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This document is Ch. 14 of the series “Maxima by Example” and is made available via the author’s
webpage http://www.csulb.edu/˜woollett/ to aid new users of the Maxima computer algebra sys-
tem.

Ch.14 files used in the examples, available on the author’s webpage, include the chapter software filefit.mac ,
qdraw.mac , the data filesmbe14-fit1.mac throughmbe14-fit8.mac , andcoffee.dat .

Most of the plots in Ch. 14 use ourqdraw.mac software discussed in more detail in Ch. 13.

The interface XMaxima was used with the Windows XP operatingsystem, with the startup file looking like
C:/Documents and Settings/Edwin Woollett/maxima/maxima -init.mac .
If you are using Windows 7, the startup file path looks like
C:/Users/ted/maxima/maxima-init.mac .
See Chapter 1 for more information about setting up the startup file.

COPYING AND DISTRIBUTION POLICY

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.
You may make copies of this document and distribute them to others as long as you charge no more than the
costs of printing.
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1 Introduction

Chapter 14 provides examples of the use of a new set of Maxima functions (defined infit.mac ). These new
functions not only return the best-fit parameter values, butalso the estimated parameter uncertainties and the
χ2 probability of the results. These new functions assume one independent variable and one corresponding
dependent variable and are calledfit_line , fit_slope , fit_y_intercept , lfit , andnlfit . These
new functions also allow for the use, while finding best fit model parameters, of the estimated uncertainties of
the measured dependent variable.

Before introducing these new functions, we remind the reader of the currently available Maxima function
lsquares_estimates .

After introducing the syntax of the newfit.mac fitting functions, we work out nine examples in detail. Seven
of these examples use experimental data from the text “Data Reduction and Error Analysis for the Physical
Sciences,” 3rd ed., Philip R. Bevington and D. Keith Robinson, McGraw-Hill (US), 2003.

A “New International Economy Edition” of this text, printedin India, can be found on theamazon.com web-
site. This text is very valuable because of the in-depth approach and the many examples discussed in a physical
context. We include links to online pdf copies of this text, as well as other suggested resources in the Refer-
ences section at the end of this chapter.

As a quick survey of using the available fitting functions, Example 1 uses our five fitting functionsfit_line ,
fit_slope , fit_y_intercept , lfit , andnlfit , three of the auxiliary functions, and also
lsquares_estimates to fit a simple set of data.

Data files included with Ch. 14 arembe_fit1.dat throughmbe_fit8.dat , in addition tocoffee.dat .
The latter data file was also used in Ch. 2 with a brief example of using lsquares_estimates .

Prior to Example 5 we show how to generate random numbers, histograms, and add Gaussian noise to a signal,
using the standard Maxima packagesdescriptive.mac anddistrib.mac .

In Example 7 we use Legendre polynomials as basis functions in defining a data model. We use the Maxima
functionlegendre_p(n,x) which is defined inorthopoly.lisp . We setorthopoly_returns_intervals

to false in fit.mac so that we get an ordinary number as the return value.

Most of the plots are created using our Ch. 13 softwareqdraw.mac , which provides a simple interface to the
draw2d function. We have includedqdraw.mac with the Ch. 14 files for convenience; it should be placed
in your Maxima work folder along with the data files andfit.mac . The first few Examples provide enough
guidance in the use ofqdraw in the context of this chapter. In particular, in Example 1 wedraw the same plot
(approximately) using bothqdraw anddraw2d separately for comparison.
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2 The Currently Available Maxima Function lsquares estimates

The currently available Maxima least squares fit functions include lsquares_estimates , which is more
general than the functions infit.mac , in the sense thatlsquares_estimates does not restrict the number
of variables and does not assume one variable is the “independent variable.” However, no estimates of the
uncertainties of the fitted parameters is provided.

The Maxima manual has the description:

lsquares_estimates (D, x, e, a)
lsquares_estimates (D, x, e, a, initial = L, tol = t, iprint = [ n1,n2])

Estimate parameters a to best fit the equation e in the variab les x
and a to the data D, as determined by the method of least square s.
lsquares_estimates first seeks an exact solution, and if th at fails,
then seeks an approximate solution.

The return value is a list of lists of equations of the form [a = ..., b = ..., c = ...].
Each element of the list is a distinct, equivalent minimum of the mean square error.

The data D must be a matrix. Each row is one datum (which may be c alled a ‘record’
or ‘case’ in some contexts), and each column contains the val ues of one variable across
all data. The list of variables x gives a name for each column o f D, even the columns
which do not enter the analysis. The list of parameters a give s the names of the parameters
for which estimates are sought. The equation e is an expressi on or equation in the variables
x and a; if e is not an equation, it is treated the same as e = 0.

Additional arguments to lsquares_estimates are specified as equations and passed on
verbatim to the function lbfgs which is called to find estima tes by a numerical method
when an exact result is not found.

If some exact solution can be found (via solve), the data D may contain non-numeric values.
However, if no exact solution is found, each element of D must have a numeric value.
This includes numeric constants such as %pi and %e as well as l iteral numbers (integers,
rationals, ordinary floats, and bigfloats). Numerical cal culations are carried out with ordinary
floating-point arithmetic, so all other kinds of numbers ar e converted to ordinary floats for calculations.

load(lsquares) loads this function.

For information about the use of the optioniprint = [n1,n2] , see the Maxima manual entry under the name
lbfgs . For a long set of examples, see the comments at the top of.../share/lsquares/lsquares.mac .
These latter examples also illustrate the use of the optionsinitial = L andtol = t .

See Example 1 for an example of usinglsquares_estimates .

3 Syntax of the fit.mac Functions

In the following functions,Mdata is a two column matrix, with the first column containing the values of the
independent variable at which values of the dependent variable have been measured, and with the second col-
umn containing the corresponding values of the dependent variable. length(Mdata) will then produce the
number of data points (the number of rows of the matrixMdata ).

sigL is a list of the estimated experimental errors of the dependent variable, with a separate number for each
measured value; this list should have the same length as the number of data points. We ignore any measurement
errors in the values of the independent variablexi, assuming such possible errors are much smaller than those
of the corresponding dependent variableyi. If you have no estimate of theyi experimental errors, you can still
find a set of approximate numerical values of the parameters in your model by definingsigL to be a list of 1’s.
sigL : makelist (1,i,1,length (Mdata)) .
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Since we ignore the uncertainties of the independent variable valuesxi, the uncertainty in the value found for
the parameters depends only on the uncertaintiesσi of the dependent variable measured valuesyi. We need
some approximate estimate of these uncertainties to find reliable uncertainties in the fitted values of the model
parameters as well as a reliable value of theχ2 probabilityQ ( the goodness-of-fit fractional probability).Q is
the (fractional) probability that a value ofχ2 (pronounced “chi-square”) greater than the value calculated from
the data would be produced in a repetition of the same experiment.

Once you have found a set of fitted values of the model parameters, you can use the functiony_gaussian_PE

(see Example 1 for an example) to produce a value of the probable error of the dependent variable measure-
ments, provided values drawn at a fixed value of the independent variable are drawn from a Gaussian distribu-
tion (more about this later), allowing a recalculation witha newsigL which will provide much better estimates
of the model parameter uncertainties.

ymodel is an expression depending on some parameters and an independent variable, such asa + b* x, in
which [a,b] are model parameters, andx is the independent variable, and the model is a two parameterfit
to a straight line. If your measurements are taken at different temperaturesT, for example, you would use for
ymodela + b* T. You can use any symbols for the unknown parameters, such asa1 + a2 * x . A general
linear fit model might be, for examplea + b* cos(x) + c * exp(-x) , which contains three parameters, and
this model expression is linear in each of the three parameters. The functionlfit (or nlfit ) should be used
for such a general linear model. Both of the functionslfit andnlfit (the latter being the general non-linear
fit function), can also fit a model containing terms which don’t involve parameters, such as:

cos(x)/xˆ3 + a * sin(x) + b * exp(-x) . The non-linear fit functionnlfit can be used with both linear
and non-linear models. An example of a non-linear model (non-linear in at least one of the parameters) is
a* exp(-b * x) + c * cos(d * x) , which has two linear parameters and two non-linear parameters.

The argumentparamL is a list of the model parameters, such as[a,b] or [a1,a2] , etc. The functions detect
the name being used for the independent variable from the expression used forymodel .

The non-linear fitting functionnlfit requires as its last argument the listparam-initL ; for example, if the
fit is a two parameter fit,[1,-1] would be a list of the initial values of the two parameters. Anexample would
be:
nlfit (dataM, sL, a * exp(-b * x),[a,b],[1,-1]) .

The functiony_gaussian_PE has as its second argumentdof , the “number of degrees of freedom” of the fit,
which is equal to the number of data points minus the number ofparameters being fitted.

Each of our “fitting functions” searches for values of the parameters which produce a locally smallest numerical
value of the non-negative numberχ2, defined as

χ2(a) =
N
∑

i=1

(

yi − y(xi, a)

σi

)2

, (3.1)

in which yi is the measured value atx = xi, with an estimated uncertainty given byσi, a stands for the set of
model parameters, andy(xi, a) is the model prediction for the value of the dependent variable atx = xi. We
ignore any measurement errors in the values of thexi, assuming such possible errors are much smaller than
those of the correspondingyi.

A necessary condition for the existence of a local minimum ofχ2(a) is that the first derivative ofχ2 with re-
spect to each of the parameters is equal to zero, a requirement that yields the same number of equations as the
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number of parameters.

Each of our fitting functions returns the list[paramL, errorL,chi2,Q] , in whichchi2 stands forχ2 (eval-
uated for the values of the fitted parameters), andQ stands for the “χ2 fractional probability”, the (fractional)
probability a repetition of the data measuring experiment (starting with the same environment and initial con-
ditions) would produce a value ofχ2 as large as the value found here. The “percent probability” is 100 times
the value ofQ. (See the details and derivations section for more background.) Each of our fitting functions
also print to the screen the values of the ratio ofχ2 to the number of degrees of freedom, as well as the value ofQ.

Given numerical values for the model parameters, you can independently calculateχ2 using the function
get_chi2 , whose third and last argumentyfit_expr might be1.2 - 3.4 * x for a straight line fita + b* x ,
in which the y-intercepta = 1.2 , and the slopeb = -3.4 .

You can also independently reproduce the screen printouts of chi2/dof andQusing thechi2_prob function.

One can show (see details and derivations section) that if the “reduced chi-square”

χ2
ν ≡ χ2

ν
≡ χ2

dof
(3.2)

is of the order 1, thenQ ≈ 0.5, and both measures indicate a good fit to the data. For a straight line fit in which
two parameters must be adjusted usingN data points, the “number of degrees of freedom”ν = dof = N − 2.

Quoting (loosely) Numerical Recipes (1992, Sec. 15.2)

. . . If Q is larger than, say,0.1 (i.e., the goodness-of-fit probability is greater than10%), then the
goodness-of-fit is believable. If it is larger than, say,0.001 (i.e., the goodness-of-fit probability
is larger than0.1%), then the fitmaybe acceptable if the errors are nonnormal [non-gaussian] or
have been moderately underestimated. IfQ is less than0.001 then the model and/or estimation
procedure can rightly be called into question.

For convience in checking syntax, we insert here the syntax of the most useful functions defined in the file
fit.mac .
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3.1 fit line (Mdata, sigL), Two Parameter Straight Line Fit

3.2 fit slope (Mdata, sigL, y-intercept), One Parameter Straight Line Fit, Given the
Y-intercept

3.3 fit y intercept (Mdata, sigL, slope), One Parameter Straight Line Fit, Given the
Slope

3.4 lfit (Mdata, sigL, ymodel, paramL), General Linear Fit

3.5 nlfit (Mdata, sigL, ymodel, paramL, param-initL), General Nonlinear Fit

3.6 moment (dataL)

3.7 y gaussianPE (Mdata, dof, ymodel), Probable Data Error if Gaussian

3.8 getchi2 (Mdata, sigL, yfit expr), χ2 Value Based on Fitted Parameters

3.9 chi2 prob (chi2, dof)

3.10 Vsearch (Mdata, sigL, ymodel, paramL, param-valuesL), Visual Search for Pa-
rameter Values

3.11 grid search(Mdata, sigL,ymodel,paramL,param-initL,stepFactor), Grid Search

4 Example 1: Straight Line Fit of Data with No Error Informati on

As a quick survey of using the available fitting functions, Example 1 uses our five fitting functionsfit_line ,
fit_slope , fit_y_intercept , lfit , andnlfit , as well as three of the auxiliary functions to fit a simple
set of data.

In addition, we compare our fit results with Maxima’slsquares_estimates output, which can find the
best fit parameters (ignoring relative weights of various data points) but does not return information about the
estimated uncertainties of the parameters found. It is important to realize that if the estimated errorsσi of
the values of the measured quantityyi at eachxi are assumed to be the same in magnitude and sign, then
lsquares_estimates should return the same values for the model parameters as ourfit functions. If the
values of theσi are not all the same, as is the case for measurementsyi controlled by Poisson statistics for
example, then the values returned for the parameters are notexpected to be identical.

Example 1 is taken from Bevington (Data Reduction and Error Analysis for the Physical Sciences,1st. ed,
1969, p. 93-94). The data in our filembe14-fit1.dat describes measurements of temperatureT along a rod
in degrees Celsius (column 2) at positionsx in centimeters along the rod (column 1).

We will try to use a straight line fitT = a+b x, to the given data, in whicha is the prediction of the temperature
whenx = 0, andb is the rate of change in temperature (degrees per cm.) along the rod. Generically, we call
these respectively the “y-intercept” and the “slope” of thebest fit line.

No errors in temperature measurement are available, so we define sigL to be a list of 1’s when calling
fit_line , fit_slope , fit_y_intercept ( the three functions which are restricted to straight line fits),
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or when callinglfit (general linear fit) ornlfit (general non-linear fit) for the first time.

In the absence of any additional information, we expect any temperature measurement (as a function of distance
or time, etc) to be subject to both instrumental and random Gaussian errors, and we usey_gaussian_PE to
estimate the size of temperature measurement errors based on both the given data as well as the best fit values
of the straight line parameters found using the stop-gap device of assumingsigL to be a list of 1’s.

We can then re-do our calculation of the best fit straight-line parameters, and the resulting estimates returned of
the probable error size of those parameters should be more reasonable than ocurred in the first go. In addition,
the values of theχ2 probabilityQ and the value of the “reduced”χ2 value can finally be taken seriously.

The author’s work folder for this chapter isc:/work9/ , and the various chapter data files are available for
use there, as well as the filefit.mac . Because the Maxima startup filemaxima-init.mac has been edited
(or created) to let Maxima know the location of the current work folder (see the first chapter of Maxima by
Example for a discussion of this issue), we can useload(fit) instead ofload("fit.mac") or the even
more onerousload ("c:/work9/fit.mac") to aquaint Maxima with the functions defined in that software
file.

At the bottom offit.mac appears a reset of some global variables which proves convenient for our work in
this chapter:

ratprint : false$
orthopoly_returns_intervals : false$
display2d : false$
fpprintprec : 6$

The actual calculations are performed using 16 digit floating point arithmetic, as usual with Maxima in its
default mode.

We prefer to use the interface XMaxima for routine work, and the settingdisplay2d : false allows a
denser display of information per screen. You are, of course, free to change this setting infit.mac at any
time. (And free also to change the definition of any of our functions!)

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) fname : "c:/work9/mbe14-fit1.dat"$
(%i3) printfile (fname)$
1.0 15.6
2.0 17.5
3.0 36.6
4.0 43.8
5.0 58.2
6.0 61.6
7.0 64.2
8.0 70.4
9.0 98.8
(%i4) Mdata : read_matrix (fname);
(%o4) matrix([1.0,15.6],[2.0,17.5],[3.0,36.6],[4.0,4 3.8],[5.0,58.2],

[6.0,61.6],[7.0,64.2],[8.0,70.4],[9.0,98.8])
(%i5) ndata : length (Mdata);
(%o5) 9

The objectMdata (you can use any name for this) is a Maxima matrix whose first column contains valuesxi of
the “independent variable”x (distance along the rod), and the second column contains corresponding valuesTi

of the “dependent variable”T (the temperature), and each of the nine rows describes one “data point”(xi, Ti).
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4.1 Two Parameter Fit using fit line

We first usefit_line(data_matrix, error_list) , a function that actually calls the general linear fit
functionlfit . Initially we don’t have error estimates for the temperature values, so just set all the temperature
errors equal to 1 for now.

(%i6) sigL1 : makelist(1,i,1,ndata);
(%o6) [1,1,1,1,1,1,1,1,1]
(%i7) out : fit_line (Mdata,sigL1);

fit model y(x) = a + b * x to given data
a = y-intercept, b = slope
ivar = x
num_data = 9
num_param = 2
dof = 7
chi2/dof = 45.2369
chi2_prob = 1.67021e-62 %

a = 4.81389 +/- 0.726483
b = 9.40833 +/- 0.129099
(%o7) [[a = 4.81389,b = 9.40833],[0.726483,0.129099],316 .658,1.67021e-64]
(%i8) yfit : a + b * x, out[1];
(%o8) 9.40833 * x+4.81389

Each of our fitting functions returns the list[paramL,errorL,chi2,Q] , in which paramL is a list of the
best-fit parameter values (including parameter names),errorL is a list of the corresponding parameter un-
certainties,chi2 stands forχ2 (evaluated for the values of the fitted parameters), andQ stands for the “χ2

fractional probability”, the (fractional) probability a repetition of the data measuring experiment (starting with
the same environment and initial conditions) would producea value ofχ2 as large as the value found here. The
percent probability is 100 times the value ofQ.

For this example, the number of degrees of freedom (dof) is the number of data points (9) minus the number of
fitted parameters (2) which givesdof = 7 . The value of the “reducedχ2”, chi2/dof should be of the order
of 1 for a really good fit, and we see a poor fit.

Theχ2 probabilityQ is ridiculously small, again indicating a really poor fit. You can independently calculate
these quantities usingchi2_prob(chi2,dof) .

(%i9) chi2_prob (317,7);
chi2/dof = 45.2857
chi2_prob = 1.4115e-62 %

(%o9) done

We now use the returned values of the parameters to estimate the temperature “probable errors” if they have
a gaussian distribution, using the functiony_gaussian_PE (data-matrix, dof, yfit_expr) , define a
new list of estimated errors, and callfit_line again.

(%i10) y_gaussian_PE (Mdata,7, yfit);
(%o10) 4.48389
(%i11) sigL2 : makelist(4.5,i,1,ndata);
(%o11) [4.5,4.5,4.5,4.5,4.5,4.5,4.5,4.5,4.5]
(%i12) out : fit_line (Mdata,sigL2);

fit model y(x) = a + b * x to given data
a = y-intercept, b = slope
ivar = x
num_data = 9
num_param = 2
dof = 7
chi2/dof = 2.23392
chi2_prob = 2.86433 %

a = 4.81389 +/- 3.26917
b = 9.40833 +/- 0.580948
(%o12) [[a = 4.81389,b = 9.40833],[3.26917,0.580948],15. 6374,0.0286433]



4 EXAMPLE 1: STRAIGHT LINE FIT OF DATA WITH NO ERROR INFORMATION 11

(%i13) yfit : a + b * x, out[1];
(%o13) 9.40833 * x+4.81389

The output indicates that the best fit straight lineT = a + b x has parameter estimatesa = 4.8 ◦C, b =
9.4 ◦C/cm, with probable parameter uncertaintiesσa = 4.9 ◦C, σb = 0.87 ◦C/cm. The “probable error” of any
one of the temperatures, based on this data set, isP.E. = 4.5 ◦C. Let σpe represent the probable error. Then if
one takesrepeatedindependent measurements ofyi for a fixed value ofxi, roughly50% of the values will lie
in the range(ȳ − σpe, ȳ + σpe), whereȳ is the arithmetic mean of theyi values taken for fixedxi.

We can independently check the value ofχ2 usingget_chi2 :

(%i14) get_chi2(Mdata,sigL2,4.81 + 9.41 * x);
(%o14) 15.6375

4.2 Plots

We prefer to use ourqdraw.mac graphical package for simple plots. (Other Maxima options areplot2d anddraw2d .)
For more details aboutqdraw , see Maxima by Example, Ch. 13. We proceed to make a simple plot of the data points,
the best fit straight line, and simple error bars based on the value reported for the probable errors (P.E.). So you can
compare usingqdraw with direct use ofdraw2d , we use both plot methods in this first example. To use theqdraw
plotting interface, you must load bothdraw.lisp as well asqdraw.mac . To load the qdraw package file, you can
just useload(qdraw) if you have the file in your work folder and have set up your file search paths as described in
Chap. 1. Otherwise, if your work folder is (for example)c:\work9 , and you have placedqdraw.mac in that folder,
useload("c:/work9/qdraw.mac") .

(%i15) load(draw);
(%o15) "C:/Program Files/Maxima-sbcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%i16) load(qdraw);
" qdraw(...), qdensity(...), qdensity1(...), syntax: typ e qdraw(); "
(%o16) "c:/work9/qdraw.mac"
(%i17) plist : read_nested_list (fname);
(%o17) [[1.0,15.6],[2.0,17.5],[3.0,36.6],[4.0,43.8], [5.0,58.2],[6.0,61.6],

[7.0,64.2],[8.0,70.4],[9.0,98.8]]
(%i18) qdraw ( ex1 (yfit, x, 0,10),pts (plist,pc(black),ps (1)),

key (bottom), errorbars (plist,4.5, lw(3), lc(black) ),
yr (-10,110) )$

which produces the plot

Figure 1: Data Points and Best Fit Line: T vs. x, using qdraw
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We can also usedraw2d directly, without theqdraw interface, making use of thedraw2d errors element.
We first need to append the probable error4.5 to the end of each data point sublist inplist using Maxima’s
lambda function.

(%i19) pelist : map (lambda ([pL], append (pL,[4.5])), plis t);
(%o19) [[1.0,15.6,4.5],[2.0,17.5,4.5],[3.0,36.6,4.5] ,[4.0,43.8,4.5],[5.0,58.2,4.5],

[6.0,61.6,4.5],[7.0,64.2,4.5],[8.0,70.4,4.5],[9.0,9 8.8,4.5]]
(%i20) draw2d ( yrange = [-10,110], xaxis=true, xaxis_widt h=2,grid=true,

line_width=3,color=blue, explicit( yfit,x,0,10),
color=black, errors (pelist) )$

which produces a plot similar to that produced byqdraw :

Figure 2: Data Points and Best Fit Line: T vs. x, using draw2d directly

4.3 Two Parameter Fit using lfit(dataM,sL,ymodel,pL)

The general linear fit functionlfit can, of course, be called directly for this straight line fit.

(%i21) out : lfit (Mdata,sigL2,a + b * x,[a,b]);
ivar = x
num_data = 9
num_param = 2
dof = 7
chi2/dof = 2.23392
chi2_prob = 2.86433 %

a = 4.81389 +/- 3.26917
b = 9.40833 +/- 0.580948
(%o21) [[a = 4.81389,b = 9.40833],[3.26917,0.580948],15. 6374,0.0286433]

and the results are identical.

4.4 Two Parameter Fit using nlfit(dataM,sL,ymodel,pL,pgL)

We can also try out the general nonlinear fit functionnlfit :

(%i22) nlfit (Mdata,sigL2,a + b * x,[a,b],[1,1]);
Ndata = 9
Nparam = 2
dof = 7
ivar = x

start: params: [a = 1.0,b = 1.0] chi2 = 1159.67
--------------------------------------------------- ------------

n lam
1 0.001
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p_oldL = [1.0,1.0]
p_newL = [4.99374,9.37156] chi2_new = 15.6414

2 1.0e-4
p_oldL = [4.99374,9.37156]
p_newL = [4.81577,9.408] chi2_new = 15.6374

--------------------------------------------------- ------------
chi2/dof = 2.23392
chi2_prob = 2.86433 %

--------------------------------------------------- ------------
a = 4.81577 +/- 3.254
b = 9.408 +/- 0.578252
(%o22) [[a = 4.81577,b = 9.408],[3.254,0.578252],15.6374 ,0.0286433]

with parameter values the same to three decimal places.

4.5 Two Parameter Fit using lsquaresestimates

lsquares_estimates first tries to find an exact solution, usingsolve , and this is the result:

(%i23) load(lsquares);
(%o23) "C:/Program Files/Maxima-sbcl-5.36.1/share/max ima/5.36.1/share/lsquares/lsquares.mac"
(%i24) lsquares_estimates(Mdata,[x,y], y = a + b * x,[a,b]);
(%o24) [[a = 1733/360,b = 1129/120]]
(%i25) float(%);
(%o25) [[a = 4.81389,b = 9.40833]]

which agrees with ourfit_line andlfit values for the parameters.

4.6 One Parameter Fit using fitslope

If we assume from the start that we want a fit with the y-intercept having the value4.81, we can usefit_slope :

(%i26) fit_slope (Mdata,sigL2,4.81);
fit model y(x) = 4.81 + b * x to given data
ivar = x
num_param = 1
num_data = 9
dof = 8
chi2/dof = 1.95468
chi2_prob = 4.78735 %

b = 9.40895 +/- 0.266557
(%o26) [[b = 9.40895],[0.266557],15.6374,0.0478735]

4.7 One Parameter Fit using fity intercept

If we want a fit in which the slope is required to be9.41, then we can usefit_y_intercept :

(%i27) fit_y_intercept (Mdata,sigL2,9.41);
fit model y(x) = a + ( 9.41 ) * x to given data
ivar = x
num_param = 1
num_data = 9
dof = 8
chi2/dof = 1.95468
chi2_prob = 4.78733 %

a = 4.80556 +/- 1.5
(%o27) [[a = 4.80556],[1.5],15.6374,0.0478733]
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5 Example 2: Straight Line Fit of Data with Poisson Error Statistics

This example is taken from the first edition (1969) of Bevington’s text “Data Reduction and Error Analysis for
the Physical Sciences” (p. 95 - 97); see the References section at the end of this chapter.
Quoting Bevington:

Consider a counting experiment in which we count the number of events recorded in a detector as
a function of time. We have a source which is emitting radiation, and the number of counts per unit
time from our detector is a measure of the rate at which this radiation is being emitted. We observe
qualitatively that the rate of emission is decreasing approximately linearly with time and we wish
to describe this quantitatively.

We cannot determine the counting rate instantaneously because no counts will be detected in an
infinitesimal time interval. But we can determine the numberof countsC detected over a time
interval∆t, and this should be representative of the average counting rate over that interval. . . . it
is customary and convenient to make the intervals equally spaced in time as well as equally long.

In this example, the intervals are both equal∆ti = ∆t and contiguous∆ti = ti+1 − ti; the times
ti at which the successive intervals start are given byti = (i− 1)∆t, with time measured from the
beginning of the first interval.

The data inmbe14-fit2.dat describes ten measurements of the number of countsCi per 15 sec as a function
of time. The first column is the time (in sec) of the beginning of each 15 sec interval.

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) fname : "c:/work9/mbe14-fit2.dat"$
(%i3) printfile (fname)$
0 106
15 80
30 98
45 75
60 74
75 73
90 49
105 38
120 37
135 22

Quoting from Sec 15.02 of Nuclear Radiation Physics by RalphLapp and Howard Andrews (2nd. edition,
1954)

Statistical fluctuation
When radiation measurements are made, it is observed that all readings show fluctuations. This
behavior is not always due to the instability of the measuring instrument but is inherent in the
nature of radiation sources. Each nuclear disintegration is a completely random and independent
process. Such a random process will obey the laws of statistics, which predict that, even though
there is a definite average rate of disintegration, the number actually counted in a given time will
show deviations from this average.

The “true value” of a count can be obtained as the arithmetic mean of a very large number of
observations, if proper care is taken to keep all experimental conditions constant. If the fluctuations
of individual observations about the true value have a normal or Poisson distribution, the standard
deviationσ of a single observation ofN counts will be

σ =
√
N (5.1)
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Since we have measurements of the counting rate as a functionof time in this example, if we performed many
repetitions of this experiment, with an identically prepared radioactive source, and kept track of the number
of counts per 15 sec. starting after one minute of time for example, the numbers would approximately obey a
Poisson distribution of values.

After creating a Maxima matrixMdata from the data file, we can then obtain a list of just the dependent variable
yi = Ci values (count-rate, counts per 15 sec.), usinglist_matrix_entries together with thecol function.
We can then take the square root of these values to get the estimated statistical errorsσi of the individual count
rate values, thus definingsigL .

(%i4) Mdata : read_matrix (fname);
(%o4) matrix([0,106],[15,80],[30,98],[45,75],[60,74] ,[75,73],[90,49],[105,38],

[120,37],[135,22])
(%i5) yL : list_matrix_entries (col (Mdata,2));
(%o5) [106,80,98,75,74,73,49,38,37,22]
(%i6) sigL : sqrt (yL),numer;
(%o6) [10.2956,8.94427,9.89949,8.66025,8.60233,8.544 ,7.0,6.16441,

6.08276,4.69042]
(%i7) out : fit_line (Mdata, sigL);

fit model y(x) = a + b * x to given data
a = y-intercept, b = slope
ivar = x
num_data = 10
num_param = 2
dof = 8
chi2/dof = 1.04017
chi2_prob = 40.2721 %

a = 104.462 +/- 5.25106
b = -0.593987 +/- 0.0536575
(%o7) [[a = 104.462,b = -0.593987],[5.25106,0.0536575],8 .3214,0.402721]
(%i8) yfit : a + b * t, out[1];
(%o8) 104.462-0.593987 * t

which indicates thatχ2/ν ≈ 1 and there is a roughly40% probability that a repetition of the same experiment
(a similarly prepared radiation source, etc.) would produce a value ofχ2 greater than that found. Thus both
measures of goodness-of-fit imply that a straight line modelis a good fit to the given data.

We loaddraw andqdraw and make a simple plot of the raw data.

(%i9) load(draw);
(%o9) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/draw/draw.lisp"
(%i10) load(qdraw);
" qdraw(...), qdensity(...), qdensity1(...), syntax: typ e qdraw(); "
(%o10) "c:/work9/qdraw.mac"
(%i11) ptsL : read_nested_list (fname);
(%o11) [[0,106],[15,80],[30,98],[45,75],[60,74],[75, 73],[90,49],[105,38],

[120,37],[135,22]]
(%i12) qdraw (pts (ptsL,pc(black),ps(1)),

xr (-10,140), yr (0,120),
more (xlabel = "t", ylabel = "C"))$



5 EXAMPLE 2: STRAIGHT LINE FIT OF DATA WITH POISSON ERROR STATISTICS 16

which produces the plot

Figure 3: Counts per 15 sec. vs. Time (sec.) Raw Data

We can then add error bars

(%i13) qdraw (pts (ptsL,pc(black),ps(1)),
xr (-10,140),yr(0,120),
more (xlabel = "t", ylabel = "C"),
errorbars (ptsL, sigL, lw(3),lc(blue)))$

which produces the plot

Figure 4: Counts vs. Time Raw Data with Statistical Error Bars

Finally, we can add the straight line fit to the data

(%i14) qdraw (pts (ptsL,pc(black),ps(1)),
xr (-10,140),yr(0,120),
more (xlabel = "t", ylabel = "C"),
errorbars (ptsL, sigL, lw(3),lc(blue)),
ex1 (yfit, t ,0, 140, lc(brown)))$



6 EXAMPLE 3: STRAIGHT LINE FIT OF DATA WITH UNIFORM INSTRUMENTAL ERRORS 17

which produces the plot

Figure 5: Counts vs. Time Data with Best Fit Line

We also try out the general nonlinear method functionnlfit on this two parameter linear problem.

(%i15) nlfit (Mdata,sigL,a + b * x,[a,b],[1,1]);
Ndata = 10
Nparam = 2
dof = 8
ivar = x

start: params: [a = 1.0,b = 1.0] chi2 = 1153.75
--------------------------------------------------- ------------

n lam
1 0.001

p_oldL = [1.0,1.0]
p_newL = [103.184,-0.580648] chi2_new = 8.3852

2 1.0e-4
p_oldL = [103.184,-0.580648]
p_newL = [104.448,-0.593843] chi2_new = 8.32141

3 1.0e-5
p_oldL = [104.448,-0.593843]
p_newL = [104.462,-0.593985] chi2_new = 8.3214

--------------------------------------------------- ------------
chi2/dof = 1.04017
chi2_prob = 40.2721 %

--------------------------------------------------- ------------
a = 104.462 +/- 5.22337
b = -0.593985 +/- 0.0533745
(%o15) [[a = 104.462,b = -0.593985],[5.22337,0.0533745], 8.3214,0.402721]

which produces results similar tofit_line .

6 Example 3: Straight Line Fit of Data with Uniform Instrumen tal
Errors

The raw data from Table 6.1 from Bevington (3rd edition, pdf 114, see the References section at the end of this
document) is contained in the filembe14-fit3.dat , with column 1 the position (x in cm.) along a current
carrying nickel-silver wire, and column 2 being the corresponding voltage (V in volts), with nine data points
provided. From the nature of the voltage meter, we assume each voltage reading has a uniform uncertainty
equal to 0.05 volts. We usefit_line to try fitting the straight lineV = a+ b x to the given data.

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) fname : "c:/work9/mbe14-fit3.dat"$
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(%i3) printfile (fname)$
10.0 0.37
20.0 0.58
30.0 0.83
40.0 1.15
50.0 1.36
60.0 1.62
70.0 1.90
80.0 2.18
90.0 2.45
(%i4) Mdata : read_matrix (fname);
(%o4) matrix([10.0,0.37],[20.0,0.58],[30.0,0.83],[40 .0,1.15],[50.0,1.36],

[60.0,1.62],[70.0,1.9],[80.0,2.18],[90.0,2.45])
(%i4) ndata : length (Mdata);
(%o4) 9
(%i5) sigL : makelist (0.05,i,1,ndata);
(%o5) [0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05]
(%i6) out : fit_line (Mdata,sigL);

fit model y(x) = a + b * x to given data
a = y-intercept, b = slope
ivar = x
num_data = 9
num_param = 2
dof = 7
chi2/dof = 0.278508
chi2_prob = 96.2579 %

a = 0.0713889 +/- 0.0363242
b = 0.0262167 +/- 6.45497e-4
(%o6) [[a = 0.0713889,b = 0.0262167],[0.0363242,6.45497e -4],1.94956,0.962579]
(%i7) yfit : a + b * x, out[1];
(%o7) 0.0262167 * x+0.0713889

We then plot the best fit straight line with the data points, including error bars, usingqdraw as above:

(%i8) ptsL : read_nested_list (fname);
(%o8) [[10.0,0.37],[20.0,0.58],[30.0,0.83],[40.0,1.1 5],[50.0,1.36],

[60.0,1.62],[70.0,1.9],[80.0,2.18],[90.0,2.45]]
(%i9) load(draw);
(%o9) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/draw/draw.lisp"
(%i10) load(qdraw);
(%o10) "c:/work9/qdraw.mac"
(%i11) qdraw (pts (ptsL,pc(black),ps(1)),

xr (0,100),yr(0,3),
more (xlabel = "x", ylabel = "V"),
errorbars (ptsL, sigL, lw(3),lc(blue)),
ex1 (yfit, x,0,100, lc(brown)))$

which produces the plot

Figure 6: Voltage vs. Position Data with Best Fit Line
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7 Example 4: Straight Line Fit of Inverse Square Law with Poisson
Errors

The raw data from Table 6.2 from Bevington (3rd edition, pdf 114-115) is contained in the filembe14-fit4.dat ,
with column 1 the distance (d in meters) from a radioactive source to a Geiger counter, andcolumn 2 being the
corresponding number of counts in 7.5 min intervalsC, with ten data points provided. We seek to fit a general
inverse square law model

C = a + b/d2 = a+ b x (7.1)

with x = 1/d2, the squared inverse distance with units1/m2, to this data. Since the values of the dependent
variableyi = Ci represent the number of counts recorded in a Geiger counter exposed to a radioactive source in
some standard time interval, we ignore possible intrumental Geiger counter errors and include only the typical
Poisson statistics errors associated with the source We usefit_line to try fitting the straight lineC = a+ b x
to the data. We follow the steps used in Example 2 which assumed Poisson errors. We need to convert the raw
data(d, C) (in the data file) to the form(x = d−2, C).

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) fname : "c:/work9/mbe14-fit4.dat"$
(%i3) printfile (fname)$
0.20 901
0.25 652
0.30 443
0.35 339
0.40 283
0.45 281
0.50 240
0.60 220
0.75 180
1.00 154
(%i4) dCM : read_matrix (fname);
(%o4) matrix([0.2,901],[0.25,652],[0.3,443],[0.35,33 9],[0.4,283],[0.45,281],

[0.5,240],[0.6,220],[0.75,180],[1.0,154])
(%i5) dL : list_matrix_entries (col (dCM,1));
(%o5) [0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.6,0.75,1.0]
(%i6) CL : list_matrix_entries (col (dCM,2));
(%o6) [901,652,443,339,283,281,240,220,180,154]
(%i7) sigL : sqrt(CL),numer;
(%o7) [30.0167,25.5343,21.0476,18.412,16.8226,16.763 1,15.4919,14.8324,13.4164,

12.4097]
(%i8) xL : 1/dLˆ2;
(%o8) [25.0,16.0,11.1111,8.16327,6.25,4.93827,4.0,2. 77778,1.77778,1.0]
(%i9) xCL : xyList (xL,CL);
(%o9) [[25.0,901],[16.0,652],[11.1111,443],[8.16327, 339],[6.25,283],

[4.93827,281],[4.0,240],[2.77778,220],[1.77778,180] ,[1.0,154]]
(%i10) xCM : apply (’matrix, xCL);
(%o10) matrix([25.0,901],[16.0,652],[11.1111,443],[8 .16327,339],[6.25,283],

[4.93827,281],[4.0,240],[2.77778,220],[1.77778,180] ,[1.0,154])
(%11) out : fit_line (xCM,sigL);

fit model y(x) = a + b * x to given data
a = y-intercept, b = slope
ivar = x
num_data = 10
num_param = 2
dof = 8
chi2/dof = 1.36831
chi2_prob = 20.475 %

a = 119.497 +/- 7.5676
b = 30.6979 +/- 1.03408
(%11) [[a = 119.497,b = 30.6979],[7.5676,1.03408],10.946 5,0.20475]
(%i12) yfit : a + b * x, out[1];
(%o12) 30.6979 * x+119.497

A linear fit to the data of the functionC = a + b x givesa = 119± 8, b = 31± 1, with χ2 ≈ 11 for 8 degrees
of freedom,χ2

ν = 1.4. Theχ2 probability for the fit is about20%.
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We proceed to plot the data points and the straight line fit.

(%i13) load(draw);
(%o13) "C:/Program Files/Maxima-sbcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%i14) load(qdraw);
" qdraw(...), qdensity(...), qdensity1(...), syntax: typ e qdraw(); "
(%o14) "c:/work9/qdraw.mac"
(%i15) qdraw (pts (xCL,pc(black),ps(1)),

xr (0,30),yr(0,1000),
more (xlabel = "x = 1/dˆ2", ylabel = "C"),
errorbars (xCL, sigL, lw(3),lc(blue)),
ex1 (yfit, x, 0, 30, lc(brown)))$

which produces the plot

Figure 7: Counts vs. Inverse Distance Squared with Best Fit Line

8 Histograms, Random Numbers, and Gaussian Noise

8.1 Creating a Histogram from a List of Integers

We will use the Maxima package.../share/descriptive/descriptive.mac to make histograms via the use
of thedraw package. Here is an example similar to one from the Maxima help manual under the entry “histogram.” The
file pidigits.data is a list of the first 100 digits of the irrational numberπ. Each of these digits is an integer in the
range[0, 9] (ten possible values).

If the draw package is not already loaded, the loading ofdescriptive automatically loadsdraw . We place the
integers found in the first 100 digits ofπ into 10 bins (“classes”), and let the leading edge of the firstbin be located
at −0.5, and the trailing edge of the last bin be located at9.5. The functionsfll , head , and tail are defined in
fit.mac . The functionfll(alist) returns the first element, the last element, and the length ofthe list.

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) sL : read_list (file_search ("pidigits.data"))$
(%i3) fll (sL);
(%o3) [3,7,100]
(%i4) head (sL);
(%o4) [3,1,4,1,5,9]
(%i5) tail (sL);
(%o5) [1,1,7,0,6,7]
(%i6) load (descriptive);
(%o6) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/descriptive/descriptive.mac"
(%i7) histogram (sL, nclasses = [-0.5,9.5,10], title = "pi d igits",

xlabel = "digits", ylabel = "Absolute frequency",
fill_color = blue, fill_density = 0.6)$
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which produces the histogram

Figure 8: Histogram of the First 100 Digits ofπ

We can confirm the frequency of the various integer values in the listsL by defining a small function
integer_frequency(alist, an_integer) .
(%i8) integer_frequency (xL,nv) :=
block ([val : 0],

for j thru length (xL) do
if xL[j] = nv then val : val + 1,

val)$
(%i9) for k:0 thru 9 do

print(" ",k," ",integer_frequency(sL,k))$
0 8
1 8
2 12
3 12
4 10
5 8
6 9
7 8
8 12
9 13

8.2 Creating a Histogram from a List of Pseudo-Random Floating Point Numbers

The Maxima functionrandom(x) returns a non-negative floating point number in the open interval [0.0, x] if
x is a positive floating point number.

The returned number is drawn from a “uniform distribution,”and is hence called a “uniform random variate”
(or “uniform random deviate”), and is actually drawn from a “pseudo-random” sequence produced by code
termed a “random number generator.” The word “random” is properly reserved for the output of an intrinsi-
cally random physical process (see Numerical Recipes, Ch. 7, Random Numbers).

The commandset_random_state (make_random_state(an_integer)) uses the supplied integer to
“seed” the random number generator. If you re-seed with the same seed, you will get the same sequence of
“random” numbers.
(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
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(%i2) set_random_state (make_random_state (654321))$
(%i3) rL : makelist(random(1.0),j,1,10000)$
(%i4) fll (rL);
(%o4) [0.226074,0.682233,10000]
(%i5) head (rL);
(%o5) [0.226074,0.677002,0.303875,0.953276,0.36083,0 .538895]
(%i6) tail (rL);
(%o6) [0.315565,0.390841,0.890081,0.438075,0.0047197 5,0.682233]
(%i7) plot2d([discrete,rL],[x,0,10000],[y,0,1],[xlab el,""],

[ylabel,""],[style,[points,1,5]])$

which produces the plot

Figure 9: 10,000 Random Numbers in Range0.0 < x < 1.0

We next place the10, 000 uniform random deviates in the listrL into 20 bins, using the functionhistogram

defined indescriptive.mac . Since10000/20 = 500, we expect there to be roughly500 numbers thrown
into each of the 20 bins, if the numbers are drawn from a “uniform distribution.”

(%i8) load (descriptive)$
(%i9) histogram (rL,nclasses = 20,title = "uniform variate s",

xlabel = "", ylabel = "",fill_color = blue,
fill_density = 0.6)$

which produces the histogram

Figure 10: Histogram of10, 000 Random Numbers in Range0.0 < x < 1.0
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We could also have used the commandrandom_continuous_uniform(0,1,10000) , using thedistrib

package, to generate a list of 10,000 uniform random deviates in the open interval0.0 < x < 1.0. One
must first load the packagedistrib.mac to use therandom_continuous_uniform function, and during
the loading, the random number generator is automatically seeded with an integer which depends on your
computer’s clock time at the moment of loading. Hence your results here will differ in details. (You could then
re-seed the random number generator to reproduce some previously generated sequence of random numbers, if
so desired.)

(%i10) load(distrib);
(%o10) "C:/Program Files/Maxima-sbcl-5.36.1/share/max ima/5.36.1/share/distrib/distrib.mac"
(%i11) rL2 : random_continuous_uniform(0,1,10000)$
(%i12) fll (rL2);
(%o12) [0.876421,0.34568,10000]
(%i13) head (rL2);
(%o13) [0.876421,0.851329,0.87345,0.141658,0.40555,0 .592372]
(%i14) tail (rL2);
(%o14) [0.095683,0.412016,0.539407,0.571131,0.718902 ,0.34568]
(%i15) histogram (rL2,nclasses = 20,title = "uniform varia tes",

xlabel = "", ylabel = "",fill_color = blue,
fill_density = 0.6)$

which produces the histogram

Figure 11: Histogram of a New Set of10, 000 Random Numbers in Range0.0 < x < 1.0

8.3 Gaussian Noise

The Maxima package.../share/distrib/distrib.mac has the functionrandom_normal(m, s) for
one Gaussian deviate, orrandom_normal(m, s, n) for a list of n Gaussian deviates having a mean value
equal tomand a standard deviation (the square root of the variance) equal tos . This package seeds Maxima’s
random number generator with a value depending on your computer’s clock time while loading (as mentioned
above), so you should get results which differ in details. Wehave started a new Maxima session here:

(%i1) load(distrib);
(%o1) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/distrib/distrib.mac"
(%i2) random_normal(0,10);
(%o2) 5.859170811329763
(%i3) fpprintprec:6$
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(%i4) random_normal(0,10);
(%o4) -6.08762
(%i5) random_normal(0,10,5);
(%o5) [-7.74102,-12.3573,14.7975,5.13447,0.487853]
(%i6) plot2d([discrete,random_normal(0,1,500)],[x,0, 500],[y,-4,4],[xlabel,""],

[ylabel,""],[style,[points,1,5]])$

which produces the plot

Figure 12: 500 Gaussian Deviates with Mean= 0, s = 1

We need to bin these random Gaussian deviates to see how they are distributed. As an example, we generate
a new list of 10,000 Gaussian deviates which have a mean value0 and a standard deviation 1 and place them
into 20 bins using the functionhistogram .

(%i7) load (descriptive);
(%o7) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/descriptive/descriptive.mac"
(%i8) histogram ( random_normal(0,1,10000), nclasses = 20 ,

title = "uniform normal variates", xlabel = "",
ylabel = "", fill_color = blue, fill_density = 0.6)$

which produces the histogram

Figure 13:10, 000 Gaussian Deviates with Mean= 0, s = 1
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which is approaching the familiar bell-shaped curve.

We can use ourmoment (dataL) function defined infit.mac to compare the mean, variance and standard
deviation of a set of numbers produced byrandom_normal (m,s,n) in whichmis the desired mean,s is the
desired standard deviation, and the variance is thensˆ2 . We again start a new Maxima session.

(%i1) load(distrib);
(%o1) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/distrib/distrib.mac"
(%i2) random_normal(0,1);
(%o2) 0.7792856737962007
(%i3) random_normal(0,1,10);
(%o3) [-0.1800590734570673,1.003713813350962,1.01204 9729950966,

-1.188740041414326,-0.4503024282532589,0.2146242889 05816,
2.240769783420878,0.6307828337928504,-1.35573203762 0963,
-0.4398222598470207]

(%i4) moment (random_normal(0,1,10000));
ndata = 10000
mean = 4.5016e-4
variance = 0.99186
sigma = 0.99592

(%o4) [4.5016e-4,0.99186,0.99592]

A sample of 10,000 random normal deviates returned byrandom_normal(0,1,10000) has a mean of ap-
proximately 0 and a variance and standard deviation of approximately 1.

Likewise, a sample of 10,000 random normal deviates returned by random_normal(0,0.5,10000) has a
mean of approximately 0 and a standard deviation of approximately 0.5 and a variance of approximately 0.25.

(%i5) moment (random_normal(0,0.5,10000));
ndata = 10000
mean = 0.0034911
variance = 0.25136
sigma = 0.50136

(%o5) [0.0034911,0.25136,0.50136]

Finally, a sample of 10,000 random normal deviates returnedby 0.5 * random_normal(0,1,10000) has a
mean of approximately 0, a standard deviation of approximately 0.5, and a variance of approximately 0.25.

(%i6) moment (0.5 * random_normal(0,1,10000));
ndata = 10000
mean = 0.0066488
variance = 0.25717
sigma = 0.50712

(%o6) [0.0066488,0.25717,0.50712]

9 Example 5: Generating and Fitting Data with Gaussian Noise

We generate some noisy data by adding Gaussian noise to the signaly = 1 − 2 x. We do not seed the random
number generator (after loadingdistrib.mac ) in the following example, allowing Maxima to use the default
method. Thedistrib package seeds Maxima’s random number generator with a valuedepending on your
computer’s clock time while loading. As a consequence, if you repeat this example, you will get a different set
of random numbers, and slightly different results than shown here. The functionxyList(xL,yL) , defined in
our fit.mac , produces an xyList type of list having the form[[x1,y1],[x2,y2],...[xN,yN]] . Below
we usexyList(xL,yL) to producexyL , a nested data list which can later be converted to a data matrix we
call Mdata .

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
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(%i2) load(draw);
(%o2) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/draw/draw.lisp"
(%i3) load(qdraw);
" qdraw(...), qdensity(...), qdensity1(...), syntax: typ e qdraw(); "
(%o3) "c:/work9/qdraw.mac"
(%i4) load(distrib);
(%o4) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/distrib/distrib.mac"
(%i5) fpprintprec:5$
(%i6) xL : makelist (0.1 * j,j,1,100)$
(%i7) fll (xL);
(%o7) [0.1,10.0,100]
(%i8) dyL : random_normal (0,0.25,100)$
(%i9) moment (dyL);

ndata = 100
mean = 0.0043537
variance = 0.063962
sigma = 0.25291

(%o9) [0.0043537,0.063962,0.25291]
(%i10) yL : -2 * xL + 1 + dyL$
(%i11) xyL : xyList(xL,yL)$
(%i12) fll(xyL);
(%o12) [[0.1,0.79312],[10.0,-18.799],100]
(%i13) qdraw (ex1(1-2 * x,x,0,10,lc(red)),pts(xyL,ps(1),pc(black),pt(1)),

more (xlabel = "x", ylabel = "y"))$

which produces the plot

Figure 14: 100 Data Points with Gaussian Noise and the Line1− 2 x

We can try to fit a straight line model, usingfit_line(Mdata, sigmaL) , to this noisy data.

(%i14) sigL : makelist(0.25291,j,1,100)$
(%i15) fll (sigL);
(%o15) [0.25291,0.25291,100]
(%i16) Mdata : apply (’matrix,xyL)$
(%i17) row (Mdata,1);
(%o17) matrix([0.1,0.79312])
(%i18) out : fit_line (Mdata, sigL);

fit model y(x) = a + b * x to given data
a = y-intercept, b = slope
ivar = x
num_data = 100
num_param = 2
dof = 98
chi2/dof = 1.0084
chi2_prob = 45.76 %
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a = 0.98606 +/- 0.050964
b = -1.9964 +/- 0.0087615
(%o18) [[a = 0.98606,b = -1.9964],[0.050964,0.0087615],9 8.827,0.4576]

The least squares best fit line thus has the parametersa = 0.99± 0.05, b = −2.00± 0.01, with χ2/dof = 1 and
Q = 0.46 = 46%.

10 Example 6: Fit to a Quadratic using lfit

This example is taken from Bevington(3rd), pdf 133, “Ex. 7.1.” The data filembe14-fit6.dat contains 21
data points for the voltage output (voltage in mV) of a thermocouple as a function of the temperature T (degrees
Celsius) varying from 0 to 100. The model equation for the voltage V as a function of temperature T is taken
to be

V (T ) = a1 + a2 T + a3 T
2. (10.1)

Since this model expression is linear in the model parameters, we uselfit with this data set and model.

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) fname : "c:/work9/mbe14-fit6.dat"$
(%i3) Mdata : read_matrix (fname);
(%o3) matrix([0,-0.849],[5,-0.738],[10,-0.537],[15,- 0.354],[20,-0.196],

[25,-0.019],[30,0.262],[35,0.413],[40,0.734],[45,0. 882],
[50,1.258],[55,1.305],[60,1.541],[65,1.768],[70,1.9 35],
[75,2.147],[80,2.456],[85,2.676],[90,2.994],[95,3.2 ],[100,3.318])

(%i4) ndata : length (Mdata);
(%o4) 21
(%i5) sigL : makelist (0.05,i,1,ndata)$
(%i6) fll(sigL);
(%o6) [0.05,0.05,21]
(%i7) yexpr : a1 + a2 * T + a3* Tˆ2$
(%i8) out : lfit (Mdata, sigL, yexpr,[a1,a2,a3]);

ivar = T
num_data = 21
num_param = 3
dof = 18
chi2/dof = 1.47575
chi2_prob = 8.75548 %

a1 = -0.918104 +/- 0.0298453
a2 = 0.0376543 +/- 0.00138311
a3 = 5.49009e-5 +/- 1.33533e-5
(%o8) [[a1 = -0.918104,a2 = 0.0376543,a3 = 5.49009e-5],

[0.0298453,0.00138311,1.33533e-5],26.5635,0.0875548 ]
(%i9) yfit : yexpr, out[1];
(%o9) 5.49009e-5 * Tˆ2+0.0376543 * T-0.918104

We next make a plot of the data and the fit.

(%i10) load(draw);
(%o10) "C:/Program Files/Maxima-sbcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%i11) load(qdraw);
" qdraw(...), qdensity(...), qdensity1(...), syntax: typ e qdraw(); "
(%o11) "c:/work9/qdraw.mac"
(%i12) TVL : read_nested_list (fname);
(%o12) [[0,-0.849],[5,-0.738],[10,-0.537],[15,-0.354 ],[20,-0.196],[25,-0.019],

[30,0.262],[35,0.413],[40,0.734],[45,0.882],[50,1.2 58],[55,1.305],
[60,1.541],[65,1.768],[70,1.935],[75,2.147],[80,2.4 56],[85,2.676],
[90,2.994],[95,3.2],[100,3.318]]

(%i13) qdraw (xr(-5,105),yr(-2,4),
more (xlabel = "T", ylabel = "V"),

pts (TVL,pc(black),ps(1)),
errorbars (TVL, sigL, lw(3),lc(red)),

ex1 (yfit,T,0,100))$
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which produces the plot

Figure 15: Voltage vs. Temperature Data with Best Fit Quadratic

11 Example 7: Using lfit with Legendre Polynomials as Basis Functions

11.1 Experimenting with the Maxima Function legendrep

Maxima provides the functionlegendre_p(n,x) (defined in theorthopoly.lisp package) which pro-
duces the standard Legendre polynomialPn(x) for n = 0, 1, 2, . . .. Theorthopoly package automatically
loads when you invokelegendre_p . You will need to applyratsimp to get the simplified analytic form.
Using the definitions oflegendre_p provided by the packageorthopoly.lisp (loads automatically when
we try to uselegendre_p interactively), we find that we need to setratprint:false and
orthopoly_returns_intervals : false to get ordinary floating point returns without the error interval
additions and without therat warnings. These settings are made infit.mac .

As an experiment, we invokelegendre_p << without >> first loadingfit.mac or orthopoly.lisp .

(%i1) legendre_p(4,x);
STYLE-WARNING: redefining MAXIMA::SIMP-UNIT-STEP in DEF UN
STYLE-WARNING: redefining MAXIMA::SIMP-POCHHAMMER in DE FUN
(%o1) (-10 * (1-x))+(35 * (1-x)ˆ4)/8-(35 * (1-x)ˆ3)/2+(45 * (1-x)ˆ2)/2+1
(%i2) ratsimp(%);
(%o2) (35 * xˆ4-30 * xˆ2+3)/8
(%i3) P(nn,xx) := ratsimp (legendre_p(nn,xx))$
(%i4) P(0,x);
(%o4) 1
(%i5) P(1,x);
(%o5) x
(%i6) P(2,x);
(%o6) (3 * xˆ2-1)/2
(%i7) P(3,x);
(%o7) (5 * xˆ3-3 * x)/2
(%i8) P(4,x);
(%o8) (35 * xˆ4-30 * xˆ2+3)/8
(%i9) P(4,1.2);
rat: replaced 4.046999999999998 by 4047/1000 = 4.047

rat: replaced 3.202738074747912e-14 by 5/15611641924210 6 = 3.20273807474791e-14
(%o9) interval(4047/1000,5/156116419242106)
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(%i10) ratprint:false$
(%i11) P(4,1.2);
(%o11) interval(4047/1000,5/156116419242106)
(%i12) orthopoly_returns_intervals;
(%o12) true
(%i13) orthopoly_returns_intervals : false$
(%i14) P(4,1.2);
(%o14) 4047/1000
(%i15) float(%);
(%o15) 4.047

Information about the functions available via.../share/orthopoly/orthopoly.lisp can be found in
the comment sections of that file.

The first four Legendre polynomials are

P0(x) = 1 P2(x) =
1

2
(3 x2 − 1) (11.1)

P1(x) = x P3(x) =
1

2
(5 x3 − 3 x) (11.2)

Pn(x) is an even function ofx if n is an even integer, and is an odd function ofx if n is an odd integer. The
set of Legendre polynomials provides an “orthogonal set” offunctions over the interval−1 ≤ x ≤ 1, where
x = cos(θ).

∫ 1

−1

Pn(x)Pm(x) dx =
2

2n+ 1
δnm, (11.3)

in which the Kronecker delta functionδnm equals1 if n = m, and otherwise equals0.

Having definedP(n,x) (above) to return the simplified form oflegendre_p(n,x , we can use this function
in integrals and plots.

(%i16) integrate(P(2,x)ˆ2,x,-1,1);
(%o16) 2/5
(%i17) integrate(P(2,x) * P(3,x),x,-1,1);
(%o17) 0
(%i18) plot2d([P(0,x),P(1,x),P(2,x),P(3,x),P(4,x)],[ x,-1,1], [y,-1.5,2.5],

[xlabel, "x"], [ylabel , "P_n(x)"],[legend,"0","1","2", "3","4"],
[style,[lines,5]])$

which produces the plot

Figure 16: Legendre Polynomials forn = 0, 1, 2, 3, 4
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11.2 Application of Legendre Polynomials to Example 7

This example follows Bevington(3rd): (Ex. 7.3, pdf 146).

Quoting Bevington (loosely)

Let us consider an experiment in which Carbon-13 is bombarded by 4.5-MeV protons. In the
subsequent reaction, some of the protons are captured by theCarbon-13 nucleus, producing a
Nitrogen-14 nucleus in an excited state which then decays bygamma emission, producting gamma
rays with energies up to 11 MeV. A measurement of the angular distribution of the emitted gamma
rays gives information about the angular momentum states ofthe energy levels in the residual
Nitrogen-14 nucleus.

The file mbe14-fit7.dat contains measurements of the number of gamma ray counts in a specified fixed
time interval recorded at 17 different angles from 0 to 160 degrees. The first column is the angle in degrees,
and the second column is the gamma ray count at that angle. We need to convert the angles in degrees to angles
in radians before using Maxima’scos function. The measurement errors in the count rate are assumed to be
wholly statistical, and the use of Poisson statistics implies the square root of the count rate should be used for
the uncertainty of each count value.

11.3 Five Parameter Fit Using lfit with Legendre Polynomials

We use the first five Legendre polynomials as a model of the given data, with adjustable amplitudes to be found.

With x = cos θ, our model is

C = a0 P0(x) + a1 P1(x) + a2 P2(x) + a3 P3(x) + a4 P4(x). (11.4)

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) fname : "c:/work9/mbe14-fit7.dat"$
(%i3) Mdata : read_matrix (fname);
(%o3) matrix([0,1400],[10,1386],[20,1130],[30,1045], [40,971],[50,862],

[60,819],[70,808],[80,862],[90,829],[100,824],[110, 839],
[120,819],[130,901],[140,925],[150,1044],[160,1224] )

(%i4) DegreesL : list_matrix_entries (col (Mdata,1));
(%o4) [0,10,20,30,40,50,60,70,80,90,100,110,120,130, 140,150,160]
(%i5) CountsL : list_matrix_entries (col (Mdata,2));
(%o5) [1400,1386,1130,1045,971,862,819,808,862,829,8 24,839,819,901,925,1044,1224]
(%i6) sigL : sqrt (CountsL), numer;
(%o6) [37.4166,37.229,33.6155,32.3265,31.1609,29.359 8,28.6182,28.4253,29.3598,

28.7924,28.7054,28.9655,28.6182,30.0167,30.4138,32. 311,34.9857]
(%i7) RadiansL : DegreesL * %pi/180, numer;
(%o7) [0,0.174533,0.349066,0.523599,0.698132,0.87266 5,1.0472,1.22173,1.39626,

1.5708,1.74533,1.91986,2.0944,2.26893,2.44346,2.617 99,2.79253]
(%i8) xL : cos (RadiansL);
(%o8) [1,0.984808,0.939693,0.866025,0.766044,0.64278 8,0.5,0.34202,0.173648,

6.12303e-17,-0.173648,-0.34202,-0.5,-0.642788,-0.76 6044,-0.866025,
-0.939693]

(%i16) xCL : xyList (xL,CountsL);
(%o16) [[1,1400],[0.984808,1386],[0.939693,1130],[0. 866025,1045],

[0.766044,971],[0.642788,862],[0.5,819],[0.34202,80 8],[0.173648,862],
[6.12303e-17,829],[-0.173648,824],[-0.34202,839],[- 0.5,819],
[-0.642788,901],[-0.766044,925],[-0.866025,1044],[- 0.939693,1224]]

(%i9) dataM : apply (’matrix, xCL)$
(%i10) param_list : [a0,a1,a2,a3,a4]$
(%i11) P(nn,xx) := ratsimp (legendre_p (nn,xx))$
(%i12) y_expr_noun : sum (param_list[i+1] * ’P(i,x), i, 0, 4);
(%o12) ’P(4,x) * a4+’P(3,x) * a3+’P(2,x) * a2+’P(1,x) * a1+’P(0,x) * a0
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(%i13) y_expr : %, nouns;
STYLE-WARNING: redefining MAXIMA::SIMP-UNIT-STEP in DEF UN
STYLE-WARNING: redefining MAXIMA::SIMP-POCHHAMMER in DE FUN
(%o13) (a4 * (35 * xˆ4-30 * xˆ2+3))/8+(a3 * (5 * xˆ3-3 * x))/2+(a2 * (3 * xˆ2-1))/2+a1 * x+a0
(%i14) out : lfit (dataM, sigL, y_expr,param_list);

ivar = x
num_data = 17
num_param = 5
dof = 12
chi2/dof = 1.4342
chi2_prob = 14.1852 %

a0 = 906.784 +/- 7.77408
a1 = -1.01955 +/- 12.4292
a2 = 258.527 +/- 16.3188
a3 = 11.9971 +/- 19.4677
a4 = 189.521 +/- 21.6578
(%o14) [[a0 = 906.784,a1 = -1.01955,a2 = 258.527,a3 = 11.997 1,a4 = 189.521],

[7.77408,12.4292,16.3188,19.4677,21.6578],17.2104,0 .141852]
(%i15) yfit5 : y_expr, out[1];
(%o15) 23.6901 * (35 * xˆ4-30 * xˆ2+3)+5.99855 * (5 * xˆ3-3 * x)+129.263 * (3 * xˆ2-1)

-1.01955 * x+906.784

We can now make a plot of the five parameter fit using Legendre polynomials.

(%i16) load(draw);
(%o16) "C:/Program Files/Maxima-sbcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%i17) load(qdraw);
" qdraw(...), qdensity(...), qdensity1(...), syntax: typ e qdraw(); "
(%o17) "c:/work9/qdraw.mac"
(%i18) qdraw (xr(-1.05,1.05),yr(0,1500),

more (xlabel = "cos(th)", ylabel = "C"),
pts (xCL, pc(black), ps(1)),

errorbars (xCL, sigL, lw(3),lc(red)),
ex1(yfit5,x,-1,1))$

which produces the plot

Figure 17: Counts vs.cos(θ) Using All Terms throughP4(cos(θ))

11.4 Three Parameter Fit with Legendre Polynomials using lfit

Note that the values returned for the best fit values ofa1 anda3 are much less (in magnitude) than the parameters
which give the amplitudes of the Legendre polynomials whichare even functions of their argumentx = cos θ.
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Retaining only the three (even) dominant terms of the five parameter fit, we seek a three parameter fit instead,
using the model, again withx = cos θ,

C = a0 P0(x) + a2 P2(x) + a4 P4(x). (11.5)

(%i19) param_list : [a0,a2,a4]$
(%i20) y_expr_noun : a0 * ’P(0,x) + a2 * ’P(2,x) + a4 * ’P(4,x);
(%o20) ’P(4,x) * a4+’P(2,x) * a2+’P(0,x) * a0
(%i21) y_expr : %, nouns;
(%o21) (a4 * (35 * xˆ4-30 * xˆ2+3))/8+(a2 * (3 * xˆ2-1))/2+a0
(%i22) out : lfit (dataM, sigL, y_expr,param_list);

ivar = x
num_data = 17
num_param = 3
dof = 14
chi2/dof = 1.25646
chi2_prob = 22.6073 %

a0 = 907.175 +/- 7.7342
a2 = 260.479 +/- 15.8578
a4 = 193.667 +/- 20.0715
(%o22) [[a0 = 907.175,a2 = 260.479,a4 = 193.667],[7.7342,1 5.8578,20.0715],

17.5905,0.226073]
(%i23) yfit3 : y_expr, out[1];
(%o23) 24.2083 * (35 * xˆ4-30 * xˆ2+3)+130.24 * (3 * xˆ2-1)+907.175
(%i24) qdraw (xr(-1.05,1.05),yr(0,1500),

more (xlabel = "cos(th)", ylabel = "C"),
pts (xCL, pc(black), ps(1)),

errorbars (xCL, sigL, lw(3),lc(red)),
ex1(yfit3,x,-1,1))$

which produces the plot

Figure 18: Counts vs.cos(θ) Using Only Even Terms throughP4(cos(θ))

Note that the three parameter fit has a higherχ2 probability than the five parameter fit, and is thus a better fitto
the given data.
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12 Nonlinear Least Squares Fit to Cooling Coffee Data

12.1 Massaging the Data

We use the coffee cooling experimental data in the filecoffee.dat , data we used in Maxima by Example,
Chapter 2. The first column is the time in minutes. The second column is the temperature (degrees Celsius)
recorded for a cup of black coffee. The third column is the temperature recorded for a cup of coffee which has
been cooled (att = 0) by the addition of cream (white coffee).

We seek to fit the data for the black coffee, using a model basedon an exponential decrease (Newton’s law
of cooling), and lettc be the characteristic cooling time in units of minutes. Assuming the ambient room
temperature is17 deg Celsius, and the initial temperature of the black coffeeis82.3 deg Celsius, a one parameter
model of the data could be

T = 17 + 65.3 e−t/tc , (12.1)

since for large enough timest >> tc the second term can be ignored compared with the first term.

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) fname : "c:/work9/coffee.dat"$
(%i3) printfile(fname)$
0 82.3 68.8
2 78.5 64.8
4 74.3 62.1
6 70.7 59.9
8 67.6 57.7
10 65.0 55.9
12 62.5 53.9
14 60.1 52.3
16 58.1 50.8
18 56.1 49.5
20 54.3 48.1
22 52.8 46.8
24 51.2 45.9
26 49.9 44.8
28 48.6 43.7
30 47.2 42.6
32 46.1 41.7
34 45.0 40.8
36 43.9 39.9
38 43.0 39.3
40 41.9 38.6
42 41.0 37.7
44 40.1 37.0
46 39.5 36.4
(%i4) dataM : read_matrix (fname);
(%o4) matrix([0,82.3,68.8],[2,78.5,64.8],[4,74.3,62. 1],[6,70.7,59.9],

[8,67.6,57.7],[10,65.0,55.9],[12,62.5,53.9],[14,60. 1,52.3],
[16,58.1,50.8],[18,56.1,49.5],[20,54.3,48.1],[22,52 .8,46.8],
[24,51.2,45.9],[26,49.9,44.8],[28,48.6,43.7],[30,47 .2,42.6],
[32,46.1,41.7],[34,45.0,40.8],[36,43.9,39.9],[38,43 .0,39.3],
[40,41.9,38.6],[42,41.0,37.7],[44,40.1,37.0],[46,39 .5,36.4])

(%i5) tL : list_matrix_entries (col(dataM,1));
(%o5) [0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32 ,34,36,38,40,42,44,46]
(%i6) TbL : list_matrix_entries (col(dataM,2));
(%o6) [82.3,78.5,74.3,70.7,67.6,65.0,62.5,60.1,58.1, 56.1,54.3,52.8,51.2,49.9,

48.6,47.2,46.1,45.0,43.9,43.0,41.9,41.0,40.1,39.5]
(%i7) TcL : list_matrix_entries (col(dataM,3));
(%o7) [68.8,64.8,62.1,59.9,57.7,55.9,53.9,52.3,50.8, 49.5,48.1,46.8,45.9,44.8,

43.7,42.6,41.7,40.8,39.9,39.3,38.6,37.7,37.0,36.4]
(%i8) length(tL);
(%o8) 24

In the absence of information about measurement errors, we set the elements ofsigL equal to unity.

(%i9) sigL : makelist (1,j,1,24);
(%o9) [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,1]
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(%i10) black_expr : 17 + 65.3 * exp (-t/tc);
(%o10) 65.3 * %eˆ-(t/tc)+17
(%i11) dataMB : apply (’matrix, xyList(tL,TbL));
(%o11) matrix([0,82.3],[2,78.5],[4,74.3],[6,70.7],[8 ,67.6],[10,65.0],[12,62.5],

[14,60.1],[16,58.1],[18,56.1],[20,54.3],[22,52.8],[ 24,51.2],
[26,49.9],[28,48.6],[30,47.2],[32,46.1],[34,45.0],[ 36,43.9],
[38,43.0],[40,41.9],[42,41.0],[44,40.1],[46,39.5])

12.2 Using Vsearch (Visual Search) for One Parameter Fit

We first useVsearch with qdraw to get a rough feel for an appropriate size of the characteristic cooling time
tc. Recall that the syntax is

Vsearch (data-matrix,sigmaL,y-expr,param-list, param- guess-list)

The model expression is a blue curve, the data is in black and red. After loadingdraw andqdraw , we start
with tc = 1.

(%i12) load(draw);
(%o12) "C:/Program Files/Maxima-sbcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%i13) load(qdraw);
" qdraw(...), qdensity(...), qdensity1(...), syntax: typ e qdraw(); "
(%o13) "c:/work9/qdraw.mac"
(%i14) Vsearch(dataMB,sigL,black_expr,[tc],[1])$

param_list = [tc = 1]
yfit_expr = 65.3 * %eˆ-t+17
chiSq = 32896.9

which produces the plot (the data is in black and red; the model expression curve is in blue)

Figure 19: Temperature vs. time (t) fortc = 1

Now increase the value of the characteristic time scale totc = 10 so the model temperature curve drops less
rapidly to zero.

(%i15) Vsearch(dataMB,sigL,black_expr,[tc],[10])$
param_list = [tc = 10]
yfit_expr = 65.3 * %eˆ-(0.1 * t)+17
chiSq = 13937.1
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which produces the plot

Figure 20: Temperature vs. time (t) fortc = 10

which is still too small a characteristic cooling time. We next try tc = 100.

(%i16) Vsearch(dataMB,sigL,black_expr,[tc],[100])$
param_list = [tc = 100]
yfit_expr = 65.3 * %eˆ-(0.01 * t)+17
chiSq = 5682.54

which produces the plot

Figure 21: Temperature vs. time (t) fortc = 100

which is too large a characteristic cooling time. We next trytc = 30.

(%i17) Vsearch(dataMB,sigL,black_expr,[tc],[30])$
param_list = [tc = 30]
yfit_expr = 65.3 * %eˆ-(0.0333333 * t)+17
chiSq = 647.939
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which produces the plot

Figure 22: Temperature vs. time (t) fortc = 30

which shows we are getting close to a reasonable characteristic cooling timetc, and we trytc = 40 next:

(%i18) Vsearch(dataMB,sigL,black_expr,[tc],[40])$
param_list = [tc = 40]
yfit_expr = 65.3 * %eˆ-(0.025 * t)+17
chiSq = 78.5918

which produces the plot

Figure 23: Temperature vs. time (t) fortc = 40

12.3 Using grid search for a Three Parameter Fit

We seek to use the three parameter expression

T = a1 + a2 e
−t/a3 (12.2)
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to fit the black coffee cooling data incoffee.dat , using thefit.mac function

grid_search(data_matrix, sigma_list,ymodel_expr,para mL,param_startL,stepFactor).

The last argumentstepFactor is used to help define the initial step size for each parameter, according to the
code line

for i thru Nparam do deltaA[i] : stepFactor * abs (ac[i]),

in which ac[i] is the starting value of the i’th parameter. If you get problem messages from the program
grid_search , you should first try decreasing the value ofstepFactor so that the program begins with
smaller steps in parameter space.

Each step of the search adjusts the value of one of the parameters at a time, seeking for the approximate position
of the valley bottom in values ofχ2, and prints out the last three values ofχ2, chiSq1 , chiSq2 , andchiSq3 ,
which will give you an idea of how steep the ravine is for that parameter and its current step size.

If the grid search of parameter space is working correctly, the values ofχ2 should steadily decrease. Remember
thatχ2 is inherently a non-negative number.

This type of grid search will give poor results if the values of the parameters (to achieve a minimum inχ2) are
strongly correlated.

grid_search returns a list of lists:

[ [a1, a2, ....], [da1, da2, ...]]

in which the parameter uncertaintiesdaj are defined (assuming a local parabola fit) by how large a change in
the parameter is required to cause the value of the non-negative numberχ2 to change by the value1.

We continue with thecoffee.dat data matrixdataMB andsigL defined above but defining a three parameter
modelmyexpr .

Each “trial” adjusts separately the values of each of the three parameters, looking for a minimum in the value
of χ2. At the end of each trial, you are asked to either enterc; (to go on to the next trial) ors; (to stop the grid
search).

(%i19) myexpr : a1 + a2 * exp (-t/a3)$
(%i20) grid_search(dataMB, sigL, myexpr,[a1,a2,a3],[17 ,65.3,40],0.5);

ymodel = a2 * %eˆ-(t/a3)+a1
=============================

trial = 1 starting chiSqr = 78.5918
starting parameter values and step sizes for this trial

1 17 8.5
2 65.3 32.65
3 40 20.0

--------------------------------------------------- -
parameter 1

chiSq1 = 2219.68 chiSq2 = 78.5918 chiSq3 = 1405.5
ac[j] = 16.0022 dac[j] = 0.204124 deltaA[j] = 0.288675
chiSqr = 54.6987

--------------------------------------------------- -
parameter 2

chiSq1 = 10555.4 chiSq2 = 54.6987 chiSq3 = 9925.79
ac[j] = 64.7955 dac[j] = 0.323507 deltaA[j] = 0.457508
chiSqr = 52.2666

--------------------------------------------------- -
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parameter 3
chiSq1 = 1128.49 chiSq2 = 52.2666 chiSq3 = 4715.61

chiSqr-minimum is less than zero using parabola fit
compute using corresponding parameter value
ac[j] = 46.2498 dac[j] = 0.373341 deltaA[j] = 0.527984
chiSqr = 163.46
chiSqr increased: chiOld = 78.5918 new chiSqr = 163.46

Enter s; to stop trials, c; to continue
c;
=============================

trial = 2 starting chiSqr = 163.46
starting parameter values and step sizes for this trial

1 16.0022 0.288675
2 64.7955 0.457508
3 46.2498 0.527984

--------------------------------------------------- -
parameter 1

chiSq1 = 47.0253 chiSq2 = 46.3918 chiSq3 = 49.7582
ac[j] = 13.7914 dac[j] = 0.204124 deltaA[j] = 0.288675
chiSqr = 46.1584

--------------------------------------------------- -
parameter 2

chiSq1 = 47.9371 chiSq2 = 46.1584 chiSq3 = 48.7984
ac[j] = 64.8401 dac[j] = 0.307798 deltaA[j] = 0.435292
chiSqr = 46.1374

--------------------------------------------------- -
parameter 3

chiSq1 = 46.1374 chiSq2 = 45.3979 chiSq3 = 46.8094
ac[j] = 45.8043 dac[j] = 0.509126 deltaA[j] = 0.720012
chiSqr = 45.3717

Enter s; to stop trials, c; to continue
c;
=============================

trial = 3 starting chiSqr = 45.3717
starting parameter values and step sizes for this trial

1 13.7914 0.288675
2 64.8401 0.435292
3 45.8043 0.720012

--------------------------------------------------- -
parameter 1

chiSq1 = 45.4999 chiSq2 = 45.3717 chiSq3 = 49.2484
ac[j] = 13.9265 dac[j] = 0.203997 deltaA[j] = 0.288496
chiSqr = 44.9331

--------------------------------------------------- -
parameter 2

chiSq1 = 46.8037 chiSq2 = 44.9331 chiSq3 = 47.041
ac[j] = 64.8531 dac[j] = 0.308633 deltaA[j] = 0.436474
chiSqr = 44.9314

--------------------------------------------------- -
parameter 3

chiSq1 = 48.6985 chiSq2 = 44.9314 chiSq3 = 45.1024
ac[j] = 45.4756 dac[j] = 0.513108 deltaA[j] = 0.725644
chiSqr = 44.5209

Enter s; to stop trials, c; to continue
s;
=====================================
(%o20) [[13.9265,64.8531,45.4756],[0.203997,0.308633 ,0.513108]]

With three trials completed, we chose to stop the grid search, having very rough valuesa1 ≈ 14, a2 ≈ 65,
anda3 ≈ 46. We now proceed to use the non-linear fit functionnlfit , using these rough values as starting
guesses.
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12.4 Three Parameter Fit Using nlfit

We try a three parameter fit usingnlfit , using as starting values the final parameters found usinggrid_search

above.

Note that we make the replacementa3 → tc in the definition of the model expressionmyexpr , and in the list
of parameter names.

(%i21) myexpr : a1 + a2 * exp(-t/tc);
(%o21) a2 * %eˆ-(t/tc)+a1
(%i22) out : nlfit (dataMB,sigL,myexpr,[a1,a2,tc],[14,6 5,46]);

Ndata = 24
Nparam = 3
dof = 21
ivar = t

start: params: [a1 = 14.0,a2 = 65.0,tc = 46.0] chi2 = 46.8298
--------------------------------------------------- ------------

n lam
1 0.001

p_oldL = [14.0,65.0,46.0]
p_newL = [30.1843,50.1806,26.8754] chi2_new = 11.5832

2 1.0e-4
p_oldL = [30.1843,50.1806,26.8754]
p_newL = [32.287,49.5529,24.5566] chi2_new = 2.38017

3 1.0e-5
p_oldL = [32.287,49.5529,24.5566]
p_newL = [32.2182,49.6507,24.6676] chi2_new = 2.33385

4 1.0e-6
p_oldL = [32.2182,49.6507,24.6676]
p_newL = [32.2146,49.6535,24.6717] chi2_new = 2.33385

--------------------------------------------------- ------------
chi2/dof = 0.111136
chi2_prob = 100.0 %

--------------------------------------------------- ------------
a1 = 32.2146 +/- 1.59692
a2 = 49.6535 +/- 1.36525
tc = 24.6717 +/- 1.768
(%o22) [[a1 = 32.2146,a2 = 49.6535,tc = 24.6717],[1.59692, 1.36525,1.768],

2.33385,1.0]
(%i23) yfit : myexpr, out[1];
(%o23) 49.6535 * %eˆ-(0.0405322 * t)+32.2146
(%i24) y_gaussian_PE (dataMB, 21, yfit);
(%o24) 0.222247

If we use the assumption of Gaussian distribution errors forthe temperature measurements, and the resulting
estimate of the probable error thus returned byy_gaussian_PE , we can redefine the elements ofsigL to be
0.22 and redo the fit usingnlfit :

(%i25) sigL : makelist (0.22,j,1,24);
(%o25) [0.22,0.22,0.22,0.22,0.22,0.22,0.22,0.22,0.22 ,0.22,0.22,0.22,0.22,0.22,

0.22,0.22,0.22,0.22,0.22,0.22,0.22,0.22,0.22,0.22]
(%i26) out : nlfit (dataMB,sigL,myexpr,[a1,a2,tc],[14,6 5,46]);

Ndata = 24
Nparam = 3
dof = 21
ivar = t

start: params: [a1 = 14.0,a2 = 65.0,tc = 46.0] chi2 = 967.557
--------------------------------------------------- ------------

n lam
1 0.001

p_oldL = [14.0,65.0,46.0]
p_newL = [30.1843,50.1806,26.8754] chi2_new = 239.321

2 1.0e-4
p_oldL = [30.1843,50.1806,26.8754]
p_newL = [32.287,49.5529,24.5566] chi2_new = 49.1771

3 1.0e-5
p_oldL = [32.287,49.5529,24.5566]
p_newL = [32.2182,49.6507,24.6676] chi2_new = 48.2201
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4 1.0e-6
p_oldL = [32.2182,49.6507,24.6676]
p_newL = [32.2146,49.6535,24.6717] chi2_new = 48.22

--------------------------------------------------- ------------
chi2/dof = 2.29619
chi2_prob = 0.0641768 %

--------------------------------------------------- ------------
a1 = 32.2146 +/- 0.351322
a2 = 49.6535 +/- 0.300356
tc = 24.6717 +/- 0.38896
(%o26) [[a1 = 32.2146,a2 = 49.6535,tc = 24.6717],[0.351322 ,0.300356,0.38896],

48.22,6.41768e-4]
(%i27) yfit : myexpr, out[1];
(%o27) 49.6535 * %eˆ-(0.0405322 * t)+32.2146
(%i28) y_gaussian_PE (dataMB, 21, yfit);
(%o28) 0.222247

By changing the value of the elements ofsigL in a trial and error method, each time invokingnlfit again, we
can arrive at a combined instrumental error and random errorestimate of the temperature measurement errors
which finally gives reasonable values for theχ2 probability and the reducedχ2 value,χ2/dof.

(%i29) sigL : makelist (0.3,j,1,24);
(%o29) [0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3, 0.3,0.3,0.3,0.3,0.3,0.3,

0.3,0.3,0.3,0.3,0.3,0.3,0.3]
(%i30) out : nlfit (dataMB,sigL,myexpr,[a1,a2,tc],[14,6 5,46]);

Ndata = 24
Nparam = 3
dof = 21
ivar = t

start: params: [a1 = 14.0,a2 = 65.0,tc = 46.0] chi2 = 520.331
--------------------------------------------------- ------------

n lam
1 0.001

p_oldL = [14.0,65.0,46.0]
p_newL = [30.1843,50.1806,26.8754] chi2_new = 128.702

2 1.0e-4
p_oldL = [30.1843,50.1806,26.8754]
p_newL = [32.287,49.5529,24.5566] chi2_new = 26.4464

3 1.0e-5
p_oldL = [32.287,49.5529,24.5566]
p_newL = [32.2182,49.6507,24.6676] chi2_new = 25.9317

4 1.0e-6
p_oldL = [32.2182,49.6507,24.6676]
p_newL = [32.2146,49.6535,24.6717] chi2_new = 25.9316

--------------------------------------------------- ------------
chi2/dof = 1.23484
chi2_prob = 20.9068 %

--------------------------------------------------- ------------
a1 = 32.2146 +/- 0.479076
a2 = 49.6535 +/- 0.409576
tc = 24.6717 +/- 0.5304
(%o30) [[a1 = 32.2146,a2 = 49.6535,tc = 24.6717],[0.479076 ,0.409576,0.5304],

25.9316,0.209068]

We take the output ofnlfit as the values of parameters for making a plot usingVsearch . We already loaded
draw andqdraw above prior to using the graphicsVsearch method.

(%i31) Vsearch (dataMB,sigL,myexpr,[a1,a2,tc],[32.22, 49.65,24.67])$
param_list = [a1 = 32.22,a2 = 49.65,tc = 24.67]
yfit_expr = 49.65 * %eˆ-(0.0405351 * t)+32.22
chiSq = 2.33405
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which produces the plot

Figure 24: Temperature vs. time three parameter fit using nlfit

We see that the cooling coffee data can be fit closely if we use athree parameter fit. We would expect a poorer
fit if we only allowed one or two parameters to be adjusted (youshould try this).

13 Ex. 8: Nonlinear Fit of the Decay of Two Excited States PlusBack-
ground

Quoting Bevington (3rd), pdf 156, with some additions,

In a popular undergraduate physics laboratory experiment,a real silver quarter is irradiated with
thermal neutrons to create two short-lived isotopes of silver,Ag10847 andAg11047 , that subsequently
decay by beta emission. Students count the emitted beta particles in 15-s intervals for about 4
min to obtain a decay curve. Data collected from such an experiment are listed in Table 8.1 and
plotted on a semi-logarithmic graph in Figure 8.1. The data are reported at the end of each 15-s
interval, just as they were recorded by a scaler. The data points do not fall on a straight line because
the probability function that describes the process is the sum of two exponential functions plus a
constant background. We can represent the decay by the model

C(t) = a1 + a2 e
−t/a4 + a3 e

−t/a5 (13.1)

where the parametera1 corresponds to the constant background radiation, anda2 anda3 correspond
to the amplitudes of the two excited states with mean livesa4 anda5, respectively. We assume that
the second term proportional toe−t/a4 is the contribution due to the short-lived excited state, and the
third term proportional toe−t/a5 is the contribution due to the long-lived excited state, soa4 << a5.
C(t) represents the number of beta particles recorded by the detector during the 15 sec prior to the
time t. Clearly, Equation (13.1) in not linear in the parametersa4 anda5, although it is linear in
the parametersa1, a2, anda3.
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13.1 Interactive Look at the Raw Data

The data for this example is in our filembe14-fit8.dat .

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) fname : "c:/work9/mbe14-fit8.dat"$
(%i3) printfile(fname)$
Radioactive decay

59
15 775 27.8
30 479 21.9
45 380 19.5
60 302 17.4
75 185 13.6
90 157 12.5

105 137 11.7
120 119 10.9
135 110 10.5
150 89 9.4
165 74 8.6
180 61 7.8
195 66 8.1
210 68 8.2
225 48 6.9
240 54 7.3
255 51 7.1
270 46 6.8
285 55 7.4
300 29 5.4
315 28 5.3
330 37 6.1
345 49 7.0
360 26 5.1
375 35 5.9
390 29 5.4
405 31 5.6
420 24 4.9
435 25 5.0
450 35 5.9
465 24 4.9
480 30 5.5
495 26 5.1
510 28 5.3
525 21 4.6
540 18 4.2
555 20 4.5
570 27 5.2
585 17 4.1
600 17 4.1
615 14 3.7
630 17 4.1
645 24 4.9
660 11 3.3
675 22 4.7
690 17 4.1
705 12 3.5
720 10 3.2
735 13 3.6
750 16 4.0
765 9 3.0
780 9 3.0
795 14 3.7
810 21 4.6
825 17 4.1
840 13 3.6
855 12 3.5
870 18 4.2
885 10 3.2

The first line of this data file is a title, the second line is theadvertised number of data points. In each of the
following lines we have the time (t in sec), the number of betas recorded in the prior 15 sec (C), and the square
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root of the count (
√
C). Note that we cannot useread_matrix with this data file, since its use would result in the error

message “matrix: all rows must be the same length.” We can useread_nested_list to produce a (nested) list of the
data file, usefll to look at the first element, last element, and the length, andthen userest (alist, 2) to remove
the first two sub-lists (the first sub-list contains the titleline and the second sub-list contains the advertised numberof data
points). We then have the option of usingapply (’matrix, a-nested-list) to produce a matrix.

(%i4) data8L : read_nested_list(fname)$
(%i5) fll (data8L);
(%o5) [[Radioactive,decay],[885,10,3.2],61]
(%i6) head (data8L);
(%o6) [[Radioactive,decay],[59],[15,775,27.8],[30,47 9,21.9],[45,380,19.5],

[60,302,17.4]]
(%i7) rest([a,b,c,d],2);
(%o7) [c,d]
(%i8) data8L : rest (data8L,2)$
(%i9) fll (data8L);
(%o9) [[15,775,27.8],[885,10,3.2],59]
(%i10) data8M : apply (’matrix,data8L)$
(%i11) row (data8M,1);
(%o11) matrix([15,775,27.8])

We let tL be the list of the times,CL be the list of the raw counts, andsigL be the list of the square-roots of the raw
counts.

(%i12) tL : list_matrix_entries (col (data8M,1))$
(%i13) fll (tL);
(%o13) [15,885,59]
(%i14) CL : list_matrix_entries (col (data8M,2))$
(%i15) fll (CL);
(%o15) [775,10,59]
(%i16) sigL : list_matrix_entries (col (data8M,3))$
(%i17) fll (sigL);
(%o17) [27.8,3.2,59]

We first make a linear plot of the raw data, using our homemadexyList function:

(%i18) tCL : xyList (tL, CL)$
(%i19) fll (tCL);
(%o19) [[15,775],[885,10],59]
(%i20) load(draw)$
(%i21) load(qdraw)$
" qdraw(...), qdensity(...), qdensity1(...), syntax: typ e qdraw(); "
(%i22) qdraw (pts (tCL,pc(black),ps(1)),

xr (0,900), yr (0,800),
more (xlabel = "t", ylabel = "C"))$

which produces the plot

Figure 25: Linear Plot of Raw Data: Counts vs. time
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We next make a semi-log plot,ln(C) vs. t of the raw data. Remember that in Maxima,log returns the natural
logarithm. Note that if one of the counts was0, log(CL),numer would return alog(0) error.

(%i23) lnCL : log (CL),numer$
(%i24) fll (lnCL);
(%o24) [6.65286,2.30259,59]
(%i25) t_lnCL : xyList (tL, lnCL)$
(%i26) fll (t_lnCL);
(%o26) [[15,6.65286],[885,2.30259],59]
(%i27) qdraw (pts (t_lnCL,pc(black),ps(1)),

xr (0,900), yr (2,7),
more (xlabel = "t", ylabel = "ln(C)"))$

which produces the plot

Figure 26: Raw Data:ln(C) vs. t

13.2 Estimates of the Mean Lifetime and Amplitude of each Excited State

After subtracting the constant background beta radiation counts from the raw data, we can consider separately
the “early data”, corresponding tot < 200 sec, in which the short-lived excited state dominates the measured
counts, and the “late data”, corresponding tot > 200 sec, in which the long-lived state dominates the measured
counts.

We can estimate the mean lifetime and amplitude of the long-lived excited state by using only the corrected late
data points, assuming the corrected late data points are approximately given by the third term of Eq. (13.1),
and fitting a straight line to the natural log of the late counts vs. time.

We can then subtract the estimated contribution of the long-lived excited state from the early corrected data,
and assume the twice-corrected early data points are approximately represented by the second term of 13.1, and
fitting another straight line to the natural log of the twice-corrected early data points, which will yield estimates
of the mean lifetime and amplitude of the short-lived state.

13.2.1 Subtraction of Background Beta Radiation Counts from Raw Data

A separate measurement of the beta particle background, before irradiation of the silver, produced the value
a1 ≈ 10 beta particles per 15 sec. LetCmb(C minus background) be the beta count numbers after subtracting
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the approximate background.

(%i28) Cmb : CL - 10$
(%i29) fll (Cmb);
(%o29) [765,0,59]

13.2.2 Long-lived State Properties from Late Data Points

We can first work with only the large time (corrected) data points, for whicht > 200. We assume they are
mainly due to the long-lived state decay, represented by theterma3 e

−t/a5 .

To produce a list of times, corrected counts, and count errors corresponding to the requirementt > 200, we use
our homemade functionpos_GT(alist,anumber) which returns the first list element number ofalist for
which the list element is greater thananumber .

Applied to the listtL , we find that the fourteenth element oftL is the first element oftL which is greater than
200, and we can then definetL_late as the list of times produced by stripping away the first thirteen elements
of tL . We can then strip away the first thirteen elements ofCmbandsigL to define the corresponding corrected
late counts and count errors.

(%i30) pos_GT (tL,200);
(%o30) 14
(%i31) tL_late : rest(tL,13)$
(%i32) fll (tL_late);
(%o32) [210,885,46]
(%i33) Cmb_late : rest(Cmb,13)$
(%i34) fll (Cmb_late);
(%o34) [58,0,46]
(%i35) sigL_late : rest (sigL, 13)$
(%i36) fll (sigL_late);
(%o36) [8.2,3.2,46]

We are going to fit the natural logarithm of the late correctedcounts to a straight line model in order to estimate
the lifetime and amplitude of the long-lived decay contribution. We need to omit data points for which the late
corrected counts are less than or equal to 0, since Maxima’slog(x) function returns an error ifx ≤ 0.

We can use our homemade functionpositions_LE(alist,anumber) which returns the list of positions
of elements which are less than or equal to the second argument. We can then use our homemade function
Remove (L, nL) to return a list which omits the elements whose positions arein the listnL, thus defining
tL_late_pos and corresponding lists for the counts and count errors. We finally take the natural log of the
resulting count list, producingln_Cmb_late_pos .

(%i37) pL : positions_LE (Cmb_late,0);
(%o37) [35,38,39,46]
(%i38) Cmb_late_pos : Remove (Cmb_late,pL)$
(%i39) fll (Cmb_late_pos);
(%o39) [58,8,42]
(%i40) tL_late_pos : Remove (tL_late,pL)$
(%i41) fll (tL_late_pos);
(%o41) [210,870,42]
(%i42) sigL_late_pos : Remove (sigL_late,pL)$
(%i43) fll (sigL_late_pos);
(%o43) [8.2,4.2,42]
(%i44) ln_Cmb_late_pos : log (Cmb_late_pos),numer$
(%i45) fll (ln_Cmb_late_pos);
(%o45) [4.06044,2.07944,42]
(%i46) dataM2 : apply (’matrix, xyList (tL_late_pos, ln_Cm b_late_pos))$
(%i47) row (dataM2,1);
(%o47) matrix([210,4.06044])
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For a rough estimate of the straight line fit, we leave the values ofsigL_late_pos alone (ie., no attempt to
adapt to the switch to the natural log of the late corrected counts). We then use

ln(AB) = ln(A) + ln(B), ln
(

eA
)

= A, eln(A) = A. (13.2)

to derive estimatesa3e anda5e for a3 anda5 from the straight line fit.

(%i48) out1 : fit_line (dataM2, sigL_late_pos);
fit model y(x) = a + b * x to given data
a = y-intercept, b = slope
ivar = x
num_data = 42
num_param = 2
dof = 40
chi2/dof = 0.0184701
chi2_prob = 100.0 %

a = 4.44145 +/- 2.49489
b = -0.00396122 +/- 0.0040118
(%o48) [[a = 4.44145,b = -0.00396122],[2.49489,0.0040118 ],0.738804,1.0]
(%i49) [av, bv] : map (’rhs, out1[1]);
(%o49) [4.44145,-0.00396122]
(%i50) a5e : -1/bv;
(%o50) 252.448
(%i51) a3e : exp(av);
(%o51) 84.8976

13.2.3 Short-lived State Properties from Early Data Points

We now concentrate on the early data pointst < 200.

(%i52) n200 : pos_GT (tL,200);
(%o52) 14
(%i53) tL_early : rest (tL,-(length(tL) - n200 + 1))$
(%i54) fll (tL_early);
(%o54) [15,195,13]
(%i55) Cmb_early : rest (Cmb,-(length(tL) - n200 + 1))$
(%i56) fll (Cmb_early);
(%o56) [765,56,13]
(%i57) sigL_early : rest (sigL,-(length(tL) - n200 + 1))$
(%i58) fll (sigL_early);
(%o58) [27.8,8.1,13]

We use our estimatesa3e anda53 to estimate the contribution of the long-lived state at early times to define
the list long_lived_early , and subtract these values from the corrected early counts to find a list of counts
approximately due just to the short-lived state.

We use the natural log of the early corrected counts due to theshort-lived state to fit another straight line,
thus obtaining estimatesa2e for a2 anda4e for a4.

(%i59) long_lived_early : map (’lambda ([t],a3e * exp (-t/a5e)), tL_early)$
(%i60) fll (long_lived_early);
(%o60) [80.0001,39.213,13]
(%i61) C_short_early : Cmb_early - long_lived_early$
(%i62) fll (C_short_early);
(%o62) [685.0,16.787,13]
(%i63) ln_C_short_early : log (C_short_early)$
(%i64) fll (ln_C_short_early);
(%o64) [6.52942,2.8206,13]
(%i65) dataM1 : apply (’matrix, xyList (tL_early, ln_C_sho rt_early))$
(%i66) row (dataM1,1);
(%o66) matrix([15,6.52942])
(%i67) out1 : fit_line (dataM1, sigL_early);

fit model y(x) = a + b * x to given data
a = y-intercept, b = slope
ivar = x
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num_data = 13
num_param = 2
dof = 11
chi2/dof = 7.18198e-4
chi2_prob = 100.0 %

a = 6.5285 +/- 9.80892
b = -0.0211175 +/- 0.0668757
(%o67) [[a = 6.5285,b = -0.0211175],[9.80892,0.0668757], 0.00790018,1.0]
(%i68) [av, bv] : map (’rhs, out1[1]);
(%o68) [6.5285,-0.0211175]
(%i69) a4e : -1/bv;
(%o69) 47.3541
(%i70) a2e : exp(av);
(%o70) 684.368

13.3 Five Parameter Fit using nlfit

We can now find a five parameter fit usingnlfit . We define the raw data (for all times) matrixdataM using
the nested listtCL of the raw data of times and counts.

(%i71) dataM : apply (’matrix, tCL)$
(%i72) row (dataM,1);
(%o72) matrix([15,775])
(%i73) myexpr : a1 + a2 * exp(-t/a4) + a3 * exp(-t/a5);
(%o73) a3 * %eˆ-(t/a5)+a2 * %eˆ-(t/a4)+a1
(%i74) a1e : 10;
(%o74) 10
(%i75) out1 : nlfit (dataM,sigL,myexpr,[a1,a2,a3,a4,a5] ,[a1e,a2e,a3e,a4e,a5e]);

Ndata = 59
Nparam = 5
dof = 54
ivar = t

start: params:
[a1 = 10.0,a2 = 684.368,a3 = 84.8976,a4 = 47.3541,

a5 = 252.448] chi2 = 116.335
--------------------------------------------------- ------------

n lam
1 0.001

p_oldL = [10.0,684.368,84.8976,47.3541,252.448]
p_newL = [10.6205,889.143,133.829,31.3675,177.516]

chi2_new = 120.391
increase

2 0.01
p_oldL = [10.0,684.368,84.8976,47.3541,252.448]
p_newL = [8.80802,884.114,113.44,34.9627,233.081]

chi2_new = 79.2254
3 0.001

p_oldL = [8.80802,884.114,113.44,34.9627,233.081]
p_newL = [10.0939,956.901,125.39,34.47,210.619] chi2_n ew =

66.2584
4 1.0e-4

p_oldL = [10.0939,956.901,125.39,34.47,210.619]
p_newL = [10.1581,957.652,128.391,34.2386,209.419]

chi2_new = 66.0562
5 1.0e-5

p_oldL = [10.1581,957.652,128.391,34.2386,209.419]
p_newL = [10.1732,957.981,128.636,34.2055,209.114]

chi2_new = 66.056
--------------------------------------------------- ------------

chi2/dof = 1.22326
chi2_prob = 12.5774 %

--------------------------------------------------- ------------
a1 = 10.1732 +/- 1.8923
a2 = 957.981 +/- 49.5375
a3 = 128.636 +/- 21.2337
a4 = 34.2055 +/- 2.51918
a5 = 209.114 +/- 31.5955
(%o75) [[a1 = 10.1732,a2 = 957.981,a3 = 128.636,a4 = 34.2055 ,a5 = 209.114],

[1.8923,49.5375,21.2337,2.51918,31.5955],66.056,0.1 25774]
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(%i76) yfit : myexpr, out1[1];
(%o76) 128.636 * %eˆ-(0.00478209 * t)+957.981 * %eˆ-(0.029235 * t)+10.1732

13.4 Linear Plots for Early and Late Times

Linear plot of the five parameter fit and the data points forlate timest = 200− 900 sec.

(%i77) load(draw);
(%o77) "C:/Program Files/Maxima-sbcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%i78) load(qdraw);
" qdraw(...), qdensity(...), qdensity1(...), syntax: typ e qdraw(); "
(%o78) "c:/work9/qdraw.mac"
(%i79) CL_late : rest (CL,n200 -1)$
(%i80) fll (CL_late);
(%o80) [68,10,46]
(%i81) ptsL : xyList(tL_late,CL_late)$
(%i82) qdraw (pts (ptsL,pc(black),ps(1)),

errorbars (ptsL, sigL_late, lw(3),lc(blue)),
ex1 (yfit, t ,200, 900, lc(brown)),

xr (200,900), yr (0,80),
more (xlabel = "t", ylabel = "C"))$

which produces the plot

Figure 27: Linear Plot of Late Data and Five Parameter Fit

Linear plot of the five parameter fit and the data points forearly times t = 0− 200 sec.

(%i83) CL_early : rest (CL,-(length(tL) - n200 + 1));
(%o83) [775,479,380,302,185,157,137,119,110,89,74,61 ,66]
(%i84) length (CL_early);
(%o84) 13
(%i85) ptsL : xyList(tL_early,CL_early);
(%o85) [[15,775],[30,479],[45,380],[60,302],[75,185] ,[90,157],[105,137],

[120,119],[135,110],[150,89],[165,74],[180,61],[195 ,66]]
(%i86) qdraw (pts (ptsL,pc(black),ps(1)),

errorbars (ptsL, sigL_early, lw(3),lc(blue)),
ex1 (yfit, t ,0, 200, lc(brown)),

xr (0,200), yr (0,800),
more (xlabel = "t", ylabel = "C"))$
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which produces the plot

Figure 28: Linear Plot of Early Data and Five Parameter Fit

13.5 Four Parameter Fit Using nlfit

Try a four parameter fit, enforcing the measured background value.

(%i87) ymodel_4param : 10 + a2 * exp(-t/a4) + a3 * exp(-t/a5);
(%o87) a3 * %eˆ-(t/a5)+a2 * %eˆ-(t/a4)+10
(%i88) out1 : nlfit (dataM,sigL,ymodel_4param,[a2,a3,a4 ,a5],[a2e,a3e,a4e,a5e]);

Ndata = 59
Nparam = 4
dof = 55
ivar = t

start: params: [a2 = 684.368,a3 = 84.8976,a4 = 47.3541,a5 = 2 52.448]
chi2 = 116.335

--------------------------------------------------- ------------
n lam
1 0.001

p_oldL = [684.368,84.8976,47.3541,252.448]
p_newL = [891.203,129.935,31.8702,191.623] chi2_new =

104.811
2 1.0e-4

p_oldL = [891.203,129.935,31.8702,191.623]
p_newL = [958.954,127.742,34.3479,211.159] chi2_new =

66.0768
3 1.0e-5

p_oldL = [958.954,127.742,34.3479,211.159]
p_newL = [957.992,127.205,34.3338,211.748] chi2_new =

66.0637
4 1.0e-6

p_oldL = [957.992,127.205,34.3338,211.748]
p_newL = [958.007,127.202,34.3335,211.756] chi2_new =

66.0637
--------------------------------------------------- ------------

chi2/dof = 1.20116
chi2_prob = 14.5928 %

--------------------------------------------------- ------------
a2 = 958.007 +/- 49.2896
a3 = 127.202 +/- 14.7266
a4 = 34.3335 +/- 2.1612
a5 = 211.756 +/- 14.9265
(%o88) [[a2 = 958.007,a3 = 127.202,a4 = 34.3335,a5 = 211.756 ],

[49.2896,14.7266,2.1612,14.9265],66.0637,0.145928]
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We show the late data and fit on a linear plot.

(%i89) yfit : ymodel_4param, out1[1];
(%o89) 127.202 * %eˆ-(0.00472242 * t)+958.007 * %eˆ-(0.029126 * t)+10.0
(%i90) ptsL : xyList(tL_late,CL_late)$
(%i91) qdraw (pts (ptsL,pc(black),ps(1)),

errorbars (ptsL, sigL_late, lw(3),lc(blue)),
ex1 (yfit, t ,200, 900, lc(brown)),

xr (200,900), yr (0,80),
more (xlabel = "t", ylabel = "C"))$

which produces the plot

Figure 29: Linear Plot of Late Data and Four Parameter Fit

which shows that a four parameter fit, enforcing the measuredvalue of the background, results in a poorer fit
than the five parameter fit, in which we let all five parameters be adjustable.

14 General Model Fitting Background

This section presents some context about the least squares approach to fitting a model to a set of data.

Quoting Numerical Recipes (1992), Sec. 15.0,

The basic approach in all cases is usually the same: You choose or design afigure-of-merit function
(“merit function,” for short) that measures the agreement between the data and the model with a
particular choice of parameters. The merit function is conventionally arranged so that small values
represent close agreement. The parameters of the model are then adjusted to achieve a minimum
in the merit function, yielding “best-fit parameters.” The adjustment process is thus a problem in
minimization in many dimensions. . . . however, there exist special, more efficient, methods that
are specific to modeling, and we will discuss these in this chapter.

There are important issues that go beyond the mere finding of best-fit parameters. Data are gen-
erally not exact. They are subject to measurement errors (called noise in the context of signal-
processing). Thus, typical data never exactly fit the model that is being used, even when that
model is correct. We need the means to assess whether or not the model is appropriate, that is, we
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need to test the goodness-of-fit against some useful statistical standard. We usually also need to
know the accuracy with which parameters are determined by the data set. In other words, we need
to know the likely errors of the best-fit parameters. Finally, it is not uncommon in fitting data to
discover that the merit function is not unimodal, with a single minimum. In some cases, we may
be interested in global rather than local questions. Not, “how good is this fit?” but rather, “how
sure am I that there is not a very much better fit in some corner of parameter space?”

. . . To be genuinely useful, a fitting procedure should provide (i) parameters, (ii) error estimates on
the parameters, and (iii) a statistical measure of goodness-of-fit. When the third item suggests that
the model is an unlikely match to the data, then items (i) and (ii) are probably worthless.

Quoting the forward of Statistical Methods for Experimental Physics, Frederick James, 2nd. ed., 2006

A very common tacit assumption in the everyday use of statistics is that the set of data is large
enough for asymptotic conditions to apply.

When we define the number of degrees of freedom in a model fit to data, in which the model hasm unknown
parameters and we haveN data points, as dof= ν = N − m, this may be true asymptotically, but not for
smaller amounts of data.

On the use of “language” in statistics, we quote James (Ch. 1,Sec.2):

Statistics, like any other branch of learning, has its own terminology which one has to become
accustomed to. Certain confusion may, however, arise when the same term has a different meaning
in statistics and in physics, or when the same concept has different names. In the former case we
usually imply the statistical meaning (obliging the physicist to recognize and learn the difference);
in the second case we often choose the physical term.

An example of the first kind [same term, different meaning] isthe following:

Physicists Statisticians
say say

Determine Estimate
Estimate Guess

Thus the word “estimate” has different meaning in physics and in statistics. We use it as statisti-
cians do. (We use three chapters to explain what statisticians mean thereby).

An example of the second kind is “the demographic approach” to experimental physics. Much of
statistics has been developed in connection with population studies (sociology, medicine, agricul-
ture) and at the production line (industrial quality control). Then one is not able to study the whole
population, so one “draws a sample”. And the population exists in a real sense.

In experimental physics, the set of all measurements under study corresponds to the “sample”.
Increasing the number of measurements, the physicist increases the “size of the sample”, but he
never attains the “population”. Thus the “population” is anunderlying abstraction which does not
exist in any real sense. These “demographic” terms are therefore to some extent inappropriate and
unnecessary, and we try to avoid some of them:
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For the “demographic” we use the
term physics term

Sample Data (set)
Draw a sample Observe, measure

Sample of size N N observations
Population Observable space

Still, one has to be able to distinguish between, say, the mean of the data at hand, and the mean
if the data set were infinite. When this distinction is necessary, we usesample mean, sample
variance, etc. as contrasted toparent mean, parent variance, etc., or mean and variance of the
underlying distribution. Thus

Parent mean = Mean of the underlying distribution = Populati on mean

We avoid the physical term “error”, which is misleading, anduse instead “variance of estimate”,
“confidence interval”, or “interval estimate”. We also try to avoid the words “precision” and “ac-
curacy”, because they are not well defined. In many books on statistics one finds whole chapters
dealing with the “propagation of errors”. Such a term, in ourminds, is confusing. The correspond-
ing notion here is “change of variables”. Other topics whichmay seem to have got lost, may also
sometimes be refound under other names. For instance, the term “regression analysis” is never
used, but the techniques are treated under least-squares fits of linear models.

Despite James’ avoidance of the term “errors” in his book, wecontinue to use language such as “propagation
of errors” and “likely errors”, because that language is so widespread in physics.

Quoting from Bevington, ch. 1

Error is defined by Webster as “the difference between an observed or calculated value and the true
value.” Usually we do not know the “true” value; otherwise there would be no reason for perform-
ing the experiment. We may know approximately what it shouldbe, however, either from earlier
experiments or from theoretical predictions. Such approximations can serve as a guide but we must
always determine in a systematic way from the data and the experimental conditions themselves
how much confidence we can have in our experimental results.

There is one class of error that we can deal with immediately:errors that originate from mistakes
or blunders in measurement or computations. Fortunately, these errors are usually apparent either
as obviously incorrect data points or as results that are notreasonably close to expected values.
They can be classified asillegitimate errorsand generally can be corrected by carefully repeating
the operations.

Our interest is inuncertaintiesintroduced by random fluctuations in our measurements, andsys-
tematic errorsthat limit the precision and accuracy of our results in more or less well-defined ways.
Generally, we refer to the uncertainties as theerrors in our results, and the procedure for estimating
them aserror analysis.
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Accuracy Versus Precision

It is important to distinguish between the termsaccuracyandprecision.The accuracy of an exper-
iment is a measure of how close the result of the experiment isto the true value; the precision is
a measure of how well the result has been determined, withoutreference to its agreement with the
true value. The precision is also a measure of the reproducibility of the result in a given experiment.

And also quoting the Univ. of North Carolina measurement manual

When analyzing experimental data, it is important that you understand the difference between pre-
cision and accuracy.Precision indicates the quality of the measurement, without any guarantee
that the measurement is “correct.”Accuracy, on the other hand, assumes there is an ideal value,
and tells you how far your answer is from that ideal, “right” answer. These concepts are directly
related torandom andsystematicmeasurement errors.

Measurement errors may be classified as eitherrandom or systematic, depending on how the mea-
surement was obtained (an intrument could cause a random error in one situation and a systematic
error in another).

Random errors are statistical fluctuations (in either direction) in the measured data due to the pre-
cision limitations of the measurement device. Random errors can be evaluated through statistical
analysis and can be reduced by averaging over a large number of observations (see standard error).

Systematic errorsare reproducible inaccuracies that are consistently in thesame direction. These
errors and difficult to detect and cannot be analyzed statistically. If a systematic error is identifed
when calibrating against a standard, applying a correctionor correction factor to compensate for
the effect can reduce the bias. Unlike random errors, systematic errors cannot be detected or re-
duced by increasing the number of observations.

. . . Gross personal errors, sometimes calledmistakesor blunders, should be avoided and corrected
if discovered. As a rule, personal errors are excluded from the error analysis discussion because
it is generally assumed that the experimental result was obtained by following correct procedures.
The term “human error” should also be avoided in error analysis discussions because it is too
general to be useful.

14.1 Propagation of Errors

Suppose the quantityy is some function of measured parametersa andb, which each have some estimated
uncertaintyδa ≡ σa, δb ≡ σb, and

y = f(a, b) (14.1)

The uncertainty iny if b were exactly known would be

δya =
∂f(a, b)

∂a
σa (14.2)

and likewise the uncertainty iny if a were exactly known would be

δyb =
∂f(a, b)

∂b
σb (14.3)
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If both a andb have uncertainties then we assume that the uncertainties add in quadrature in the sense

(δy)2 ≡ σ2
y = (δya)

2 + (δyb)
2 (14.4)

or

σ2
y =

[

∂f(a, b)

∂a

]2

(σa)
2 +

[

∂f(a, b)

∂b

]2

(σb)
2 (14.5)

Thus ify = a− b thenσ2
y = σ2

a + σ2
b .

If y depends on more than two measured or observed quantities, the above approach can be easily extended to
obtainσ2

y appropriate to the situation, as we will see in the next section.

14.2 Moments of a Distribution: Mean, Variance, Standard Deviation

This section in included so we can remind the reader about thedifferences between the “measured mean”
and the “true mean” and likewise for the variance. We also review the usefulness of the Gaussian (Normal)
statistical distribution for error analysis.

If there areN elements{x1, . . . , xN} in the set of data, and we assume each element is drawn from thesame
parent distribution, then eachxi has the same uncertainty

δxi ≡ σi = σ̂ for all i (14.6)

Thesample mean, or themeasured meanof the valuesxi is the “arithmetic mean”

x̄ =
1

N

N
∑

i=1

xi (14.7)

In the same way you can calculate the mean value of any functionf(x):

f̄ =
1

N

N
∑

i=1

f(xi) (14.8)

We can simplify our notation by omitting mention of the indexwhen we sum overN measurements:

∑

xi =
N
∑

i=1

xi (14.9)

The value of theparent meanor thetrue meanµ corresponding tōx is defined by

µ = lim
N→∞

(

1

N

∑

xi

)

(14.10)

Using (14.5) we can calculate the statistical errorσx̄ of the sample mean̄x. Taking into account that

∂xi

∂xj

= δij (14.11)

the Kronecker delta symbol, which equals1 if i = j and equals0 otherwise, and hence

∂

∂xj

∑

i

xi =
∑

i

δij = 1 (14.12)
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Then, using
∂x̄

∂xj

=
1

N
, (14.13)

we get

σ2
x̄ =

(

1

N

)2

σ2
x1

+ . . .+

(

1

N

)2

σ2
xN

=

(

1

N

)2

Nσ̂2 =
σ̂2

N
(14.14)

so

δx̄ ≡ σx̄ =
σ̂√
N
. (14.15)

As a numerical example, supposeσ̂ = 0.1 andN = 100. Then you can quote the sample mean as (ignoring
units here)

x̄ = 9.84± 0.01 (14.16)

According to (14.15) you can decrease the statistical errorof the sample mean by increasing the number of
independent measurements, but if one increases the number of measurements by a factor of4, the statistical
error of the sample mean is only decreased by a factor of1

2
(all other things being equal).

When measured values are quoted with an error estimate, thaterror estimate is a “Gaussian standard deviation.”
If you say the length is(9.84 ± 0.01) cm, you mean that you have used a measuring instrument which gives
answers that differ from the true value by within±0.01 cm68% of the time, within±0.02 cm95% of the time,
and±0.03 cm 99.7% of the time. Errors on measurements and average results are generally well described
by the Gaussian distribution, which is, of course, why it is also known as the “normal distribution.” Thus a
measurement reported as

Measurement= (measured value± standard uncertainty ) unit of measurement (14.17)

where the±standard uncertainty indicates approximately a68% confidence interval.

The last digit retained in the estimate of the mean should be in the same decimal place as the first digit of the
standard error. The resultant number of significant figures in the reported mean indicates the precision of the
experiment.

14.3 Gaussian (Normal) Distribution

Quoting Bevington, Ch.2, somewhat loosely,

The Gaussian probability density is defined as

pG =
1

σ
√
2 π

exp

[

−1

2

(

x− µ

σ

)2
]

(14.18)

This is a continuous function describing the probability ofobtaining the valuex in a random
observation from a parent distribution with parametersµ andσ, corresponding to the mean and
standard deviation, respectively. Because the distribution is continuous, we must define an interval
in which the value of the observationx must fall. . . . the probabilitydPG(x;µ, σ) that the value of
a random observation will fall within an infinitesimal interval dx aroundx is given by

dPG(x;µ, σ) = pG(x;µ, σ) dx (14.19)
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The probability density function is normalized such that there is a100% probability that the value
of a random observation will lie in the “interval”−∞ < x < +∞:

∫ +∞

−∞

pG(x;µ, σ) dx = 1 (14.20)

“The curve has unit area.” The peak of the curve is atx = µ, and the width of the curve is
determined by the value ofσ such that forx = µ + σ, the height of the curve is reduced to
e−1/2 = 0.606531 of its value at the peak

pG(µ± σ;µ, σ) = e−1/2pG(µ;µ, σ) (14.21)

The Gaussian distribution curve has a characteristic bell shape and is symmetric about the meanµ.

We can characterize a distribution by itsfull-width at half maximumΓ, often referred to as thehalf-
width,defined as the range ofx between values at which the probability density is half its maximum
value:

pG(µ± 1

2
Γ;µ, σ) =

1

2
pG(µ;µ, σ) (14.22)

which implies the value (see below)
Γ = 2.3548 σ (14.23)

The Gaussian distribution moments can be summarized by calculating the expected value ofx, making use of
Maxima’s integrate function, (note that we use a Maxima “expression” for the probability density, instead
of a Maxima function),

< x >=

∫ +∞

−∞

x pG(x;µ, σ) dx = µ (14.24)

(%i1) rho : exp(-(x-mu)ˆ2/2/sigˆ2)/sig/sqrt(2 * %pi)$
(%i2) assume(sig>0,mu>0);
(%o2) [sig > 0,mu > 0]
(%i3) xbar : integrate(x * rho,x,-inf,inf);
(%o3) mu

and the “variance”,

< (x− < x >)2 >=

∫ +∞

−∞

(x− µ)2 pG(x;µ, σ) dx = σ2 (14.25)

(%i4) variance : integrate((x-mu)ˆ2 * rho,x,-inf,inf);
(%o4) sigˆ2

We make a simple plot of the Gaussian probability density forthe casesµ = 0, andσ = 1, 2.

(%i5) rho1 : rho,mu=0,sig=1;
(%o5) %eˆ-(xˆ2/2)/(sqrt(2) * sqrt(%pi))
(%i6) rho2 : rho,mu=0,sig=2;
(%o6) %eˆ-(xˆ2/8)/(2ˆ(3/2) * sqrt(%pi))
(%i7) plot2d([rho1,rho2],[x,-6,6],[legend,"sig=1","s ig=2"],

[style,[lines,2]], [ylabel,"rho"])$
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which produces the plot

Figure 30: Gaussian Probability Density forµ = 0, σ = 1, 2

Integral Probability

The probability that any random value ofx will deviate from the mean by less than±∆x is

PG(∆x, µ, σ) =
1

σ
√
2 π

∫ µ+∆x

µ−∆x

exp

[

−1

2

(

x− µ

σ

)2
]

= PG(∆z) =
1√
2 π

∫ ∆z

−∆z

e−
z2

2 dz (14.26)

where dimensionlessz is defined by

z =
x− µ

σ
, ∆z =

∆x

σ
(14.27)

Thus∆z measures the deviation from the mean in units of the standarddeviationσ. Values of the “Normal
Probability Integral”PG(∆z) can be found tabulated in various places. We can easily writea Maxima function
norm_prob(delz) which returns values ofPG(∆z) after a little interactive experimentation.

(%i8) np : integrate(exp(-zˆ2/2),z,-dz,dz)/sqrt(2 * %pi);
(%o8) erf(dz/sqrt(2))
(%i9) np,dz = 1,numer;
(%o9) 0.6826894921370859
(%i10) np,dz = 2,numer;
(%o10) 0.9544997361036416
(%i11) np,dz = 3,numer;
(%o11) 0.9973002039367398
(%i212) norm_prob(delz) := float (erf(delz/sqrt(2)))$
(%i13) norm_prob(1);
(%o13) 0.6826894921370859
(%i14) norm_prob(2);
(%o14) 0.9544997361036416

These results mean that roughly68% of random values ofx drawn from a parent Gaussian distribution having
meanµ and standard deviationσ will have values in the rangeµ± σ, and roughly95% will have values in the
rangeµ± 2σ, and roughly99.7% will have values in the rangeµ± 3σ.

The “probable error”

P.E.= σpe = 0.6745 σ ≈ 2

3
σ (14.28)

defines an intervalµ− σpe ≤ x ≤ µ+ σpe within which half (50%) of the values ofx measured will lie.
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(%i15) norm_prob (0.6745);
(%o15) 0.5000065142726016
(%i16) find_root (norm_prob(dz) - 0.5, dz, 0.6, 0.7);
(%o16) 0.6744897501960818

Working with the dimensionless variablez and the probability density function

p(z) =
1√
2 π

e−z2/2 (14.29)

we can define the half-widthΓ as2 z0, where

p(z0) = p(0)/2 (14.30)

which implies, usingln eA = A,
Γ = 2 z0 = 2

√
2 ln 2 = 2.3548 (14.31)

(%i17) 2 * sqrt(2 * log(2));
(%o17) 2ˆ(3/2) * sqrt(log(2))
(%i18) float(%);
(%o18) 2.35482004503095

Quoting Lyons, p. 15

One feature which helps to make the Gaussian distribution ofsuch widespread relevance is the
central limit theorem. One statement of this is that ifxi is a set ofN independent variables of
meanµ and varianceσ2, then for largeN

y =
1

N

∑

xi (14.32)

tends to a Gaussian distribution of meanµ and varianceσ2/N . The distribution of the individualxi

is irrelevant. Furthermore, thexi can even come from different distributions with different meansµi

and variancesσ2
i in which casey tends to a Gaussian of mean(1/N)

∑

µi and variance
∑

σ2
i /N .

If the xi are already Gaussian distributed, then the distribution of(14.32) is already Gaussian for
all values ofN from 1 upwards. But even ifxi is, say, uniformly distributed over a finite range,
then the sum of a fewxi will already look Gaussian. . . . Thus whatever the initial distributions, a
linear combination of a few variables almost always degenerates into a Gaussian distribution

Sample Variance and Standard Deviation

The sample mean̄x describes all your data with just one number, but doesn’t give any information about how
spread out the data values are. We need a number to express thespread or dispersion of the data about the
mean. The average squared deviation from the mean is a sensible measure of the spread of the data. It is called
thesample varianceor themeasured varianceV (x)

V (x) =
1

N

∑

(xi − x̄)2 =
1

N

∑

x2
i −

(

1

N

∑

xi

)2

= x2 − x̄2 (14.33)

Thus the sample variance is the mean square minus the squaredmean.

The root mean squared deviation is called thesample standard deviationand given the symbolσ. It is just
the square root of the sample variance and can be expressed invarious forms

σ =
√

V (x) =
√

x2 − x̄2 =

√

1

N

∑

(xi − x̄)2 (14.34)

Quoting Barlow (see References section at the end), Sec. 2.4.2 and 2.4.3,
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σ represents a reasonable amount for a particular data point to differ from the mean. The exact
numerical details depend on the case, but usually one is not surprised by data points one or two
standard deviations from the mean, whereas a data point three or moreσ away would cause a few
raised eyebrows.

The definition ofσ is a minefield of alternatives, and to call it the ‘standard’ deviation is something
of a sick joke. It is important to face up to this, for when people are unaware of the differences
between the definitions they get confused and dismayed by factors of

√

N/(N − 1) that appear
apparently out of nowhere. This leads to a tendency to insertsuch factors at random and generally
incorrect moments. (14.34) defined the standard deviation of a data sample as

σ =

√

1

N

∑

(xi − x̄)2 (14.35)

So far so good. However, our data are presumably taken as a sample from a parent distribution,
which has a mean and a standard deviation, denotedµ andσ. In terms of expectation values:

µ = 〈x〉, σ =
√

〈x2〉 − 〈x〉2 =
√

〈x2〉 − µ2 (14.36)

There is thus a clear distinction betweenx̄ , the mean of the sample, andµ, that of the parent, and
complete confusion betweenσ, the standard deviation of the sample, andσ, that of the parent. This
is not really too bad, as it is generally clear which is meant.However, it gets worse. Some authors
define the term ‘standard deviation’ as the r.m.s. deviationof the data points from the ‘true’ mean
µ, rather than the sample meanx̄:

√

1

N

∑

(xi − µ)2 (14.37)

This is felt to be a more fundamental and ‘truer’ quantity than that defined in (14.34), but it is not
much use if you do not know the value ofµ. However, an estimate of this, which (when squared)
gives an unbiased estimate ofσ2 of the parent, is given by

s =

√

1

N − 1

∑

(xi − x̄)2 (14.38)

. . . it is not a matter of ‘right’ and ‘wrong’ definitions: you can use whichever definition of standard
deviation you please, provided you make it clear to other people what that is, and when using
other people’s results and formulae involvings or σ you check what they mean by it. Some
authors helpfully use the name “sample standard deviation”explicitly for the quantity defined in
(14.38). Unfortunately others use it for the quantity defined in (14.35). Definitions of variance,
andsample variance,are similarly confused. In this book we will consistently use σ as defined
in (14.35) ands for the quantity defined by (14.38). This is not universal, and different authors
use either symbol for either quantity – you have been warned.Some authors use Greek symbols
for quantities from distributions and the Roman alphabet for those of data samples, but the usage
of σ is so entrenched that this has no chance of universal adoption, and anyway this still leaves
the ambiguity between (14.35), (14.37), and (14.38). If necessary, the distinction can be made
completely clear and explicit by denoting the quantity defined by (14.35) asσN and that of (14.38)
asσN−1, though this involves extra subscripts which lead to messy-looking formulae.

A low value of the standard deviation indicates a high precision – the data points are closely clustered, with
low scatter. Hence, the smaller the standard error, the moreprecise are the set of measurements, and the more
reproducible are the results.
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Our preference for usings (14.38) rather thanσ (14.35) can be illustrated by assuming we have only one
measurement ofx which we callx1, and withN = 1, our rule for calculatinḡx (14.7), which we repeat here:

x̄ =
1

N

N
∑

i=1

xi (14.39)

says that̄x = x1. If we then use (14.35), we getσ =
√

(x1 − x̄)2 = 0, which is an unacceptably low estimate

of the standard deviation. If we instead use (14.38), we gets =
√

0
0

which is an indeterminate result, and forces
us to use at least two measured values (N = 2) to get acceptable values for both the mean and the standard
deviation. The denominatorN − 1 is called the “number of degrees of freedom”ν = dof. Of course, ifN is
large, there will be no practical difference between usingσ or s as a measure of the standard deviation of the
random values ofx.

The accuracy of a measurement refers to how closely a measurement compares with a known “standard” or
“accepted” or “theoretical” value. Sometimes, measurements with a high precision may cluster very closely
around an inaccurate mean value, usually due to the presenceof systematic errors.

If you have a large data set (largeN), the data can be “binned” into small sample “classes” and the means of
the individual bins (“classes”) can be used to plot a histogram of the data set. With only random errors present,
the plot of the histogram (“plot of the frequency distribution”) will be a characteristic bell-shaped curve that is
symmetric about the mean of the data setx̄. If the “normal distribution” is instead asymmetric and thepeak
of the histogram plot does not coincide with the position ofx̄, but is shifted either right or left, one should
investigate the possibility of systematic measurement errors (in addition to random errors).

Our estimate of the statistical standard error on the mean from (14.15) for a situation in which we knew that
the uncertainty of each individual measurement was approximatelyσi = σ̂ for all i was

δx̄ ≡ σx̄ =
σ̂√
N
. (14.40)

If we don’t know the uncertainty of each repeated measurement, or want to check if our estimate was realistic,
we can use our data and (14.38) to calculates, the square root of the unbiased variance, and then uses instead
of the unknown or suspect value ofσ̂ to calculate the standard statistical error ofx̄.

δx̄ ≡ σx̄ =
s√
N
. (14.41)

14.4 Theχ2 Goodness-of-Fit Test

Theχ2 (chi-square) “goodness-of-fit” test involves using what Numerical Recipes calls the “incomplete gamma
function”Q(a, x) defined by

Q(a, x) =
1

Γ(a)

∫

∞

x

e−t ta−1 dt (14.42)

whereΓ(z) is the gamma function

Γ(z) =

∫

∞

0

tz−1 e−t dt (14.43)

When the argumentz is an integer
Γ(n) = (n− 1)! (14.44)

soΓ(4) = 3!, Γ(5) = 4!, etc.
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(%i1) gamma(1);
(%o1) 1
(%i2) 0!;
(%o2) 1
(%i3) gamma(4);
(%o3) 6
(%i4) gamma(5);
(%o4) 24

This version of the “incomplete gamma function”Q(a, x) has the limiting values

Q(a, 0) = 1 and Q(a,∞) = 0 (14.45)

To computeQ(a, x) using Maxima, we use

Q(a,x) <==> gamma_incomplete(a,x) / gamma(a)

With the above notation, we can estimate the “goodness-of-fit” of the data to the model in terms of a number
we callQ. The quantitiyQ, defined using the current data and fit value ofχ2(a, b) defined in (3.1) in terms of
the functionQ(a, x), is (we justify this definition below):

Q = Q

(

ν

2
,
χ2

2

)

(14.46)

and is the (fractional) “chi-square probability” that a repetition of the same experiment (same number of data
points and same number of degrees of freedom (dof)ν = N −m and same model) would produce a value of
χ2 greater than the value found. (m is the number of model parameters fitted, which is 2 in our straight line
model.) From the limiting values (14.45) we see that the chi-square probability that aν degree of freedom fit
results in a valueχ2 > 0 is 100%.

If the “reduced chi-square”χ2
ν = χ2/ν is reasonably close to 1, thenQ is reasonably close to0.5 ( 50% prob-

ability). Equivalently, we can say that if the value ofχ2 predicted by the data and fit is approximately equal to
the number of degrees of freedom (dof= ν = N − 2 for a straight line fit) , thenQ is reasonably close to0.5 (
50% probability).

We can use ourfit.mac function chi2_prob(chi2, dof) to illustrate this for the caseν = 8 andχ2 =
7.35:

(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) chi2_prob(7.35,8)$

chi2/dof = 0.91875
chi2_prob = 49.9383 %

If we use the underlyingχ2 distribution, which governs the value of the meanχ2 and varianceσ2(χ2), justified
if the experimentally observed valuesyi are Gaussian distributed with meana + b xi and with varianceσ2

i , the
sum (3.1) is distributed as predicted by the “χ2 distribution”, decribed by the probability distribution function
(pdf)

p(χ2, ν) dχ2 =
1

2ν/2 Γ(ν/2)
[χ2]

ν
2
−1 e−

χ2

2 dχ2 (14.47)

for
0 ≤ χ2 < ∞ (14.48)

and one can show that
χ2 = ν, σ2(χ2) = 2 ν (14.49)

For example, withz standing for the integration variableχ2 (these definitions are also infit.mac ),
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(%i1) p(chi2,nu) := chi2ˆ(nu/2 -1) * exp(-chi2/2)/2ˆ(nu/2) / gamma(nu/2)$
(%i2) chi2_moment (m,nu) := integrate(zˆm * p(z,nu),z,0,inf)$
(%i3) chi2_norm(nu) := chi2_moment (0,nu)$
(%i4) chi2_mean (nu) := chi2_moment (1,nu)$
(%i5) chi2_variance (nu) := (chi2_moment (2,nu) - chi2_mea n (nu)ˆ2)$
(%i6) chi2_norm(8);
(%o6) 1
(%i7) map (’chi2_norm,[8,9]);
(%o7) [1,1]
(%i8) map (’chi2_mean,[8,9]);
(%o8) [8,9]
(%i9) map (’chi2_variance,[8,9]);
(%o9) [16,18]
(%i10) qdraw (ex1(p(z,6),z,0.2,20,lc(blue),lk("6")),

ex1(p(z,10),z,0.2,20,lc(red),lk("10")),
more (xlabel = "chi2"))$

which produces the plot

Figure 31:χ2 prob. d.f. for two values ofν

This means that “large” values ofχ2 are unlikely, and very small values ofχ2 are also unlikely. Thus very large
or very small values ofχ2 probably indicate that the data cannot be modelled well witha straight line fit (or
else the experimental uncertainties in the datayi have not been accurately estimated).

Returning to theχ2 goodness-of-fit valueQ, quoting Numerical Recipes (1992, Sec. 15.2)

. . . If Q is larger than, say,0.1 (i.e., the chi-square probability is greater than10%), then the
goodness-of-fit is believable. If it is larger than, say,0.001 (i.e., the chi-square probability is larger
than0.1%) , then the fitmaybe acceptable if the errors are nonnormal [non-gaussian] orhave been
moderately underestimated. IfQ is less than0.001 then the model and/or estimation procedure can
rightly be called into question.

Now that we have introduced the definition of theχ2 probability distribution function (pdf)p(chi2,dof) ,
we can use that function together with Maxima’sintegrate to calculate the probabilty of finding a new
value ofχ2 (in a repetition of the experiment and fit) greater than some already “observed” value ofχ2(a, b).
Repeating the example above (by doing the implied integral directly), we assume the observedχ2 = 7.35 and
dof = ν = 8.
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(%i1) load(fit);
(%o1) "c:/work9/fit.mac"
(%i2) integrate(p(z,8),z,7.35,inf);
(%o2) 0.499383
(%i3) chi2_prob(7.35,8)$

chi2/dof = 0.91875
chi2_prob = 49.9383 %

By usingintegrate with symbolic values for the lower limit of the integral and for the number of degrees of
freedomν, we arrive at the same definition as we used above to define the goodness-of-fit numberQ.

(%i4) integrate(p(z,nu),z,z0,inf);
Is nu positive, negative or zero?
p;
(%o4) gamma_incomplete(nu/2,z0/2)/gamma(nu/2)

15 General Linear Fit Matrix Solution Derivation

We assume the mathematical model in terms ofM unknown parametersak is

y(x; a) = f(x) +
M
∑

k=1

ak Xk(x), (15.1)

in which theXk(x) are arbitrary given functions of the independent variablex.

Given a data set(xi, yi, σi) havingN data points, withσi being the estimated uncertainty of each measuredyi,
and given a mathematical model,χ2 is defined as

χ2 =

N
∑

i=1

(

yi − y(xi; a)

σi

)2

. (15.2)

We now assume that theak values which satisfy theM equations

∂χ2

∂ak
= 0 (15.3)

will yield a good fit to the data. The resulting solution should be checked visually with a simple plot of the data
and the model together. We use

∂

∂am
y(xi; a) = Xm(xi) (15.4)

to simplify this set of equations for theak.

In our matrix notation, the transpose of a matrixA is denotedAT and we will use boldfaced lower case letters,
such asd, to denote matrix column vectors.

Let

ei =
(yi − f(xi))

σi
, (15.5)

and

Aik =
Xk(xi)

σi
. (15.6)



15 GENERAL LINEAR FIT MATRIX SOLUTION DERIVATION 64

Then theM equations (15.3) become

0 =
N
∑

i=1

ei Aik −
N
∑

i=1

M
∑

m=1

amAim Aik. (15.7)

In the first term, we define

dk =

N
∑

i=1

ei Aik =

N
∑

i=1

(AT)ki ei, (15.8)

or, using matrix notation
d = AT

e. (15.9)

In the second term, we interchange the order of summation andget

−
M
∑

m=1

(

N
∑

i=1

(AT)ki Aim

)

am = −
M
∑

m=1

Bkm am = − (B a)k , (15.10)

thus defining
B = ATA. (15.11)

Thus theM equations (15.3) reduce to the single matrix equation

B a = d, (15.12)

from which we get
a = B−1

d = (AT A)
−1

(AT
e) . (15.13)

Errors inak arise only from errors in the measured data valuesyj, since we are assuming the correspondingxj

are known exactly or at least with much less error. To calculate the estimated errorσ(ak) in the parameterak,
we add contributions in quadrature, as usual,

σ2(ak) =

N
∑

j=1

(

∂ak
∂yj

)2

σ2
j , (15.14)

and it is convenient to define
C = B−1, (15.15)

so that
a = C d. (15.16)

NowB and henceC do not depend on the data valuesyi, and can be treated as constants in finding the variation
of ak due to the estimated errors of theyi. Thus

∂ak
∂yj

=
M
∑

m=1

Ckm
∂dm
∂yj

, (15.17)

and
∂dm
∂yj

=
∂

∂yj

N
∑

i=1

Aim ei =
N
∑

i=1

Aim
∂

∂yj
ei =

N
∑

i=1

Aim
δij
σi

=
Ajm

σj

. (15.18)

We have used the Kronecker delta symbolδij which is equal to unity ifi equalsj, and is otherwise equal to
zero. For example, sinceyi andyj are independent numbers fori 6= j,

∂yi
∂yj

= δij. (15.19)
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We then have
∂ak
∂yj

=
1

σ2
j

M
∑

m=1

CkmXm(xj) (15.20)

for j = 1, . . . , N andk = 1, . . . ,M . Using (15.20) in (15.14), interchanging the order of summations, and
using

M
∑

l=1

CklBlm = (CB)km =
(

B−1B
)

km
= δkm, (15.21)

we get

σ2(ak) =
N
∑

j=1

σ2
j

(

M
∑

l=1

CklXl(xj)

σ2
j

M
∑

m=1

CkmXm(xj)

σ2
j

)

=

M
∑

l=1

M
∑

m=1

CklCkm

N
∑

j=1

Xl(xj)Xm(xj)

σ2
j

=

M
∑

l=1

M
∑

m=1

CklCkm

N
∑

j=1

AjlAjm

=
M
∑

l=1

M
∑

m=1

CklCkmBlm

=

M
∑

m=1

Ckmδkm

= Ckk.

Hence the uncertainty inak is given by
σ(ak) =

√

Ckk. (15.22)

With some changes in notation, the above matrix method is thebasis of the code for the functions which are
called by the general linear fit methodlfit in fit.mac .

16 General Nonlinear Fit Search Method

The method used fornlfit is called the Levenberg-Marquardt method (or just the Marquardt method). This
method is summarized by Bevington (3rd ed), pdf 162, and alsoby Numerical Recipes (Fortran 77, 2nd ed.,
1992, p. 678).

A dimensionless parameter (fudge factor)λ is used to combine the advantages of two different search methods,
adjusting the value ofλ in response to whether the value ofχ2 increases or decreases as one change the values
of the adjustable model parameters.

Quoting Numerical Recipes: “This . . . method . . . works very well in practice, and has become the standard of
nonlinear least-squares routines.”
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