.5)
with
5(5):8% {51/3 (1+2p2/3) V1+p2/3 ~1n [ﬁl/3+ 1+52/3”. (3.6)

The dimensionless gravitational energy of the star is

U= /OR a(F) dF (3.7)

in which
a(r) = =7 p(7) m(7). (3.8)

4 Scaled Dimensionless Differential Equations Summary

We drop the over-bars on the symbols for the scaled dimelesismariables in this and the next two sections, and in tde:¢o— r,
m — m, andp — p, for simplicity; we can always restore the over-bars beéonmeverting results to c.g.s. units. The pair of ordinary

differential equations to be integrated are then:
dm 9

- 4.1
ar P (4.1)
dp mp
dr— A(p)r? “2
in which
p2/3

Y(p) = ——= (4.3)
(p) 31+ p?/3

This pair of first order differential equations is then intgd fromr = 0, p = p., m = 0 to the value of- at whichp = 0, which
defines the dimensionless radius of the $taand the dimensionless mass of the star is thers= m(R). The scaled solution then
depends on the dimensionless central mass depsity

As we discuss below, far << 1

m(r) ~ 3 PeT (4.4)
2.2
per
T) R P — ——— 4.5
p(r) =~ p 6 (4.5)

wherep. = p(r = 0) andy. = ¥(pc).
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5 Expansion of m(7) and p(7) about 7 = 0

To avoid “division by zero” errors at = 0, we need to Taylor expand the dependent variables abeul, and start the Runge-Kutta
integration a tiny distance away from= 0.

We know thatm(r = 0) = 0. Forr << 1 we can replace by p.. in Eq.(4.1) to getlm/dr ~ p.r?, which vanishes as — 0. Using
Egs.(4.1 and 4.2), we can evaluate the second derivative of as

?m d

mp

which also vanishes as— 0 andm(r) — 0 together. Sincéd? m/dr?), = 0, the expansion of. aboutr = 0 begins with the-3
term. For some positive value of m ~ a3 for smallr. Then the first derivative of »*> must equap, 2 for smallr, soa = p./3
andm(r) ~ 3 per.

We can then usei(r) o 73 for r — 0 in Eq.(4.2) to see that for small d p/dr o~ r and hence vanishes at= 0. We can use
Maxima to evaluatel” p/d r? and its limit asr — 0. In this work,gamrepresents/(p), rh representp, and we mentally let these
variables (as well ag~y/d p) take on their finite- = 0 values in our limiting process. Our code usesdepends Maxima function,
which allows the differentiation to automatically use tlehain rule”,

dv(p) dv(p) dp

dr dp dr (6-2)
(%il) depends(gam,rh);
(%01) [gam(rh)]
(%i2) depends([m,rh],r);
(%02) [m(r),rh(r)]
(%i3) drh : -m  *rh/gam/r'2$
(%i4) d2rh : diff(drh,r);
(%o04) ’diff(gam,rh,1) *mx rh +'diff(rh,r,1)/(gam"2 *1"2)
-m= "diff(rh,r,1)/(gam *r"2)-"diff(m,r,1) *rh/(gam *r°2)
+2xmrrh/(gam *r°3)
(%i5) d2rh_1 : subst(['diff(m,r,1)= rh *r72,diff(rh,r,1)=-m *rh/gam/r"2],d2rh);
(%05) -'diff(gam,rh,1) *m"2*rh"2/(gam™3  *r'4)
-rh"2/[gam+2 *mrrh/(gam *r"3)+m"2 =*rh/(gam™2 *r"4)
(%i6) d2rh_2 : subst(m = rh *r"3/3,d2rh_1);
(%06) -'diff(gam,rh,1) *r'2 *rh"4/(9  rgam™3)+r2 *rh"3/(9 *gam™2)-rh"2/(3 * gam)
(%i7) d2rh_3 : limit(d2rh_2,r,0);
(%07) -rh™2/(3 * gam)
Thus ) )
oy e (5.3)
ar? /, 37
~ rpl
and hence(r) ~ p. — <.

6 Behavior of p(7) Near the Surface

Near the surfacei(r) ~ M andr ~ R, so in the differential equation Eq.(4.2) we inse(p) from Eq.(4.3) and Taylor expand the
dependence opaboutp = 0 for fixedm(r) ~ M andr ~ R.

(%i1) gam : rh"(2/3)/3/sgrt(1+rh*(2/3))$
(%i2) drh_dr : -m  xrh/gam/r"2;
(%02) -3 *msqrt(rh”(2/3)+1) *rh™(1/3)/r"2
(%i3) drh_surf : taylor(drh_dr,rh,0,3);
(%03) -3 *mrh™(1/3)/r"2-3 *merh/(2 *r"2)+3 *mrh”(5/3)/(8 *1°2)
-3 *mxrh™(7/3)/(16 *1"2)+15 *mrrh™3/(128 *r72)
(%i4) drh_surf : first(drh_surf);
(%04) -3 *mrh™(1/3)/r"2
(%i5) drh_surf : subst([m=M,r=R],drh_surf);
(%05) -3 *rh"(1/3) *M/R"2

We then solve the equation
dp 3M 1/3

dr ?p

Q

(6.1)
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by separation of variables, dividing both sides8y* and multiplying both sides byr, and then integrating both sides over corre-

sponding intervals. This gives (near the surface)

2M (R—r)\*?
p(r) =~ <T) x (R — T)3/2 (6.2)
and using this in Eq.(4.1) gives (near the surface)
dm 5 (2M(R—r)\*? 6.3)
— T T —— .
dr R?
which shows thatl m/dr — 0 asr — R, whiled p/dr o« —vR —r.
7 Maxima Code dwarfl(rhoc, dr, rtol)
The Maxima codelwarfl is in the fileproject2.mac , and calls the single step Runge-Kutta cokie step
(also inproject2.mac ). The codek4 _step was also used in Example 2.
/= dwarfl(rhoc, dr, rtol) integrates white dwarf ode’s using r k4_step with step size dr,
(after taylor expanding the dependent variables out to rl=s mall) watching
for rho to pass from positive to negative.
If rho is found to be negative, we return to the previous step a nd let rtol be the
step size, integrating forward again until rho is found to be negative, then
taking the previous step as the final value of r,m and rho
and using that value of r to define the radius R and that value o f m(r) to define M.
In this code r stands for Koonin's dimensionless rbar, where rlcgs] = RO * rbar,
m stands for Koonin's dimensionless mbar, where mlcgs] = MO * mbar,
and rho stands for Koonin's dimensionless rhobar, where rho [cgs] = rhoO =*rhobar.
The signal that rho is negative is that rk4_step returns a val ue for
rho that is not a floating point number, containing things li ke
(-1)70.3333.

(%i4) gam : rho"(2/3)/3/sqrt(1 + rho"(2/3))$
(%i5) rk4_step([rho *r"2, -m *rho/gam/r"2],
[m,rho],[0.70582,0.0036087],[r,2.5,0.1]);
(%05) [2.6,0.70678,
2.7270606E-4-4.192083E-4 *(-1)°0.33333  *(0.0064245 =(-1)"0.66667+1.0)"0.5]

*/

dwarfl(rhoc, dr, rtol) :=
block([rl:1e-12, gam, gamc, ml1, rhol, rksoln,rkstep,
rho,r,m, previous, num:1, nmax:1000, numer:true],

gam : rho™(2/3)/3/sqrt(1 + rho~(2/3)),
gamc : subst( rho = rhoc, gam),

[ = taylor expansion away from r = 0 */

ml : rhoc *r1"3/3,
rhol : rhoc - r1"2 *rhoc™2/gamc/6,
rksoln : [ [r1,m1,rhol], [0, O, rhoc]],

[ = first do loop: search for rho = O position using step dr */

do ( rkstep : rkd_step([rho *r"2, -m *rho/gam/r"2],
[m,rho],[m1,rhol],[r,r1,dr]),
rhol : rkstep[3],
if not floatnump(rhol) then return(),
if num = nmax then (
print(* num = nmax; abort integration"),
return()),
rksoln : cons(rkstep,rksoln),




7 MAXIMA CODE DWARF1(RHOC, DR, RTOL) 12

rl : rkstep[1],
ml : rkstep[2],
num : num + 1),

/= second do loop: search for rho=0 location using step = rtol */

num : 1,
previous : first(rksoln),
rl : previous[1],
ml : previous[2],
rhol : previous[3],
do (rkstep : rk4_step([rho *r"2, -m *rho/gam/r"2],
[m,rho],[m1,rhol],[r,r1,rtol]),
rhol : rkstep[3],
if not floatnump(rhol) then return(),
if num = nmax then return(),
rksoln : cons(rkstep,rksoln),
rl : rkstep[1],
ml : rkstep[2],
num : num + 1),
reverse(rksoln))$

Here is an example of the useafarfl for p. = 1.

(%il) load(project2);

(%01) “c:/k2/project2.mac"

(%i2) soln : dwarf1(1,0.1,0.01)$

(%i3) fli(soln);

(%03) [[0,0,1],[2.49,0.70664,9.7524488E-5],35]

(%i4) soln;

(%04) [[0,0,1],[1.0E-12,3.3333333E-37,1.0],[0.1,3.29 7978E-4,0.99118],
[0.2,0.0026136,0.97034],[0.3,0.0086434,0.9368],[0.4 ,0.019904,0.89197],
[0.5,0.037461,0.83773],[0.6,0.061897,0.77623],[0.7, 0.09329,0.70971],
[0.8,0.13124,0.6404],[0.9,0.17493,0.57035],[1.0,0.2 2321,0.50135],
[1.1,0.27471,0.43491],[1.2,0.32795,0.3722],[1.3,0.3 8141,0.31406],
[1.4,0.43364,0.26104],[1.5,0.48333,0.21343],[1.6,0. 52934,0.17131],
[1.7,0.57077,0.13456],[1.8,0.60694,0.10298],[1.9,0. 6374,0.076269],
[2.0,0.66198,0.054064],[2.1,0.68071,0.036007],[2.2, 0.69387,0.021749],

[2.3,0.70197,0.010999],[2.4,0.70582,0.0036087],
[2.41,0.70601,0.003056],[2.42,0.70617,0.0025395],
[2.43,0.70631,0.0020602],[2.44,0.70642,0.0016195],
[2.45,0.7065,0.0012191],[2.46,0.70656,8.6174615E-4] ,
[2.47,0.70661,5.5097716E-4],[2.48,0.70663,2.9262378 E-4],
[2.49,0.70664,9.7524488E-5]]

The functionfli(aL) returns a list of the first and last elements of &ikt, and also the length @fL, and is inproject2.mac

7.1 MaximaPlotsof m(7) and p(7)

We can use the ligoln to make plots of the mass and the mass density as a functiadiofs: We use the functidake , defined
in project2.mac , to extract a list of just the radial positioris , for example.

(%i5) rL : take(soln,1)$

(%i6) fll(rL);

(%06) [0,2.49,35]

(%i7) mL : take(soln,2)$

(%i8) fll(mL);

(%08) [0,0.70664,35]

(%i9) rhoL : take(soln,3)$

(%i10) fli(rhoL);

(%010) [1,9.7524488E-5,35]

(%ill) plot2d([discrete,rL,mL],[style,[lines,3]],
[xlabel,"r"], [ylabel,"m"],

[gnuplot_preamble,"set grid"])$
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which produces the plot of the scaled masg):

0.8

0.7

0.6

0.5

0.3

0.2

0.1

Figure 1: massn(r) for p. = 1 anddr = 0.1

and then a plot of the scaled mass density:

(%il2) plot2d([discrete,rL,rhoL],[style,[lines,3]],
[xlabel,"r"], [ylabel,"rho"],
[gnuplot_preamble,"set grid"])$

which produces the plot gf(7):

0.9

0.8

0.7

0.6

0.5

rho

0.4

0.3

0.2

0.1

r

Figure 2: mass density(7) for p. = 1 anddi = 0.1

If we decrease bottlr andrtol , we get closer to the true solution (we need to make sarax is large enough to get to = 0):

(%i13) soln2 : dwarf1(1,0.01,0.001)$
(%il14) fli(soln2);

(%014) [[0,0,1],[2.497,0.70706,4.6097242E-6],258]
(%i15) rL2 : take(soln2,1)$

(%i16) fll(rL2);

(%016) [0,2.497,258]

(%i17) mL2 : take(soln2,2)$

(%i18) fli(mL2);

(%018) [0,0.70706,258]

(%i19) rhoL2 : take(soln2,3)$
(%i20) fli(rhoL2);

(%020) [1,4.6097242E-6,258]
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(%i21) plot2d([ [discrete,rL,mL], [discrete,rL2,mL2] ],
[style,[lines,1]], [color,blue,red],
[xlabel,"r"], [ylabel,"m"],
[gnuplot_preamble,"set key bottom right; set grid"],
[legend, "dr = 0.1", "dr = 0.01"])$

which shows the curves right on top of each other:

0.8

0.7

0.6

0.5

0.3

0.2

0.1

dr=01 ——
dr=0.01 ——

Figure 3: massn(r) for p. = 1 and two values ofl7

and now we compare the plots af7) for these two different values af:

(%i22) plot2d([ [discrete,rL,rhoL], [discrete,rL2,rhoL 2] 1,
[style,[lines,1]], [color,blue,red],
[xlabel,"r"], [ylabel,"rho"],
[gnuplot_preamble,"set grid"],
[legend, "dr = 0.1", "dr = 0.01"])$

which produces again curves right on top of each other:

dr=01 ——
dr=001 ——
0.9

0.8

0.7

0.6

0.5

rho

0.4

0.3

0.2

0.1

Figure 4: mass densiy(7) for p. = 1 and two values ofli
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8 R Codedwarfl(rhoc, dr, rtol, nmax)

R code for the function dwarfl(rhoc,dt,rtol,nmax)

is in the fileproject2.R

15

dwarfl = function(rhoc, dr, rtol, nmax) {
#it we don't know how long these vectors need to be
# radius values

# mass values
# mass density values

rL = vector(length = nmax)
mL = vector(length = nmax)
rhoL = vector(length = nmax)

rLf1] = 0
mL[1] = 0
rhoL[1] = rhoc

#it taylor expand away from r = 0 to avoid division by zero probl
rh23 = rhoc”(2/3)
gamc = rh23/3/sqrt(1+rh23)

rl = le-12

ml = rhoc *r1"3/3

rhol = rhoc - r1"2  *rhoc"2/gamc/6

rL[2] = r1

mL[2] = ml

rhoL[2] = rhol
#it first loop: search for rho = 0 position using step dr

num = 2 # number of vector elements defined so far

repeat {

rkstep = rk4_step( c(ml, rhol), rl, dr, derivs)

#it watch for rho becoming negative

if (is.nan(rkstep[2])) {

break }

if (num == nmax) {
cat(" num = ",num,” = nmax; abort integration \n")
return() }

rl =rl + dr

ml = rkstep[1]
rhol = rkstep[2]
num = num + 1
rL[num] = r1
mL[num] = ml
rhoL[num] = rhol}

## dwarfl

H#Ht With rbar -> r, rhobar -> rho, mbar -> m, rhobar_c -> rhoc, dr
H#Ht dwarfl(rhoc,dr,rtol,nmax) returns a R list with the vect

#it given the central density rhoc at r = 0, the step size dr, and
H#Ht maximum number of elements per vector, nmax,

#it (using the externally defined derivs function when calli

#it after taylor expanding the dependent variables out to rl=

#it for rho to pass from positive to negative value.

#it If rho is found to be negative, we back up and let rtol =
#it step size, integrating forward again until rho is found to

#it taking the last good values as the final values of rm and rh
#it and using that last good value of r to define the radius R and
#it last good value of m(r) to define M.

#it Inside dwarfl, rk4_step returns the vector c(m,rho).

cat(" new rho is negative-- go back and try again with smaller

bar -> dr
or elements rL,mL,and rhoL,
the rtol value and the

ng rk4_step)
small, and then watching

small er be the
be negative, then
o}
that
ems

step \n")
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#it second loop: search for rho = 0 location using smaller step size rtol
repeat {
rkstep = rk4_step( c(ml, rhol), rl, rtol, derivs)
#it watch for rho becoming negative
if (is.nan(rkstep[2])) {
#it cat(" rho is negative -- use last good value as surface \n")
break }
if (num == nmax) {
#it cat(" num = nmax; abort integration \n")
return() }

rl = rl + rtol
ml = rkstep[1]
rhol = rkstep[2]
num = num + 1
rL[num] = r1
mL[num] = ml
rhoL[num] = rhol}

#it construct vectors of length num for return
rrL = vector (length = num)
rmL = vector (length = num)
rrhoLl = vector (length = num)
for (kk in 1:num) {
rrL[kk] = rL[kK]
rmL[kk] = mL[kkK]
rrhoL[kk] = rhoL[kk] }

list(rrL, rmL, rrholL) }

The R codadwarfl makes use of the single step Runge-Kutta R abdestep (also inproject2.R  ):

##  rkd_step(init,t,dt,func) returns y(t+dt) if one depend ent variable
#it or returns the vector c(x(t+dt), vx(t+dt)) if simple harm onic oscillator (two dependent
H#Ht variables), etc.

rk4_step = function(init, t, dt, func) {
num.var = length(init)
h =dt # step size

yL = init

k1 = func(t, yL) # vector of derivatives

k2 = func(t + h/2, yL + h xk1/2) # vector of derivatives
k3 = func(t + h/2, yL + h xk2/2) # vector of derivatives
k4 = func(t + h, yL + h xk3) # vector of derivatives

for (k in L:num.var) yL[K] = yL[K] + h *(K1[k] + 2 *k2[K] + 2 =k3[k] + k4[k])/6
if (num.var==1) yL[1] else yL}

and when called insidéwarfl , uses the derivatives functiaterivs , also defined iproject2.R

## derivatives function 'derivs’ for dm/dr = rho *r"2, drho/dr = -m * rho/gamma/r"2
##  y[1] = m, y[2] = rho
## gamma = rho"(2/3)/3/sqrt(1+rho™(2/3))

derivs = function(r,y) {
with( as.list(y), {
y23 = y[2]"(23)
gamma = y23/3/sqrt(1+y23)
dm = "2 »y[2]
drho = -y[1] *y[2]/gamma/r"2
c(dm, drho)})}
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8.1 R Plotsof m(r) and p(7)

Here is an example of use of this R code, using the same celetnalty as in the Maxima example. The functioggrid
project2.R

17

is also in

source("c:/k2/project2.R")
soln = dwarf1(1,0.1,0.01,100)
rL = soln[[1]]

fll(rL)

0 249 35

mL = soln[[2]]

fll(mL)

0 0.70664406 35

> rhoL = soln[[3]]

V V.V V

VvV Vv

> fli(rhoL)

1  9.7524488e-05 35
> plot(rL,mL,type="1",lwd=3,xlab="r",ylab="m",col="b lue™)
> mygrid()

which produces the plot ofu(7) for p. = 1:

Figure 5: massn(r) for p. = 1

and then for the mass density plot,

> plot(rL,rhoL,type="1",lwd=3,xlab="r",ylab="rho",co I="blue")
> mygrid()

which produces the plot:

1.0
|

0.8

0.4

0.0

Figure 6: mass densify(7) for p. = 1



9 ENERGY PLOTS USING MAXIMA

9 Energy PlotsUsing Maxima

18

Using the dimensionless kinetic energy Egs. (3.4, 3.5 fiest show the shape of the kinetic energy integra(ig and then find the
numerical value of the integrdd” which gives the internal kinetic energy of the star as a whole

We use list arithmetic methods in Maxima to generate thefiseeded ordinates from the list©ofvaluesrL and the list ofp-values

rhoL . Recall thadwarfl returns a list of7, m, p] sub-lists.

(%il) load(project2);

(%o01) "c:/k2/project2.mac"

(%i2) soln : dwarf1(1,0.1,0.01)$

(%i3) fli(soln);

(%03) [[0,0,1],[2.49,0.70664,9.7524488E-5],35]

(%i4) rL : take(soln,1)$

(%i5) fll(rL);

(%05) [0,2.49,35]

(%i6) mL : take(soln,2)$

(%i7) fll(mL);

(%07) [0,0.70664,35]

(%i8) rhoL : take(soln,3)$

(%i9) fli(rhoL);

(%09) [1,9.7524488E-5,35]

(%i10) eps(rh) := (3/8/rh) *(rh™(1/3)  *(1+2 *rh™(2/3))

log(rh™(1/3) + sqrt(1+rh™(2/3))))$

(%i11) epsmi(z) = eps(z) - 1%

(%il2) kL : rL"2  *rhoL *map('epsml, rhol);

(%012) [0,2.6047516E-25,0.0025683,0.0099318,0.02113,
0.062613,0.073844,0.081802,0.085953,0.086227,0.0829
0.068388,0.058726,0.048559,0.038578,0.029329,0.0211
0.0090516,0.0050974,0.0024274,8.5586504E-4,1.460987
8.2775005E-5,5.8920496E-5,3.9791237E-5,2.5002888E-5
6.7694126E-6,2.3779311E-6,3.8418924E-7]

(%il3) plot2d([discrete,rL,kL],[xlabel,"r"],[ylabel,

[style,[lines,3]],[y,0,0.1],[gnuplot_preamble,"set g

*sqrt(1+rh”(2/3)) -

0.034741,0.049113,

k()7

51,0.076743,
97,0.0144009,
2E-4,1.1171861E-4,
,1.4144578E-5,

rid"))$

which produces the plot of the kinetic energy integrand:

0.1

0.08 /
0.06

\

k(N

0.04 /
0.02

\

15 2 25

Figure 7: kinetic energy integrarig(7)

We then use the functiomapz(xL,yL)

the value of the integrajOR d7 k(7). The coddrapz(xL,yL)
associated with the output divarfl .

(in the file project2.mac

), to find the “area under the curve”, which represents
uses the trapezoidal rule and accommodates the non-urgfiedm

(%il4) area : trapz(rL,kL);
(%014) 0.096435
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Using the dimensionless gravitational energy Egs. (387, 8te now plot the absolute value of the dimensionless maredy(7) of

U and then compute the numerical value©Gf

(%il5) uL : rL  *mLlxrhoL;

(%i16) plot2d([discrete,rL,uL],[xlabel,"r"],[ylabel,

(%015) [0,3.3333333E-49,3.2688898E-5,5.0722051E-4,0.
0.015691,0.028828,0.046346,0.067236,0.089792,0.1119
0.15572,0.15848,0.15474,0.14509,0.13057,0.11251,0.0
0.051472,0.0332,0.017759,0.006113,0.0051998,0.00433
0.0027914,0.0021102,0.0014978,9.6163089E-4,5.128080

0024291,0.0071014,

"u(r)"],

1,0.13142,0.14648,
92366,0.071579,
99,0.003536,
7E-4,1.715986E-4]

[style,[lines,3]],[y,0,0.25],[gnuplot_preamble,"set grid"N)$

(%il7) area : trapz(rL,uL);
(%017) 0.17767
The plot of|a(7)] is

0.25

0.2

0.15

g
0.1 /
0.05
0
0 0.5 1 15 2 2.5

Figure 8:|u(7)]

For this case, the suii + U = —0.0812, a negative number, as is needed for the existence of a boated s

10 Energy PlotsUsing R

Using the dimensionless kinetic energy Egs. (3.4, 3.5),avepute values of the kinetic energy at thealues used in the integration
of the differential equations, then find the numerical vatiéhe integral/’ which gives the internal kinetic energy of the star as a

whole, and finally plot the shape of the kinetic energy indegi (7).

We use vector methods in R to generate the vector of needethted from the vector afvalues’L and the vector of-valuestholL .

We use the functiotrapz(xL,yL) (in the file project2.R
the integraIfOR d7 k(7). The R coddrapz(xL,yL)

with the output ofdwarfl .

), to find the “area under the curve”, which represents theevaf

uses the trapezoidal rule and accommodates the non-urgfiedrassociated

source("project2.R")

soln = dwarf1(1,0.1,0.01,100)
rL = soln[[1]]

mL = soln[[2]]

rhoL = soln[[3]]

eps = function(rh) {

+ sqrt(1+rh™(2/3))))/8/rh }
epsml = function(z) { eps(z) -1}
kL = rL"2 =rhoL *sapply(rhoL,epsm1)
kL

VVV++VVVVVYV

[1] 0.000000e+00 2.604752e-25 2.568310e-03 9.931753e-03
[6] 3.474073e-02 4.911342e-02 6.261336e-02 7.384384e-02
[11] 8.595289e-02 8.622710e-02 8.295137e-02 7.674282e-0

(" (L/3)  * (1+2*rh"(2/3))  * sqrt(1+rh(2/3)) - log(rh*(1/3)

2.112956e-02
8.180181e-02
2 6.838762e-02




10 ENERGY PLOTS USING R

20

[16] 5.872617e-02 4.855862e-02 3.857759e-02 2.932885e-0
[21] 1.440851e-02 9.051573e-03 5.097404e-03 2.427364e-0
[26] 1.460987e-04 1.117186e-04 8.277500e-05 5.892050e-0
[31] 2.500289e-05 1.414458e-05 6.769413e-06 2.377931e-0
> trapz(rL,kL)

[1] 0.09643478

> plot(rL,kL,type="1",lwd=3,col="blue",xlab = "r",ylab

> mygrid()

D OTWN

2.119674e-02
8.558650e-04
3.979124e-05
3.841892e-07

")

which produces the plot df(7) for p. = 1:

0.04 0.08
I
—
~——

0.00
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\

N

0.0 0.5

Figure 9: kinetic energy integrarig(7)
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Using the dimensionless gravitational energy Egs. (38], 8te again use vector methods in R to find the values of thelaties

value ofu(7) at ther values used in the integration of the white dwarf differahgiquations, ustapz

to find the “area under the

curve”, which is the numerical value ¢ |, and then plot the absolute value of the dimensionlessriatei () of U.

> uL = rL *mL*rhoL
> uL

[11] 8.979184e-02 1.119057e-01 1.314240e-01 1.464765e-0
[16] 1.584790e-01 1.547387e-01 1.450879e-01 1.305683e-0
[21] 9.236633e-02 7.157889e-02 5.147179e-02 3.320043e-0
[26] 6.112973e-03 5.199767e-03 4.339866e-03 3.535981e-0
[31] 2.110234e-03 1.497842e-03 9.616309e-04 5.128081e-0
> trapz(rL,uL)

[1] 0.1776717

> plot(rL,uL,type="1",Iwd=3,col="blue" xlab = "r",ylab

> mygrid()

[1] 0.000000e+00 3.333333e-49 3.268890e-05 5.072205e-04
[6] 7.101385e-03 1.569108e-02 2.882771e-02 4.634633e-02

A WNPRP P

2.429142e-03
6.723638e-02
1.557222e-01
1.125095e-01
1.775878e-02
2.791400e-03
1.715986e-04

"abs(u)")
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which produces the plot

abs(u)
0.05
!
—~

0.0 0.5 1.0 15 2.0 25

Figure 10:|a(7)|

For this case, the sulli + U = —0.0812, a negative number, as is needed for the existence of a beated s

11 Plot of R Versus M Using Maxima

A Maxima functiondwarf3 (in project2.mac ) converts a given central density into the [i31, ).

/= dwarf3(rhoc, dr, rtol) calls dwarfl and returns [Mbar, Rbar ] =/

dwarf3(rhoc, dr, rtol) :=
block([soln,surf,numer:true],
soln : dwarfl(rhoc, dr, rtol),
surf : last(soln),
[surf[2], surf[1]])$

A Maxima functiondwarf4 converts a list of central mass densities into a list wittrelats[A/, R] and returns that list, as well as
printing a table of values.

dwarf4() :=
block([rhoL,drv:0.01,rtolv:0.001,mrL:[],rd3,numer:t ruej,
rhoL : [0.1,0.5,1,5,10,100,1e3,1e4,1e5, 2e5,3e5,4€5],
print(" rhoc M R"),
for v in rhoL do (
rd3 : dwarf3(vv,drv,rtolv),
mrL : cons(rd3, mrL),
printf(true,”& “8f  "10f  T10f ", vv, rd3[1], rd3[2])),
reverse(mrL))$

(%il) load(project?2);
(%01) "c:/k2/project2.mac"
(%i2) mRL : dwarf4();

rhoc M R
0.1 0.2798235 3.759
0.5 0.5498911 2.834
1.0 0.7070609 2.497

5.0 1.12278661 1.833
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10.0 1.29799605 1.591
100.0  1.73549443 0.953
1000.0 1.93281009 0.533
10000.0 1.99719275 0.279
100000.0  2.02782531 0.14
200000.0 2.05241163 0.114
300000.0  2.08105322 0.1
400000.0 2.11459555 0.092
(%02) [[0.27982,3.759],[0.54989,2.834],[0.70706,2.49 71,[1.122787,1.833],
[1.297996,1.591],[1.735494,0.953],[1.93281,0.533] [ 1.997193,0.279],
[2.027825,0.14],[2.052412,0.114],[2.081053,0.1],[2. 114596,0.092]]
(%i3) plot2d([discrete, mRL],[xlabel,"M"],[ylabel,"R" 1,
[style,[lines,3])$

which produces the plot
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Figure 11:R vs. M for p. = 1

12 Plot of R Versus M Using R

AR functiondwarf3 (in project2.R ) converts a given central density into a vector holding thiees(M, R).

##  dwarf3(rhoc, dr, rtol) calls dwarfl and returns c(Mbar, R bar)
dwarf3 = function(rhoc, dr, rtol) {
nmax = 500

soln = dwarfl(rhoc, dr, rtol, nmax) # list(rL,mL,rhoL)
surfL = get_last(soln)
c(surfL[2], surfL[1]) }

## > dwarf3(1,0.1,0.01)
## [1] 0.7066441 2.4900000

A R functiondwarf4 converts a list of central mass densities into a list of twttees,mvandrv , which hold corresponding values
of the scaled masses and radii for the different central miessities, by callinglwarf3 with each central density.

##  dwarf4() calls dwarf3 to accumulate vectors of values of M and R
#it returns list(ML, RL)
dwarf4 = function(rho_vals) {
drv = 0.1
rtolv = 0.01
num = length(rho_vals)
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mv = vector(length=num)

rv = vector(length=num)

k=1

for (rhoc in rho_vals) {

rd3 = dwarf3(rhoc,drv,rtolv)

mv[k] = rd3[1]
rv[k] = rd3[2]
k = k + 1}

list(mv, rv) }

Here we use the R functiadwarf4 to make the plot.

V V V VYV

VvV Vv

source("project2.R")

rhocL = c(0.1, 0.5, 1, 5, 10,100,1e3,1e4,1e5, 2e5, 3e5, 4e5
mRL = dwarf4(rhocL)

ML = mRL[[1]]

fl(ML)

0.2797391  2.096836 12

RL = mRL[[2]]

fl(RL)

3.75 007 12

plot( ML, RL, type = "I, lwd = 3, col = "blue", xlab = "M", ylab
mygrid()

"R

wh

ich produces the plot

Figure 12:R vs. M for p. = 1

We can then make a table of values usitaga.frame

>
>

©CoO~NOOOhWNPE

rho_cases = data.frame(rhoc = rhocL, M = ML, R = RL)
rho_cases
rhoc M R

le-01 0.2797391 3.75
5e-01 0.5496256 2.83
1e+00 0.7066441 2.49
5e+00 1.1219404 1.83
le+01 1.2970923 1.59
le+02 1.7459976 0.96
1e+03 1.9328042 0.53
le+04 1.9970700 0.27
le+05 2.0273174 0.13

10 2e+05 2.0504694 0.10
11 3e+05 2.0713817 0.08
12 4e+05 2.0968360 0.07
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13 Energy Components asa Function of p. and M Using Maxima

The Maxima functiomwarf2 (in project2.mac ) takes asinputthe outputdivarfl and calculates the internal (dimensionless)
kinetic energy of the stdtk, the internal (dimensionless) gravitational energy ofstaeEg, and the internal (dimensionless) kinetic
and rest mass energy of the skm

/= dwarf2(sL) evaluates the dimensionless kinetic (Ek), grav itational energy (Eg),
and kinetic plus rest mass energy (Ekm) of the white dwarf usi ng the
output of dwarfl as input, and returns the list [Ek, Eg, Ekm] */
dwarf2(sL) =
block([rL,mL,rhoL,kL,uL,Ek, Eg,Ekm,tempL, numer:true] Jocal(eps,epsml),
eps(rh) := (3/8/rh) *(rh™(1/3)  *(1+2 xrh™(2/3))  *sqrt(1+rh"(2/3)) -

log(rh™(1/3) + sqrt(1+rh™(2/3)))),
epsml(z) := eps(z) - 1,
rL : take(sL,1),
mL : take(sL,2),
rhoL : take(sL,3),
kL : rL"2 *rhoL *map(’epsml, rhol),
Ek : trapz(rL,kL),
uL : rL *mlxrhoL,
Eg : -trapz(rL,uL),
tempL : float(map('eps, rholL)),
kmL : rL"2 =rhoL *tempL,
Ekm : trapz(rL,kmL),
[Ek, Eg , Ekm ]$

We defineEL(rhoc) to use the output ofiwarfl for a given central mass density as the inputitearf2 , returning the list
[Ek, Eg, Ekm]

(%il) load(project2);

(%o01) "c:/k2/project2.mac"

(%i2) EL(rhvc):= dwarf2(dwarfl(rhvc,0.01,0.001))$
(%i3) EL(1);

(%03) [0.096598,-0.17803,0.80366]
(%i4) EL(10);

(%04) [0.62231,-1.008495,1.920303]
(%i5) EL(1le2);

(%05) [2.435038,-3.355281,4.170529]
(%i6) EL(1e3);

(%06) [6.974003,-8.383828,8.906817]
(%i7) EL(1led);

(%07) [17.09202,-18.80989,19.08944]
(%i8) EL(1e5);

(%08) [39.16687,-41.08195,41.20077]
(%i9) EL(1e6);

(%09) [86.5433,-88.49602,88.56048]

Evidently the sun{Ekm + Eg) approache® at high central densities.

To see the behavior of the total energy as a function of thesrofthe star, we usdwarf5 , which returns a list with elements
[M, Ef]

[ * dwarf5 calls dwarfl and dwarf2 to accumulate a list
with elements [M,Ekm+Eg] */

dwarf5() :=
block([rhoL,drv:0.01,rtolv:0.001,MEL:[],rd1,rd2,
M,Et, numer:true],
rhoL : [0.1,0.5,1,5,10,100,1e3,1e4,1e5, 2e5,3e5,4€5],
print(" rhoc M Et "),
for v in rhoL do (
rdl : dwarfl(vv,drv,rtolv),
M : last(rd1)[2],
rd2 : dwarf2(rdl),
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Et : rd2[2] + rd2[3],

MEL : cons([M, Et], MEL),

printf(true,"& "8e "10f  ~10f ", wv, M, Et)),
reverse(MEL))$

and produces the table

(%i10) mel : dwarf5()$

rhoc M Et

1.0E-1 0.2798235 0.2710139
5.0E-1 0.5498911 0.5057441
1.0E+0 0.7070609 0.6256286
5.0E+0 1.12278661 0.8608924
1.0E+1 1.29799605 0.9118089
1.0E+2 1.73549443 0.8152481
1.0E+3 1.93281009 0.5229894
1.0E+4 1.99719275 0.2795461
1.0E+5 2.02782531 0.1188195
2.0E+5 2.05241163 0.0464371
3.0E+5 2.08105322 0.0018255
4.0E+5 2.11459555 -0.045787

and the output allows us the plot the total dimensionledsed@mergy of the star (including rest mass energy) vergugithensionless
scaled mass of the star.

(%i11) mv : take(mel,1)$

(%i12) fli(mv);

(%012) [0.27982,2.114596,12]

(%i13) Ev : take(mel,2)$

(%i14) fli(Ev);

(%014) [0.27101,-0.045787,12]

(%il5) plot2d( [discrete, mv, Ev] ,[xlabel,"M"],[ylabel, " "],[style,[lines,3]] )$

which produces the plot
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Figure 13: Total Energy; vs. MassM

We see that the total scaled energy becomes negative atcalordlue of the scaled mass of the star, correspondingetacthled
radius of the star going to zero. Although our model is noailiett enough (especially needed is a better treatment gitiisics
near the surface of the star), the present results poinetexistence of an upper limit to the value of the mass of a velvitarf.
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14 Comparison of Non-Relativistic Approximation with Relativistic Solutions

In this section we drop the over-bars on the symbols for tladedcdimensionless variables. In the low density non-ikesic
approximationg < 1, andy(z) ~ 22/3 = p?/3/3, and the pair of ordinary differential equations to be intégd fromr = 0 to the
value ofr at whichp = 0 are then:

dm _ 2 (14.1)
dr
dp 3m(r) pt/3
i AL \VA 14.2
dr r2 ( )
And forr << 1 andr — 0, )
m(r) ~ g Pe T3 (143)
1
plr) = pe = 5 7% pe/* (14.4)

wherep, = p(r = 0).

14.1 Plot comparisons

The Maxima codelwarf6 , following the same logic adwarfl , integrates the non-relativistic case.

(%il) load(project2);

(%o01) "c:/k2/project2.mac"

(%i2) solnl : dwarf1(1,0.1,0.01)$

(%i3) soln6 : dwarf6(1,0.1,0.01)$

(%i4) rL1 : take(solnl,1)$

(%i5) rL6 : take(soln6,1)$

(%i6) mL1 : take(soln1,2)$

(%i7) mL6 : take(soln6,2)$

(%i8) rholLl : take(soln1,3)$

(%i9) rholL6 : take(soln6,3)$

(%il0) plot2d( [ [discrete,rL1,mL1],[discrete,rL6,mL6] 1 \[style,[lines,3]],
[xlabel,"r"], [ylabel,"m"],[legend,"Relativistic","N R"],

[gnuplot_preamble,"set key bottom right;set grid"])$

which produces the comparisonsafr) :
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Figure 14:m(7) for p. = 1

and the comparisons for the mass density profile,

(%ill) plot2d( [ [discrete,rL1,rhoL1],[discrete,rL6,rh oL6] ] ,[style,[lines,3]],
[xlabel,"r"], [ylabel,"rho"],[legend,"Relativistic”, "NR"],
[gnuplot_preamble,"set grid"])$
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which produces the comparisonsif) :
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Figure 15:5(7) for p. = 1

Suggested Further Explorations

Compare the ultra-relativistic cases> 1 with the cases we have considered.

Write R code for functions which will allow exploration tie variations of the energy components with changing aéntr
density and stellar mass, and allow a plot of the total stargn(including rest mass energy) versus the star mass.

Calculate the c.g.s. values of the mass and radius of &whiarf star, assuming iron nucleii, for scaled central diessin

the range we have used, and express the c.g.s. centraligemsiterms of the central density of the Sun, and express the
masses in terms of the mass of the Sun, and express the réatima of the radius of the Sun. Write some code to do these
calculations and make a table.

. Find a theoretical discussion of the physics of the serfagion of a white dwarf star, and incorporate that physits our

model.
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