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This document is Ch. 14 of the series “Maxima by Example” anthade available via the author’s
webpage http://www.csulb.edu/"woollett/ to aid new users of the Maxima computer algebra sys-
tem.

Ch.14 files used in the examples, available on the authobtpage, include the chapter software filenac
gdraw.mac , the data filesnbel4-fiti.mac  throughmbel4-fit8. mac , andcoffee.dat

Most of the plots in Ch. 14 use ogdraw.mac software discussed in more detail in Ch. 13.

The interface XMaxima was used with the Windows XP operasiygiem, with the startup file looking like
C:/Documents and Settings/Edwin Woollett/maxima/maxima -init.mac

If you are using Windows 7, the startup file path looks like

C:/Users/ted/maxima/maxima-init.mac .

See Chapter 1 for more information about setting up theugidite.

COPYING AND DISTRIBUTION POLICY
NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute themterstas long as you charge no more than the
costs of printing.
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1 Introduction

Chapter 14 provides examples of the use of a new set of Maxamaibns (defined ifitmac ). These new
functions not only return the best-fit parameter values atad the estimated parameter uncertainties and the
x? probability of the results. These new functions assume ndegdendent variable and one corresponding
dependent variable and are calli&dline , fit_slope , fit_y intercept , Ifit , andnlfit . These
new functions also allow for the use, while finding best fit miquarameters, of the estimated uncertainties of
the measured dependent variable.

Before introducing these new functions, we remind the readiehe currently available Maxima function
Isquares_estimates

After introducing the syntax of the nefitmac  fitting functions, we work out nine examples in detail. Seven
of these examples use experimental data from the text “Datlu&®ion and Error Analysis for the Physical
Sciences,” 3rd ed., Philip R. Bevington and D. Keith RobmddcGraw-Hill (US), 2003.

A “New International Economy Edition” of this text, printedl India, can be found on th@mazon.com web-

site. This text is very valuable because of the in-depth@agr and the many examples discussed in a physical
context. We include links to online pdf copies of this texd,veell as other suggested resources in the Refer-
ences section at the end of this chapter.

As a quick survey of using the available fitting functionsaBwle 1 uses our five fitting functiofis line

fit_slope ,fit_y intercept ,Ifit , andnlfit |, three of the auxiliary functions, and also
Isquares_estimates to fit a simple set of data.
Data files included with Ch. 14 arabe_fitl.dat throughmbe_fit8.dat , in addition tocoffee.dat

The latter data file was also used in Ch. 2 with a brief examplesimgIsquares_estimates

Prior to Example 5 we show how to generate random numbetsgh@éns, and add Gaussian noise to a signal,
using the standard Maxima packagkescriptive.mac anddistrib.mac

In Example 7 we use Legendre polynomials as basis functiodgfining a data model. We use the Maxima
functionlegendre_p(n,x) which is defined irorthopoly.lisp . We sebrthopoly_returns_intervals
tofalse infitmac so that we get an ordinary number as the return value.

Most of the plots are created using our Ch. 13 softvegiraw.mac , which provides a simple interface to the
draw2d function. We have includeddraw.mac with the Ch. 14 files for convenience; it should be placed
in your Maxima work folder along with the data files afidnac . The first few Examples provide enough
guidance in the use efdraw in the context of this chapter. In particular, in Example 1dvaw the same plot
(approximately) using bothdraw anddraw2d separately for comparison.
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2 The Currently Available Maxima Function Isquares_estimates

The currently available Maxima least squares fit functior@udelsquares_estimates , Which is more
general than the functions fimac , in the sense thadquares_estimates does not restrict the number
of variables and does not assume one variable is the “indiegeivariable.” However, no estimates of the
uncertainties of the fitted parameters is provided.

The Maxima manual has the description:

Isquares_estimates (D, x, e, a)

Isquares_estimates (D, x, e, a, initial = L, tol = t, iprint = [ nl,n2])
Estimate parameters a to best fit the equation e in the variab les x
and a to the data D, as determined by the method of least square S.
Isquares_estimates first seeks an exact solution, and if th at fails,

then seeks an approximate solution.

The return value is a list of lists of equations of the form [a = . b= .,c=.]

Each element of the list is a distinct, equivalent minimum of the mean square error.

The data D must be a matrix. Each row is one datum (which may be c alled a ‘record’

or ‘case’ in some contexts), and each column contains the val ues of one variable across

all data. The list of variables x gives a name for each column o f D, even the columns
which do not enter the analysis. The list of parameters a give s the names of the parameters
for which estimates are sought. The equation e is an expressi on or equation in the variables

x and a; if e is not an equation, it is treated the same as e = 0.

Additional arguments to Isquares_estimates are specified as equations and passed on
verbatim to the function Ibfgs which is called to find estima tes by a numerical method
when an exact result is not found.

If some exact solution can be found (via solve), the data D may contain non-numeric values.

However, if no exact solution is found, each element of D must have a numeric value.

This includes numeric constants such as %pi and %e as well as | iteral numbers (integers,

rationals, ordinary floats, and bigfloats). Numerical cal culations are carried out with ordinary
floating-point arithmetic, so all other kinds of numbers ar e converted to ordinary floats for calculations.

load(Isquares) loads this function.

For information about the use of the optiprint = [n1,n2] , see the Maxima manual entry under the name
Ibfgs . For a long set of examples, see the comments at the topsbare/lsquares/Isquares.mac
These latter examples also illustrate the use of the opimities = L andtol =t

See Example 1 for an example of usiaguares_estimates

3 Syntax of the fit.mac Functions

In the following functionsMdata is a two column matrix, with the first column containing théues of the
independent variable at which values of the dependenthlarteave been measured, and with the second col-
umn containing the corresponding values of the dependeiabla. length(Mdata)  will then produce the
number of data points (the number of rows of the mattdata ).

sigL is a list of the estimated experimental errors of the depeindariable, with a separate number for each
measured value; this list should have the same length asithber of data points. We ignore any measurement
errors in the values of the independent variahleassuming such possible errors are much smaller than those
of the corresponding dependent variaflelf you have no estimate of thg experimental errors, you can still
find a set of approximate numerical values of the paramatgrsur model by definingigL to be a list of 1's.

sigL : makelist (1,i,1,length (Mdata))
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Since we ignore the uncertainties of the independent ariaduesr;, the uncertainty in the value found for
the parameters depends only on the uncertaintied the dependent variable measured valyesWe need
some approximate estimate of these uncertainties to firabteluncertainties in the fitted values of the model
parameters as well as a reliable value of tRgrobability Q ( the goodness-of-fit fractional probability}) is
the (fractional) probability that a value gf (pronounced “chi-square”) greater than the value caledlfiom
the data would be produced in a repetition of the same expetim

Once you have found a set of fitted values of the model parasjgt@u can use the functign gaussian_PE

(see Example 1 for an example) to produce a value of the plelesitor of the dependent variable measure-
ments, provided values drawn at a fixed value of the independeiable are drawn from a Gaussian distribu-
tion (more about this later), allowing a recalculation wathewsigL which will provide much better estimates
of the model parameter uncertainties.

ymodel is an expression depending on some parameters and an indepemriable, such as + b*x, in
which[a,b] are model parameters, ards the independent variable, and the model is a two pararfieter
to a straight line. If your measurements are taken at difteteemperatures, for example, you would use for
ymodela + b*T. You can use any symbols for the unknown parameters, suahh as a2 *x. A general
linear fit model might be, for exampbe + b*cos(x) + ¢ *exp(-x) , which contains three parameters, and
this model expression is linear in each of the three paraseide functiorifit  (ornifit ) should be used
for such a general linear model. Both of the functitins andnlfit  (the latter being the general non-linear
fit function), can also fit a model containing terms which damvolve parameters, such as:

cos(X)/x’3 + a =*sin(x) + b *exp(-x) . The non-linear fit functionlfit ~ can be used with both linear
and non-linear models. An example of a non-linear model {limear in at least one of the parameters) is
axrexp(-b *x) + ¢ *cos(d *x), which has two linear parameters and two non-linear par@amset

The argumenparamL is a list of the model parameters, sucHab] or[al,a2] , etc. The functions detect
the name being used for the independent variable from theesgion used foymodel .

The non-linear fitting functiomlfit ~ requires as its last argument the fisram-initL  ; for example, if the
fitis a two parameter fi{1,-1]  would be a list of the initial values of the two parameters.ekample would
be:

nifit (dataM, sL, a *exp(-b *x),[a,b],[1,-1])

The functiony_gaussian_PE has as its second argumelof , the “number of degrees of freedom” of the fit,
which is equal to the number of data points minus the numbpameters being fitted.

Each of our “fitting functions” searches for values of thegmaeters which produce a locally smallest numerical
value of the non-negative numbgt, defined as

Cla) = f} (%(“))2 (3.1)

i=1

in which y; is the measured value at= z;, with an estimated uncertainty given by, a stands for the set of
model parameters, andz;, a) is the model prediction for the value of the dependent végiabr = x;. We
ignore any measurement errors in the values ofith@ssuming such possible errors are much smaller than
those of the corresponding.

A necessary condition for the existence of a local minimunyih) is that the first derivative of? with re-
spect to each of the parameters is equal to zero, a requitéhadiyields the same number of equations as the
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number of parameters.

Each of our fitting functions returns the ljgparamL, errorL,chi2,Q] , inwhichchi2 stands for? (eval-
uated for the values of the fitted parameters), @mstiands for the {2 fractional probability”, the (fractional)
probability a repetition of the data measuring experimstér{ing with the same environment and initial con-
ditions) would produce a value gf as large as the value found here. The “percent probabikty'00 times
the value of(). (See the details and derivations section for more backgrpuEach of our fitting functions
also print to the screen the values of the ratig bfo the number of degrees of freedom, as well as the valQ@e of

Given numerical values for the model parameters, you caapeddently calculatg? using the function
get_chi2 ,whose third and last argumeyiit_expr ~ mightbel.2 - 3.4 +x forastraightlinefia + b*x,
in which the y-intercepa = 1.2 , and the slopé = -3.4 .

You can also independently reproduce the screen printbetsZidof andQusing thechi2_prob  function.

One can show (see details and derivations section) that Irdduced chi-square”
X X
X2 = = = (3.2)

is of the order 1, they ~ 0.5, and both measures indicate a good fit to the data. For alstiaig fit in which
two parameters must be adjusted usvglata points, the “number of degrees of freedamz dof = N — 2.

Quoting (loosely) Numerical Recipes (1992, Sec. 15.2)

... If Q is larger than, say).1 (i.e., the goodness-of-fit probability is greater tHa), then the
goodness-of-fit is believable. If it is larger than, say01 (i.e., the goodness-of-fit probability

is larger tharD.1%), then the fitmaybe acceptable if the errors are nonnormal [non-gaussian] or
have been moderately underestimated@ Iis less thar0).001 then the model and/or estimation
procedure can rightly be called into question.

For convience in checking syntax, we insert here the syntakeomost useful functions defined in the file
fit.mac



4 EXAMPLE 1: STRAIGHT LINE FIT OF DATA WITH NO ERROR INFORMATON 8

3.1 fitline (Mdata, sigL), Two Parameter Straight Line Fit

3.2 fit_slope (Mdata, sigL, y-intercept), One Parameter Straight line Fit, Given the
Y-intercept

3.3 fity_intercept (Mdata, sigL, slope), One Parameter Straight Lire Fit, Given the
Slope

3.4 Ifit (Mdata, sigL, ymodel, paramL), General Linear Fit

3.5 nlfit (Mdata, sigL, ymodel, paramL, param-initL), General Nonlinear Fit
3.6 moment (datalL)

3.7 y.gaussianPE (Mdata, dof, ymodel), Probable Data Error if Gaussian
3.8 getchi2 (Mdata, sigL, yfit_expr), v* Value Based on Fitted Parameters
3.9 chi2prob (chi2, dof)

3.10 Vsearch (Mdata, sigL, ymodel, paramL, param-valuesL,)Visual Search for Pa-
rameter Values

3.11 grid_search(Mdata, sigL,ymodel,paramL,param-initL,stepFador), Grid Search

4 Example 1: Straight Line Fit of Data with No Error Informati on

As a quick survey of using the available fitting functionsaBwle 1 uses our five fitting functiofis line

fit_slope ,fit_y intercept ,Ifit , andnlfit , as well as three of the auxiliary functions to fit a simple
set of data.
In addition, we compare our fit results with Maximadsjuares_estimates output, which can find the

best fit parameters (ignoring relative weights of variousgeints) but does not return information about the
estimated uncertainties of the parameters found. It is napbto realize that if the estimated errorsof

the values of the measured quantityat eachx; are assumed to be the same in magnitude and sign, then
Isquares_estimates should return the same values for the model parameters a# dwmctions. If the
values of thes; are not all the same, as is the case for measuremgtmntrolled by Poisson statistics for
example, then the values returned for the parameters aexpetted to be identical.

Example 1 is taken from Bevington (Data Reduction and Errpalgsis for the Physical Sciences,1st. ed,
1969, p. 93-94). The data in our fiebel4-fitl.dat describes measurements of temperafuedong a rod
in degrees Celsius (column 2) at positiang centimeters along the rod (column 1).

We will try to use a straight line fit’ = a+b x, to the given data, in whichis the prediction of the temperature
whenz = 0, andb is the rate of change in temperature (degrees per cm.) ahengt. Generically, we call
these respectively the “y-intercept” and the “slope” of tiest fit line.

No errors in temperature measurement are available, so VimeddgL to be a list of 1's when calling
fit line , fit_slope , fit_y intercept ( the three functions which are restricted to straight ling) fi
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or when callindfit  (general linear fit) onlfit ~ (general non-linear fit) for the first time.

In the absence of any additional information, we expect ampierature measurement (as a function of distance
or time, etc) to be subject to both instrumental and randoms&an errors, and we ugegaussian_PE to
estimate the size of temperature measurement errors badeutiothe given data as well as the best fit values
of the straight line parameters found using the stop-gagd®f assumingigL to be a list of 1's.

We can then re-do our calculation of the best fit straigtg-parameters, and the resulting estimates returned of
the probable error size of those parameters should be masemable than ocurred in the first go. In addition,
the values of the? probabilityQ and the value of the “reduced® value can finally be taken seriously.

The author’s work folder for this chapter ¢swork9/ , and the various chapter data files are available for
use there, as well as the fiiemac . Because the Maxima startup fileaxima-inittmac ~ has been edited
(or created) to let Maxima know the location of the currentkvimlder (see the first chapter of Maxima by

Example for a discussion of this issue), we can losd(fit) instead ofload("fit. mac") or the even
more onerouwad ("c:/work9/fit. mac") to aquaint Maxima with the functions defined in that software
file.

At the bottom offittmac  appears a reset of some global variables which proves cmmtéfor our work in
this chapter:

ratprint : false$
orthopoly_returns_intervals : false$
display2d : false$

fpprintprec : 6$

The actual calculations are performed using 16 digit fl@apoint arithmetic, as usual with Maxima in its
default mode.

We prefer to use the interface XMaxima for routine work, ahd settingdisplay2d : false allows a
denser display of information per screen. You are, of cqurse to change this setting fit.mac  at any
time. (And free also to change the definition of any of our tiores!)

(%i1) load(fit);

(%o01) "c:/work9/fit.mac"

(%i2) fname : "c:/work9/mbel4-fitl.dat"$

(%i3) printfile (fname)$

1.0 15.6

2.0 175

3.0 36.6

4.0 43.8

5.0 58.2

6.0 61.6

7.0 64.2

8.0 70.4

9.0 98.8

(%i4) Mdata : read_matrix (fname);

(%04) matrix([1.0,15.6],[2.0,17.5],[3.0,36.6],[4.0,4 3.8],[5.0,58.2],
[6.0,61.6],[7.0,64.2],[8.0,70.4],[9.0,98.8])

(%i5) ndata : length (Mdata);

(%05) 9

The objectMdata (you can use any name for this) is a Maxima matrix whose firsinon contains values; of
the “independent variable’ (distance along the rod), and the second column contaimesmonding values;
of the “dependent variablel” (the temperature), and each of the nine rows describes @ta pint”(z;, T;).
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4.1 Two Parameter Fit using fitline

We first usefit_line(data_matrix, error_list) , a function that actually calls the general linear fit
functionlfit . Initially we don’t have error estimates for the temperatualues, so just set all the temperature
errors equal to 1 for now.

(%i6) sigLl : makelist(1,i,1,ndata);

(%06) [1,1,1,1,1,1,1,1,1]

(%i7) out : fit_line (Mdata,sigL1);

fit model y(x) = a + b *X to given data
a = y-intercept, b = slope

ivar = X

num_data = 9

num_param = 2

dof = 7

chi2/dof = 45.2369

chi2_prob = 1.67021e-62 %

a = 4.81389 +/- 0.726483

b = 9.40833 +/- 0.129099

(%07) [[a = 4.81389,b = 9.40833],[0.726483,0.129099],316 .658,1.67021e-64]
(%i8) yfit : a + b *X, Out[1];

(%08) 9.40833 +*x+4.81389

Each of our fitting functions returns the ligtaramL,errorL,chi2,Q] , In which paramL is a list of the
best-fit parameter values (including parameter names)L is a list of the corresponding parameter un-
certaintieschi2 stands fory? (evaluated for the values of the fitted parameters), @istands for the {2
fractional probability”, the (fractional) probability @petition of the data measuring experiment (starting with
the same environment and initial conditions) would prodaigalue ofy? as large as the value found here. The
percent probability is 100 times the value @f.

For this example, the number of degrees of freedom (doflesithmber of data points (9) minus the number of
fitted parameters (2) which givesf = 7 . The value of the “reduceg?”, chi2/dof  should be of the order
of 1 for a really good fit, and we see a poor fit.

The x? probability Q is ridiculously small, again indicating a really poor fit. Yean independently calculate
these quantities usinghi2_prob(chi2,dof)

(%i9) chi2_prob (317,7);
chi2/dof = 45.2857
chi2_prob = 1.4115e-62 %

(%09) done

We now use the returned values of the parameters to estimatemperature “probable errors” if they have
a gaussian distribution, using the functipmaussian_PE (data-matrix, dof, yfit_expr) , define a
new list of estimated errors, and ctill line again.

(%il0) y_gaussian_PE (Mdata,7, yfit);

(%010) 4.48389

(%ill) sigL2 : makelist(4.5,i,1,ndata);

(%011) [4.5,4.5,45,45,45,45,4.5,45,4.5]
(%il2) out : fit_line (Mdata,sigL2);

fit model y(x) = a + b *X to given data
a = y-intercept, b = slope

ivar = X

num_data = 9

num_param = 2

dof = 7

chi2/dof = 2.23392

chi2_prob = 2.86433 %

a = 481389 +/- 3.26917

b = 9.40833 +/- 0.580948

(%012) [[a = 4.81389,b = 9.40833],[3.26917,0.580948],15. 6374,0.0286433]
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(%il3) yfit : a + b *X, Out[1];
(%013) 9.40833 *x+4.81389

The output indicates that the best fit straight lihe= « + bx has parameter estimates= 4.8°C, b =
9.4 °C/cm, with probable parameter uncertainties= 4.9 °C, o, = 0.87°C/cm. The “probable error” of any
one of the temperatures, based on this data stFis= 4.5°C. Leto,. represent the probable error. Then if
one takesepeatedindependent measurementsypfor a fixed value of;, roughly50% of the values will lie

in the ranggy — o,., ¥ + 0, ), Wherey is the arithmetic mean of thg values taken for fixed;.

We can independently check the valug@fusingget_chi2

(%il4) get_chi2(Mdata,sigL2,4.81 + 9.41 *X);
(%014) 15.6375

4.2 Plots

We prefer to use ougdraw.mac graphical package for simple plots. (Other Maxima optiaept2d anddraw2d .)

For more details aboutdraw , see Maxima by Example, Ch. 13. We proceed to make a simpl@ptbe data points,
the best fit straight line, and simple error bars based on @he&eweported for the probable errors (P.E.). So you can
compare usingidraw with direct use ofdraw2d , we use both plot methods in this first example. To useqtiraw
plotting interface, you must load botlraw.lisp  as well asgdraw.mac . To load the qdraw package file, you can
just useload(gdraw) if you have the file in your work folder and have set up your fdarseh paths as described in
Chap. 1. Otherwise, if your work folder is (for exampte)work9 , and you have placegdraw.mac in that folder,
useload("c:/work9/qdraw.mac")

(%il5) load(draw);

(%015) "C:/Program Files/Maxima-shcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%il6) load(qdraw);
" gdraw(...), gdensity(...), qdensityl(...), syntax: typ e gdraw(); "

(%016) "c:/work9/qgdraw.mac"
(%il7) plist : read_nested_list (fname);

(%017) [[1.0,15.6],[2.0,17.5],[3.0,36.6],[4.0,43.8], [5.0,58.2],[6.0,61.6],
[7.0,64.2],[8.0,70.4],[9.0,98.8]]
(%il8) qdraw ( ex1 (yfit, x, 0,10),pts (plist,pc(black),ps (1)),

key (bottom), errorbars (plist,4.5, Iw(3), Ic(black) ),
yr (-10,110) )$

which produces the plot

Figure 1: Data Points and Best Fit Line: T vs. X, using qdraw
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We can also usdraw2d directly, without theqdraw interface, making use of thdraw2d errors  element.
We first need to append the probable ertdrto the end of each data point sublistalist  using Maxima’s
lambda function.

(%il9) pelist : map (lambda ([pL], append (pL,[4.5])), plis t);

(%019) [[1.0,15.6,4.5],[2.0,17.5,4.5],[3.0,36.6,4.5] ,[4.0,43.8,4.5],[5.0,58.2,4.5],
[6.0,61.6,4.5],[7.0,64.2,4.5],[8.0,70.4,4.5],[9.0,9 8.8,4.5]]

(%i20) draw2d ( yrange = [-10,110], xaxis=true, xaxis_widt h=2,grid=true,

line_width=3,color=blue, explicit( yfit,x,0,10),
color=black, errors (pelist) )$

which produces a plot similar to that produceddayaw :

Figure 2: Data Points and Best Fit Line: T vs. X, using drawi2eladly

4.3 Two Parameter Fit using Ifit(dataM,sL,ymodel,pL)

The general linear fit functioffit ~ can, of course, be called directly for this straight line fit.

(%i21) out : Ifit (Mdata,sigL.2,a + b *X,[a,b]);
ivar = X

num_data = 9

num_param = 2

dof = 7

chi2/dof = 2.23392

chi2_prob = 2.86433 %

a = 4.81389 +/- 3.26917

b = 9.40833 +/- 0.580948

(%021) [[a = 4.81389,b = 9.40833],[3.26917,0.580948],15. 6374,0.0286433]

and the results are identical.

4.4 Two Parameter Fit using nlfit(dataM,sL,ymodel,pL,pgL)

We can also try out the general nonlinear fit functidfit

(%i22) nlfit (Mdata,sigL2,a + b *X,[a,b],[1,1]);

Ndata = 9

Nparam = 2

dof = 7

ivar = X

start: params: [a = 1.0b = 1.0] chi2 = 1159.67
n lam
1 0.001
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p_oldL = [1.0,1.0]

p_newlL = [4.99374,9.37156] chi2_new = 15.6414
2 1.0e-4

p_oldL = [4.99374,9.37156]

p_newL = [4.81577,9.408] chi2_new = 15.6374

chi2/dof = 2.23392
chi2_prob = 2.86433 %

a = 4.81577 +- 3.254
b = 9408 +- 0578252
(%022) [[a = 4.81577,b = 9.408],[3.254,0.578252],15.6374 ,0.0286433]

with parameter values the same to three decimal places.

4.5 Two Parameter Fit using Isquaresestimates

Isquares_estimates first tries to find an exact solution, usisglve , and this is the result:

(%i23) load(Isquares);

(%023) "C:/Program Files/Maxima-shcl-5.36.1/share/max ima/5.36.1/share/lsquares/Isquares.mac"
(%i24) Isquares_estimates(Mdata,[x,y], y = a + b *X,[a,b]);

(%024) [[a = 1733/360,b = 1129/120]]

(%i25) float(%);

(%025) [[a = 4.81389,b = 9.40833]]

which agrees with ouit_line andlfit  values for the parameters.

4.6 One Parameter Fit using fitslope

If we assume from the start that we want a fit with the y-intpt&®ving the valué.81, we can usét_slope

(%i26) fit_slope (Mdata,sigL2,4.81);

fit model y(x) = 481 + b *X to given data
ivar = X

num_param = 1

num_data = 9

dof = 8

chi2/dof = 1.95468

chi2_prob = 4.78735 %

b = 9.40895 +/- 0.266557

(%026) [[b = 9.40895],[0.266557],15.6374,0.0478735]

4.7 One Parameter Fit using fity_intercept

If we want a fit in which the slope is required to Be 1, then we can usft_y_intercept

(%i27) fit_y_intercept (Mdata,sigL2,9.41);

fit model y(x) = a + ( 9.41 ) *X to given data
ivar = X

num_param = 1

num_data = 9

dof = 8

chi2/dof = 1.95468

chi2_prob = 4.78733 %

a = 480556 +/- 15

(%027) [[a = 4.80556],[1.5],15.6374,0.0478733]
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5 Example 2: Straight Line Fit of Data with Poisson Error Statistics

This example is taken from the first edition (1969) of Bevorgs text “Data Reduction and Error Analysis for
the Physical Sciences” (p. 95 - 97); see the Reference®raitthe end of this chapter.
Quoting Bevington:

Consider a counting experiment in which we count the numbevents recorded in a detector as
a function of time. We have a source which is emitting radiatand the number of counts per unit
time from our detector is a measure of the rate at which tligti@n is being emitted. We observe
qualitatively that the rate of emission is decreasing axprately linearly with time and we wish
to describe this quantitatively.

We cannot determine the counting rate instantaneouslyugeaao counts will be detected in an
infinitesimal time interval. But we can determine the numbikecountsC' detected over a time
interval At, and this should be representative of the average courdtegwer that interval. .. .it
is customary and convenient to make the intervals equadlgexhin time as well as equally long.

In this example, the intervals are both eqal = At and contiguoug\t; = t;.; — t;; the times
t; at which the successive intervals start are given by (i — 1) At, with time measured from the
beginning of the first interval.

The data itmmbe14-fit2.dat describes ten measurements of the number of caumsr 15 sec as a function
of time. The first column is the time (in sec) of the beginnimgach 15 sec interval.

(%i1) load(fit);

(%01) “c:/work9/fit.mac"
(%i2) fname : "c:/work9/mbel4-fit2.dat"$
(%i3) printfile (fname)$
0 106

15 80

30 98

45 75

60 74

75 73

90 49

105 38

120 37

135 22

Quoting from Sec 15.02 of Nuclear Radiation Physics by Ralapp and Howard Andrews (2nd. edition,
1954)

Statistical fluctuation

When radiation measurements are made, it is observed thatdings show fluctuations. This
behavior is not always due to the instability of the meagurirstrument but is inherent in the
nature of radiation sources. Each nuclear disintegrai@dompletely random and independent
process. Such a random process will obey the laws of stajstihich predict that, even though
there is a definite average rate of disintegration, the numti®ally counted in a given time will
show deviations from this average.

The “true value” of a count can be obtained as the arithmegamof a very large number of
observations, if proper care is taken to keep all experiaieoinditions constant. If the fluctuations
of individual observations about the true value have a nbamRoisson distribution, the standard
deviationo of a single observation a¥ counts will be

c=vVN (5.1)



5 EXAMPLE 2: STRAIGHT LINE FIT OF DATA WITH POISSON ERROR STASTICS 15

Since we have measurements of the counting rate as a furdtione in this example, if we performed many

repetitions of this experiment, with an identically pregghradioactive source, and kept track of the number
of counts per 15 sec. starting after one minute of time formgxa, the numbers would approximately obey a

Poisson distribution of values.

After creating a Maxima matrikidata from the data file, we can then obtain a list of just the depetwriable
y; = C; values (count-rate, counts per 15 sec.), uisagmatrix_entries together with theol function.

We can then take the square root of these values to get theadstl statistical erroks; of the individual count
rate values, thus definirgigL .

(%i4) Mdata : read_matrix (fname);

(%04) matrix([0,106],[15,80],[30,98],[45,75],[60,74] ,[75,73],[90,49],[105,38],
[120,37],[135,22])

(%i5) yL : list_matrix_entries (col (Mdata,2));

(%05) [106,80,98,75,74,73,49,38,37,22]

(%i6) sigL : sqrt (yL),numer;

(%06) [10.2956,8.94427,9.89949,8.66025,8.60233,8.544 ,7.0,6.16441,

6.08276,4.69042]

(%i7) out : fit_line (Mdata, sigL);

fit model y(x) = a + b *X to given data

a = y-intercept, b = slope

ivar = X
num_data = 10
num_param = 2
dof = 8

chi2/dof = 1.04017

chi2_prob = 40.2721 %

a = 104.462 +/- 5.25106

b = -0593987 +/- 0.0536575

(%07) [[a = 104.462,b = -0.593987],[5.25106,0.0536575],8 .3214,0.402721]
(%i8) yfit : a + b *t, out[1];

(%08) 104.462-0.593987  *t

which indicates that?/v ~ 1 and there is a roughl¥0% probability that a repetition of the same experiment

(a similarly prepared radiation source, etc.) would pradacsalue ofy? greater than that found. Thus both
measures of goodness-of-fit imply that a straight line madalgood fit to the given data.

We loaddraw andqgdraw and make a simple plot of the raw data.

(%i9) load(drawy);

(%09) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/draw/draw.lisp"
(%il0) load(qdraw);
" gdraw(...), gdensity(...), qdensityl(...), syntax: typ e gdraw(); "

(%010) "c:/work9/qdraw.mac"
(%ill) ptsL : read_nested_list (fname);
(%011) [[0,106],[15,80],[30,98],[45,75],[60,74],[75, 73],[90,49],[105,38],
[120,37],[135,22]]
(%i12) qdraw (pts (ptsL,pc(black),ps(1)),
xr (-10,140), yr (0,120),
more (xlabel = "t", ylabel = "C"))$
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which produces the plot
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Figure 3: Counts per 15 sec. vs. Time (sec.) Raw Data

We can then add error bars
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(%il3) qdraw (pts (ptsL,pc(black),ps(1)),
xr (-10,140),yr(0,120),

more (xlabel = "t", ylabel = "C"),
errorbars (ptsL, sigL, Iw(3),lc(blue)))$

which produces the plot
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Figure 4: Counts vs. Time Raw Data with Statistical Error8Bar
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Finally, we can add the straight line fit to the data
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(%il4) qdraw (pts (ptsL,pc(black),ps(1)),
xr (-10,140),yr(0,120),

ex1 (yfit, t ,0, 140, Ic(brown)))$

more (xlabel = "t", ylabel = "C"),
errorbars (ptsL, sigL, Iw(3),Ic(blue)),
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which produces the plot
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Figure 5: Counts vs. Time Data with Best Fit Line

We also try out the general nonlinear method functiiin ~ on this two parameter linear problem.

(%il5) nlfit (Mdata,sigL,a + b *x,[a,b],[1,1]);

Ndata = 10

Nparam = 2

dof = 8

ivar = X

start: params: [a = 10b = 1.0] chi2 = 1153.75
n lam
1 0.001

p_oldL = [1.0,1.0]

p_newL = [103.184,-0.580648] chi2_new = 8.3852
2 1.0e-4

p_oldL = [103.184,-0.580648]

p_newL = [104.448,-0.593843] chi2_new = 8.32141
3 1.0e-5

p_oldL = [104.448,-0.593843]

p_newL = [104.462,-0.593985] chi2_new = 8.3214

chi2/dof = 1.04017
chi2_prob = 40.2721 %

a = 104.462 +- 522337
b = -0593985 +/- 0.0533745
(%015) [[a = 104.462,b = -0.593985],[5.22337,0.0533745], 8.3214,0.402721]

which produces results similar fio_line

6 Example 3: Straight Line Fit of Data with Uniform Instrumen tal
Errors

The raw data from Table 6.1 from Bevington (3rd edition, pti 1see the References section at the end of this
document) is contained in the filebe14-fit3.dat , with column 1 the position (x in cm.) along a current
carrying nickel-silver wire, and column 2 being the cor@ing voltage (V in volts), with nine data points
provided. From the nature of the voltage meter, we assume w&@tage reading has a uniform uncertainty
equal to 0.05 volts. We usi_line to try fitting the straight lind” = a + b x to the given data.

(%i1) load(fit);
(%o01) "c:/work9/fit.mac"
(%i2) fname : "c:/work9/mbel4-fit3.dat"$
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(%i3) printfile (fname)$

10.0 0.37

20.0 0.58

30.0 0.83

40.0 1.15

50.0 1.36

60.0 1.62

70.0 1.90

80.0 2.18

90.0 2.45

(%i4) Mdata : read_matrix (fname);

(%04) matrix([10.0,0.37],[20.0,0.58],[30.0,0.83],[40 .0,1.15],[50.0,1.36],
[60.0,1.62],[70.0,1.9],[80.0,2.18],[90.0,2.45])

(%i4) ndata : length (Mdata);

(%04) 9

(%i5) sigL : makelist (0.05,i,1,ndata);

(%05) [0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05]

(%i6) out : fit_line (Mdata,sigL);

fit model y(x) = a + b *X to given data

a = y-intercept, b = slope

ivar = X

num_data = 9

num_param = 2

dof = 7

chi2/dof = 0.278508

chi2_prob = 96.2579 %

a = 0.0713889 +/- 0.0363242

b = 0.0262167 +/- 6.45497e-4

(%06) [[a = 0.0713889,b = 0.0262167],[0.0363242,6.45497¢ -4],1.94956,0.962579]

(%i7) yfit : a + b *X, Out[l];

(%07) 0.0262167 *x+0.0713889

We then plot the best fit straight line with the data pointsluding error bars, usingdraw as above:

(%i8) ptsL : read_nested_list (fname);
(%08) [[10.0,0.37],[20.0,0.58],[30.0,0.83],[40.0,1.1 5],[50.0,1.36],
[60.0,1.62],{70.0,1.9],[80.0,2.18],[90.0,2.45]]
(%i9) load(drawy);
(%09) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/draw/draw.lisp"
(%il0) load(qdraw);
(%010) "c:/work9/qdraw.mac"
(%ill) gdraw (pts (ptsL,pc(black),ps(1)),
xr (0,100),yr(0,3),
more (xlabel = "x", ylabel = "V"),
errorbars (ptsL, sigL, Iw(3),Ic(blue)),
ex1 (yfit, x,0,100, Ic(brown)))$

which produces the plot

Figure 6: Voltage vs. Position Data with Best Fit Line
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7 Example 4. Straight Line Fit of Inverse Square Law with Poison
Errors

The raw data from Table 6.2 from Bevington (3rd edition, pt44115) is contained in the filebe14-fit4.dat ,
with column 1 the distancel(in meters) from a radioactive source to a Geiger countercahdann 2 being the
corresponding number of counts in 7.5 min interv@|swith ten data points provided. We seek to fit a general
inverse square law model

C=a+b/d*=a+bx (7.1)

with x = 1/d?, the squared inverse distance with unitsn?, to this data. Since the values of the dependent
variabley; = C; represent the number of counts recorded in a Geiger coutpiesed to a radioactive source in
some standard time interval, we ignore possible intrumé&gyer counter errors and include only the typical
Poisson statistics errors associated with the source Wi Use to try fitting the straightline& = a+ bz

to the data. We follow the steps used in Example 2 which asgduifoesson errors. We need to convert the raw
data(d, C) (in the data file) to the fornw = d—2, C).

(%i1) load(fit);

(%o01) "c:/work9/fit.mac"

(%i2) fname : "c:/work9/mbel4-fit4.dat"$

(%i3) printfile (fname)$

0.20 901

0.25 652

0.30 443

0.35 339

0.40 283

0.45 281

0.50 240

0.60 220

0.75 180

1.00 154

(%i4) dCM : read_matrix (fname);

(%04) matrix([0.2,901],[0.25,652],[0.3,443],[0.35,33 9],[0.4,283],[0.45,281],
[0.5,240],[0.6,220],[0.75,180],[1.0,154])

(%i5) dL : list_matrix_entries (col (dCM,1));

(%05) [0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.6,0.75,1.0]

(%i6) CL : list_matrix_entries (col (dCM,2));

(%06) [901,652,443,339,283,281,240,220,180,154]

(%i7) sigL : sqrt(CL),numer;

(%07) [30.0167,25.5343,21.0476,18.412,16.8226,16.763 1,15.4919,14.8324,13.4164,
12.4097]

(%i8) xL : 1/dL"2;

(%08) [25.0,16.0,11.1111,8.16327,6.25,4.93827,4.0,2. 77778,1.77778,1.0]

(%i9) xCL : xyList (xL,CL);

(%09) [[25.0,901],[16.0,652],[11.1111,443],[8.16327, 339],[6.25,283],
[4.93827,281],[4.0,240],[2.77778,220],[1.77778,180] J[1.0,154]]

(%i10) XxCM : apply ('matrix, xCL);

(%010) matrix([25.0,901],[16.0,652],[11.1111,443],[8 .16327,339],[6.25,283],

[4.93827,281],[4.0,240],[2.77778,220],[1.77778,180] ,[1.0,154])

(%11) out : fit_line (xCM,sigL);

fit model y(x) = a + b *X to given data
a = y-intercept, b = slope

ivar = X

num_data = 10
num_param = 2
dof = 8

chi2/dof = 1.36831

chi2_prob = 20.475 %

a = 119.497 +/- 7.5676

b = 30.6979 +/- 1.03408

(%11) [[a = 119.497,b = 30.6979],[7.5676,1.03408],10.946 5,0.20475]
(%il2) yfit : a + b *X, Out[1];

(%012) 30.6979 =*x+119.497

A linear fit to the data of the functiof = a + bz givesa = 119 & 8, b = 31 & 1, with x? ~ 11 for 8 degrees
of freedom,y? = 1.4. The? probability for the fit is abou20%.
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We proceed to plot the data points and the straight line fit.

(%il3) load(draw);

(%013) "C:/Program Files/Maxima-shcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%il4) load(qdraw);
" qdraw(...), gdensity(...), gdensityl(...), syntax: typ e qdraw(); "

(%014) "c:/work9/gdraw.mac"
(%il5) qdraw (pts (xCL,pc(black),ps(1)),
xr (0,30),yr(0,1000),
more (xlabel = "x = 1/d"2", ylabel = "C"),
errorbars (XxCL, sigL, Iw(3),lc(blue)),
ex1 (yfit, x, 0, 30, Ic(brown)))$

which produces the plot
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Figure 7: Counts vs. Inverse Distance Squared with BestiRé L

8 Histograms, Random Numbers, and Gaussian Noise

8.1 Creating a Histogram from a List of Integers

We will use the Maxima package/share/descriptive/descriptive.mac to make histograms via the use
of thedraw package. Here is an example similar to one from the Maxim@a imglnual under the entry “histogram.” The
file pidigits.data is a list of the first 100 digits of the irrational number Each of these digits is an integer in the
range[0, 9] (ten possible values).

If the draw package is not already loaded, the loadingdescriptive automatically loadsiraw . We place the
integers found in the first 100 digits af into 10 bins (“classes”), and let the leading edge of the bistbe located
at —0.5, and the trailing edge of the last bin be located&t The functionsfll , head, andtail are defined in
fittmac . The functionfli(alist) returns the first element, the last element, and the lengitmedfst.

(%i1) load(fit);

(%01) “c:/work9/fit.mac"

(%i2) sL : read_list (file_search ("pidigits.data"))$
(%i3) fll (sL);

(%03) [3,7,100]

(%i4) head (sL);

(%o04) [3,1,4,1,5,9]

(%i5) tail (sL);

(%05) [1,1,7,0,6,7]

(%i6) load (descriptive);

(%06) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/descriptive/descriptive.mac"
(%i7) histogram (sL, nclasses = [-0.5,9.5,10], title = "pi d igits",
xlabel = "digits", ylabel = "Absolute frequency",

fill_color = blue, fill_density = 0.6)$
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which produces the histogram
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Figure 8: Histogram of the First 100 Digits of

We can confirm the frequency of the various integer valuekeristsL by defining a small function
integer_frequency(alist, an_integer)

(%i8) integer_frequency (xL,nv) :=
block ([val : 0],
for j thru length (xL) do
if XL[j] = nv then val : val + 1,
val)$
(%i9) for k:0 thru 9 do
print(" ",k," "integer_frequency(sL,k))$
8
8
12
12
10
8
9
8
12
13
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8.2 Creating a Histogram from a List of Pseudo-Random Floatig Point Numbers

The Maxima functiomandom(x) returns a non-negative floating point number in the opematé0.0, | if
x is a positive floating point number.

The returned number is drawn from a “uniform distributiogid is hence called a “uniform random variate”
(or “uniform random deviate”), and is actually drawn from @s€udo-random” sequence produced by code
termed a “random number generator.” The word “random” iprty reserved for the output of an intrinsi-
cally random physical process (see Numerical Recipes, (Raiidom Numbers).

The commandet_random_state (make_random_state(an_integer)) uses the supplied integer to
“seed” the random number generator. If you re-seed with #meesseed, you will get the same sequence of
“random” numbers.

(%i1) load(fit);
(%01) "c:/work9/fit. mac"
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(%i2) set_random_state (make_random_state (654321))$
(%i3) rL : makelist(random(1.0),j,1,10000)$

(%id) fll (rL);

(%04) [0.226074,0.682233,10000]

(%i5) head (rL);

(%05) [0.226074,0.677002,0.303875,0.953276,0.36083,0 .538895]
(%i6) tail (rL);

(%06) [0.315565,0.390841,0.890081,0.438075,0.0047197 5,0.682233]
(%i7) plot2d([discrete,rL],[x,0,10000],[y,0,1],[xlab el,"],

[ylabel,™,[style,[points,1,5]])$

which produces the plot

Figure 9: 10,000 Random Numbers in Rafige< = < 1.0

We next place th&0, 000 uniform random deviates in the ligt into 20 bins, using the functionistogram

defined indescriptive.mac . Since10000/20 = 500, we expect there to be rough#p0 numbers thrown

into each of the 20 bins, if the numbers are drawn from a “umfdistribution.”

(%i8) load (descriptive)$

(%i9) histogram (rL,nclasses = 20.title = "uniform variate s",
xlabel = "™, ylabel = "fill_color = blue,
fill_density = 0.6)$

which produces the histogram

uniform variates

400

300

200

100

Figure 10: Histogram of0, 000 Random Numbers in Ran@e) < = < 1.0
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We could also have used the commaanidom_continuous_uniform(0,1,10000) , using thedistrib
package, to generate a list of 10,000 uniform random deviatehe open interval.0 < = < 1.0. One
must first load the packagistrib.mac to use theandom_continuous_uniform function, and during

the loading, the random number generator is automaticakylad with an integer which depends on your
computer’s clock time at the moment of loading. Hence yosults here will differ in details. (You could then
re-seed the random number generator to reproduce somesBvgenerated sequence of random numbers, if
so desired.)

(%i10) load(distrib);

(%010) "C:/Program Files/Maxima-sbcl-5.36.1/share/max ima/5.36.1/share/distrib/distrib.mac"
(%i11) rL2 : random_continuous_uniform(0,1,10000)$

(%i12) fll (rL2);

(%012) [0.876421,0.34568,10000]

(%il3) head (rL2);

(%013) [0.876421,0.851329,0.87345,0.141658,0.40555,0 .592372]

(%il4) tail (rL2);

(%014) [0.095683,0.412016,0.539407,0.571131,0.718902 ,0.34568]

(%il5) histogram (rL2,nclasses = 20,title = "uniform varia tes",
xlabel = ", ylabel = "™ fill_color = blue,

fill_density = 0.6)$

which produces the histogram

uniform variates

500 ¢

400 ¢

300 ¢

200 -

100 ¢

Figure 11: Histogram of a New Set o, 000 Random Numbers in Ran@e) < = < 1.0

8.3 Gaussian Noise

The Maxima package./share/distrib/distrib.mac has the functiomandom_normal(m, s)  for
one Gaussian deviate, amdom_normal(m, s, n) for a list of n Gaussian deviates having a mean value
equal tomand a standard deviation (the square root of the varianegl égs. This package seeds Maxima’s
random number generator with a value depending on your cteripelock time while loading (as mentioned
above), so you should get results which differ in details.NAfke started a new Maxima session here:

(%il) load(distrib);

(%01) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/distrib/distrib.mac"
(%i2) random_normal(0,10);

(%02) 5.859170811329763

(%i3) fpprintprec:6$
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(%i4) random_normal(0,10);

(%04) -6.08762

(%i5) random_normal(0,10,5);

(%05) [-7.74102,-12.3573,14.7975,5.13447,0.487853]

(%i6) plot2d([discrete,random_normal(0,1,500)],[x,0, 500],[y,-4,4],[xlabel,"],
[ylabel,™,[style,[points,1,5]])$

which produces the plot
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Figure 12: 500 Gaussian Deviates with Meart), s = 1

We need to bin these random Gaussian deviates to see howréhdisaibuted. As an example, we generate
a new list of 10,000 Gaussian deviates which have a mean Qadinel a standard deviation 1 and place them
into 20 bins using the functiomistogram

(%i7) load (descriptive);
(%07) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/descriptive/descriptive.mac"
(%i8) histogram ( random_normal(0,1,10000), nclasses = 20

title = "uniform normal variates", xlabel ="

ylabel = ", fill_color = blue, fill_density = 0.6)$

which produces the histogram

uniform normal variates
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Figure 13:10, 000 Gaussian Deviates with Mean 0, s = 1
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which is approaching the familiar bell-shaped curve.

We can use oumoment (dataL) function defined irfittmac  to compare the mean, variance and standard
deviation of a set of numbers producedrbgdom_normal (m,s,n) in whichmis the desired meas,is the
desired standard deviation, and the variance is $fen We again start a new Maxima session.

(%il) load(distrib);

(%01) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/distrib/distrib.mac"
(%i2) random_normal(0,1);

(%02) 0.7792856737962007

(%i3) random_normal(0,1,10);

(%03) [-0.1800590734570673,1.003713813350962,1.01204 9729950966,
-1.188740041414326,-0.4503024282532589,0.2146242889 05816,
2.240769783420878,0.6307828337928504,-1.35573203762 0963,
-0.4398222598470207]

(%i4) moment (random_normal(0,1,10000));
ndata = 10000

mean = 4.5016e-4

variance = 0.99186

sigma = 0.99592

(%04) [4.5016e-4,0.99186,0.99592]

A sample of 10,000 random normal deviates returnedabgom_normal(0,1,10000) has a mean of ap-
proximately 0 and a variance and standard deviation of aqupedely 1.

Likewise, a sample of 10,000 random normal deviates retubyaandom_normal(0,0.5,10000) has a
mean of approximately 0 and a standard deviation of appratdiy 0.5 and a variance of approximately 0.25.

(%i5) moment (random_normal(0,0.5,10000));
ndata = 10000

mean = 0.0034911

variance = 0.25136

sigma = 0.50136

(%05) [0.0034911,0.25136,0.50136]

Finally, a sample of 10,000 random normal deviates retubye@5 * random_normal(0,1,10000) has a
mean of approximately 0, a standard deviation of approxety#t.5, and a variance of approximately 0.25.

(%i6) moment (0.5 *random_normal(0,1,10000));
ndata = 10000

mean = 0.0066488

variance = 0.25717

sigma = 0.50712

(%06) [0.0066488,0.25717,0.50712]

9 Example 5: Generating and Fitting Data with Gaussian Noise

We generate some noisy data by adding Gaussian noise t@tiagi= 1 — 2 2. We do not seed the random
number generator (after loadidgtrib.mac ) in the following example, allowing Maxima to use the detaul
method. Thdlistrib  package seeds Maxima’s random number generator with a dalpending on your
computer’s clock time while loading. As a consequence, if ygpeat this example, you will get a different set

of random numbers, and slightly different results than shbere. The functioryList(xL,yL) , defined in
ourfit.mac , produces an xyList type of list having the foiir1,y1],[x2,y2],...[xN,yN]] . Below
we usexyList(xL,yL) to producexyL , a nested data list which can later be converted to a dataxmeadr
call Mdata .

(%i1) load(fit);
(%01) "c:/work9/fit.mac"
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(%i2) load(draw);

(%02) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/draw/draw.lisp"
(%i3) load(qdraw);
" gdraw(...), gdensity(...), qdensityl(...), syntax: typ e gdraw(); "

(%03) "c:/work9/gdraw.mac"
(%i4) load(distrib);

(%04) "C:/Program Files/Maxima-sbcl-5.36.1/share/maxi ma/5.36.1/share/distrib/distrib.mac"
(%i5) fpprintprec:5$
(%i6) xL : makelist (0.1 *],j,1,100)$

(%i7) fll (xL);

(%07) [0.1,10.0,100]

(%i8) dyL : random_normal (0,0.25,100)$

(%i9) moment (dyL);

ndata = 100

mean = 0.0043537

variance = 0.063962

sigma = 0.25291

(%09) [0.0043537,0.063962,0.25291]

(%i10) yL : -2 *xL + 1 + dyL$

(%i11) xyL : xyList(xL,yL)$

(%i12) fli(xyL);

(%012) [[0.1,0.79312],[10.0,-18.799],100]

(%il3) gdraw (ex1(1-2 *X,X,0,10,lc(red)),pts(xyL,ps(1),pc(black),pt(1)),
more (xlabel = "x", ylabel = "y")$

which produces the plot

T+

-10 ¢

-15

Figure 14: 100 Data Points with Gaussian Noise and the Line z

We can try to fit a straight line model, usifig line(Mdata, sigmal) , to this noisy data.

(%i14) sigL : makelist(0.25291,j,1,100)$
(%i15) fll (sigL);

(%015) [0.25291,0.25291,100]

(%i16) Mdata : apply ('matrix,xyL)$

(%il7) row (Mdata,l1);

(%017) matrix([0.1,0.79312])

(%il18) out : fit_line (Mdata, sigL);

fit model y(x) = a + b *X to given data
a = y-intercept, b = slope

ivar = X
num_data = 100
num_param = 2
dof = 98

chi2/dof = 1.0084
chi2_prob = 45.76 %
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a = 0098606 +- 0.050964
b = -1.9964 +- 0.0087615
(%018) [[a = 0.98606,b = -1.9964],[0.050964,0.0087615],9 8.827,0.4576]

The least squares best fit line thus has the parameterg.99 & 0.05, b = —2.00 4 0.01, with x?/dof = 1 and
Q = 0.46 = 46%.

10 Example 6: Fit to a Quadratic using Ifit

This example is taken from Bevington(3rd), pdf 133, “Ex..7 The data filembel4-fit6.dat contains 21
data points for the voltage output (voltage in mV) of a thecouple as a function of the temperature T (degrees
Celsius) varying from 0 to 100. The model equation for theage V as a function of temperature T is taken
to be

V(T)=ai1+as T+ a3 T?. (10.1)

Since this model expression is linear in the model parammeter usdfit ~ with this data set and model.

(%i1) load(fit);

(%01) “c:/work9/fit.mac"

(%i2) fname : "c:/work9/mbel4-fit6.dat"$
(%i3) Mdata : read_matrix (fname);

(%03) matrix([0,-0.849],[5,-0.738],[10,-0.537],[15,- 0.354],[20,-0.196],
[25,-0.019],[30,0.262],[35,0.413],[40,0.734],[45,0. 882],
[50,1.258],[55,1.305],[60,1.541],[65,1.768],[70,1.9 35],
[75,2.147],[80,2.456],[85,2.676],[90,2.994] [95,3.2 1.[100,3.318])

(%i4) ndata : length (Mdata);

(%04) 21

(%i5) sigL : makelist (0.05,i,1,ndata)$

(%i6) fli(sigL);

(%06) [0.05,0.05,21]

(%i7) yexpr : al + a2 *T + a3*T2$
(%i8) out : Ifit (Mdata, sigL, yexpr,[al,a2,a3]);

ivar = T
num_data = 21
num_param = 3
dof = 18

chi2/dof = 1.47575

chi2_prob = 8.75548 %

al -0.918104 +/- 0.0298453

a2 0.0376543 +/- 0.00138311

a3 = 5.49009e-5 +/- 1.33533e-5

(%08) [[al = -0.918104,a2 = 0.0376543,a3 = 5.49009e-5],
[0.0298453,0.00138311,1.33533e-5],26.5635,0.0875548 ]

(%i9) yfit : yexpr, out[1];

(%09) 5.49009e-5 +*T°2+0.0376543 =*T-0.918104

We next make a plot of the data and the fit.

(%i10) load(drawy);

(%010) "C:/Program Files/Maxima-shcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%ill) load(qdraw);
" gdraw(...), gdensity(...), qdensityl(...), syntax: typ e gdraw(); "

(%011) "“c:/work9/qgdraw.mac"
(%il2) TVL : read_nested_list (fname);

(%012) [[0,-0.849],[5,-0.738],[10,-0.537],[15,-0.354 1,[20,-0.196],[25,-0.019],
[30,0.262],[35,0.413],[40,0.734],[45,0.882],[50,1.2 58],[55,1.305],
[60,1.541],[65,1.768],[70,1.935],[75,2.147],[80,2.4 56],[85,2.676],

[90,2.994],[95,3.2],[100,3.318]]
(%il3) qdraw (xr(-5,105),yr(-2,4),
more (xlabel = "T", ylabel = "V"),
pts (TVL,pc(black),ps(1)),
errorbars (TVL, sigL, Iw(3),Ic(red)),
exl (yfit,T,0,100))$
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which produces the plot

T

Figure 15: Voltage vs. Temperature Data with Best Fit Quacra

11 Example 7: Using Ifit with Legendre Polynomials as Basis Fctions

11.1 Experimenting with the Maxima Function legendrep

Maxima provides the functiofegendre_p(n,x) (defined in theorthopoly.lisp package) which pro-
duces the standard Legendre polynonita{z) for n = 0,1,2,.... Theorthopoly = package automatically
loads when you invokégendre_p . You will need to applyratsimp to get the simplified analytic form.

Using the definitions oegendre_p provided by the packagathopoly.lisp (loads automatically when
we try to usdegendre_p interactively), we find that we need to satprint:false and
orthopoly_returns_intervals : false to get ordinary floating point returns without the error mtd

additions and without theat warnings. These settings are madétimac

As an experiment, we invokegendre_p << without >> first loadingfittmac  or orthopoly.lisp

(%il) legendre_p(4,x);

STYLE-WARNING: redefining MAXIMA::SIMP-UNIT-STEP in DEF UN
STYLE-WARNING: redefining MAXIMA::SIMP-POCHHAMMER in DE FUN
(%01) (-10 *(1-x))+(35  *(1-x)4)/8-(35 *(1-X)"3)/2+(45  *(1-x)"2)/2+1
(%i2) ratsimp(%);

(%02) (35 *x"4-30 *x"2+3)/8

(%i3) P(nn,xx) := ratsimp (legendre_p(nn,xx))$

(%i4) P(0,x);

(%04) 1

(%i5) P(1,x);

(%05) x

(%i6) P(2,x);

(%06) (3 *x"2-1)/2

(%i7) P(3,x);

(%07) (5 *x"3-3 *Xx)/2

(%i8) P(4,x);

(%08) (35 *x"4-30 *x"2+3)/8

(%i9) P(4,1.2);

rat: replaced 4.046999999999998 by 4047/1000 = 4.047

rat: replaced 3.202738074747912e-14 by 5/15611641924210 6 = 3.20273807474791e-14
(%09) interval(4047/1000,5/156116419242106)
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(%i10) ratprint:false$

(%il1) P(4,1.2);

(%011) interval(4047/1000,5/156116419242106)
(%i12) orthopoly returns_intervals;

(%012) true

(%i13) orthopoly_returns_intervals : false$
(%i14) P(4,1.2);

(%014) 4047/1000

(%il5) float(%);

(%015) 4.047

Information about the functions available vidshare/orthopoly/orthopoly.lisp can be found in
the comment sections of that file.

The first four Legendre polynomials are

Py(z) =1 Py(z) = % (322 —1) (11.1)

1

Pi(x) =z P3(x) 5

(5% —37) (11.2)

P,(x) is an even function of if n is an even integer, and is an odd functionzaf n is an odd integer. The
set of Legendre polynomials provides an “orthogonal sefuattions over the interval1 < =z < 1, where
x = cos(0).

1
2

in which the Kronecker delta functiaf,,, equalsl if n = m, and otherwise equals

Having defined®(n,x) (above) to return the simplified form éfgendre_p(n,x  , we can use this function
in integrals and plots.

(%il6) integrate(P(2,x)"2,x,-1,1);
(%016) 2/5

(%i17) integrate(P(2,x) *P(3,%),X,-1,1);

(%017) 0

(%il18) plot2d([P(0,x),P(1,x),P(2,x),P(3,X),P(4,X)],[ x,-1,1], [y,-1.5,2.5],
[xlabel, "x"], [ylabel , "P_n(x)"],[legend,"0","1","2", 3" 4M,

[style,[lines,5])$

which produces the plot
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Figure 16: Legendre Polynomials far= 0, 1,2, 3,4
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11.2 Application of Legendre Polynomials to Example 7
This example follows Bevington(3rd): (Ex. 7.3, pdf 146).

Quoting Bevington (loosely)

Let us consider an experiment in which Carbon-13 is bomlohlne4.5-MeV protons. In the
subsequent reaction, some of the protons are captured b@atieon-13 nucleus, producing a
Nitrogen-14 nucleus in an excited state which then decaygmbhyma emission, producting gamma
rays with energies up to 11 MeV. A measurement of the angus#ilslition of the emitted gamma
rays gives information about the angular momentum statdbeoenergy levels in the residual

Nitrogen-14 nucleus.

The file mbe14-fit7.dat

the uncertainty of each count value.

11.3 Five Parameter Fit Using Ifit with Legendre Polynomials

We use the first five Legendre polynomials as a model of thenglega, with adjustable amplitudes to be found.

With 2 = cos 8, our model is

C =ag Po(x) + a1 Py(z) + ag Py(x) 4+ ag P3(x) + a4 Py(z).

contains measurements of the number of gamma ray countspacified fixed
time interval recorded at 17 different angles from 0 to 16@rdes. The first column is the angle in degrees,
and the second column is the gamma ray count at that anglee®¢eta convert the angles in degrees to angles
in radians before using Maximat®s function. The measurement errors in the count rate are asbtorbe
wholly statistical, and the use of Poisson statistics iegthe square root of the count rate should be used for

(%i1) load(fit);

(%01) “c:/work9/fit.mac"

(%i2) fname : "c:/work9/mbel4-fit7.dat"$

(%i3) Mdata : read_matrix (fname);

(%03) matrix([0,1400],[10,1386],[20,1130],[30,1045],

(%i4) DegreesL : list_matrix_entries (col (Mdata,l1));
(%04) [0,10,20,30,40,50,60,70,80,90,100,110,120,130,
(%i5) CountsL : list_matrix_entries (col (Mdata,?2));
(%05) [1400,1386,1130,1045,971,862,819,808,862,829,8

(%i6) sigL : sqgrt (CountsL), numer;

(%06) [37.4166,37.229,33.6155,32.3265,31.1609,29.359
28.7924,28.7054,28.9655,28.6182,30.0167,30.4138,32.

(%i7) RadiansL : DegreesL * %pi/180, numer;

(%07) [0,0.174533,0.349066,0.523599,0.698132,0.87266
1.5708,1.74533,1.91986,2.0944,2.26893,2.44346,2.617

(%i8) xL : cos (RadiansL);

(%08) [1,0.984808,0.939693,0.866025,0.766044,0.64278
6.12303e-17,-0.173648,-0.34202,-0.5,-0.642788,-0.76
-0.939693]

(%il6) xCL : xyList (xL,CountsL);

(%016) [[1,1400],[0.984808,1386],[0.939693,1130],[0.
[0.766044,971],[0.642788,862],[0.5,819],[0.34202,80
[6.12303e-17,829],[-0.173648,824],[-0.34202,839],[-
[-0.642788,901],[-0.766044,925],[-0.866025,1044],[-

(%i9) dataM : apply (‘'matrix, xCL)$

(%i10) param_list : [a0,al,a2,a3,a4]$

(%i11) P(nn,xx) := ratsimp (legendre_p (nn,xx))$

(%il2) y_expr_noun : sum (param_list[i+1]

(%012) 'P(4,x) *a4+'P(3,x) +*al3+P(2,x) *a2+P(1,x)

[60,819],[70,808],[80,862],[90,829],[100,824],[110,
[120,819],[130,901],[140,925] [150,1044],[160,1224]

[40,971],[50,862],
839],
)

140,150,160]
24,839,819,901,925,1044,1224]

8,28.6182,28.4253,29.35098,
311,34.9857]

5,1.0472,1.22173,1.39626,
99,2.79253]

8,0.5,0.34202,0.173648,
6044,-0.866025,

866025,1045],
8],[0.173648,862],
0.5,819],
0.939693,1224]]

* 'P(i)x), i, 0, 4);
*al+'P(0,x) =*a0
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(%il3) y_expr : %, nouns;

STYLE-WARNING: redefining MAXIMA::SIMP-UNIT-STEP in DEF UN

STYLE-WARNING: redefining MAXIMA::SIMP-POCHHAMMER in DE FUN

(%013) (a4 *(35*x"4-30 *x"2+3))/8+(@a3  *(5*x"3-3 *x))/2+(@a2 *(3*x"2-1))/2+al  *x+a0
(%il4) out : Ifit (dataM, sigL, y_expr,param_list);

ivar = X
num_data = 17
num_param = 5
dof = 12

chi2/dof = 1.4342
chi2_prob = 14.1852 %

a0 = 906.784 +/- 7.77408
al = -1.01955 +/- 12.4292
a2 = 258.527 +/- 16.3188
a3 = 11.9971 +/- 19.4677
a4 = 189.521 +/- 21.6578
(%014) [[a0 = 906.784,a1 = -1.01955,a2 = 258.527,a3 = 11.997 1l,a4 = 189.521],

[7.77408,12.4292,16.3188,19.4677,21.6578],17.2104,0 .141852]
(%il5) yfit5 : y_expr, out[1];
(%015) 23.6901 *(35 *Xx"4-30 *Xx"2+3)+5.99855 *(5*x"3-3 *x)+129.263 *(3 *»x"2-1)
-1.01955 *x+906.784

We can now make a plot of the five parameter fit using Legendsgpmials.

(%il6) load(draw);

(%016) "C:/Program Files/Maxima-shcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%il7) load(qdraw);
" gdraw(...), gdensity(...), qdensityl(...), syntax: typ e gdraw(); "

(%017) "c:/work9/qdraw.mac"
(%il8) qdraw (xr(-1.05,1.05),yr(0,1500),
more (xlabel = "cos(th)", ylabel = "C"),
pts (xCL, pc(black), ps(1)),
errorbars (xCL, sigL, Iw(3),lc(red)),
ex1(yfit5,x,-1,1))$

which produces the plot
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Figure 17: Counts vs:os() Using All Terms throughP;(cos(6))

11.4 Three Parameter Fit with Legendre Polynomials using Ifi

Note that the values returned for the best fit values @nda; are much less (in magnitude) than the parameters
which give the amplitudes of the Legendre polynomials whaitheven functions of their argument= cos 6.
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Retaining only the three (even) dominant terms of the fivaqmater fit, we seek a three parameter fit instead,
using the model, again with = cos 6,

C:CLQP()(ZL')—I—GQ P2($)+&4P4(ZL'). (115)

(%i19) param_list : [a0,a2,a4]$

(%i20) y_expr_noun : a0 *'P(0,x) + a2 *'P(2,x) + a4 *'P(4,x);
(%020) 'P(4,x) *a4+'P(2,x) *a2+P(0,x) a0

(%i21) y_expr : %, nouns;

(%021) (a4 *(35*x'4-30 *x"2+3))/8+(@a2  *(3 *x"2-1))/2+a0

(%i22) out : Ifit (dataM, sigL, y_expr,param_list);

ivar = X
num_data = 17
num_param = 3
dof = 14

chi2/dof = 1.25646
chi2_prob = 22.6073 %

a0 = 907.175 +/- 7.7342
a2 = 260.479 +/- 15.8578
a4 = 193.667 +/- 20.0715

(%022) [[a0 = 907.175,a2 = 260.479,a4 = 193.667],[7.7342,1 5.8578,20.0715],
17.5905,0.226073]
(%i23) yfit3 : y_expr, out[1];
(%023) 24.2083 (35 *x"4-30 *x"2+3)+130.24 *(3 *Xx"2-1)+907.175
(%i24) qdraw (xr(-1.05,1.05),yr(0,1500),
more (xlabel = "cos(th)", ylabel = "C"),
pts (xCL, pc(black), ps(1)),
errorbars (xCL, sigL, Iw(3),lc(red)),
ex1(yfit3,x,-1,1))$

which produces the plot
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Figure 18: Counts vs:0s(#) Using Only Even Terms through;(cos(#))

Note that the three parameter fit has a higireprobability than the five parameter fit, and is thus a bettéo fit
the given data.
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12 Nonlinear Least Squares Fit to Cooling Coffee Data

12.1 Massaging the Data

We use the coffee cooling experimental data in theddfee.dat , data we used in Maxima by Example,
Chapter 2. The first column is the time in minutes. The secahahtn is the temperature (degrees Celsius)
recorded for a cup of black coffee. The third column is thegerature recorded for a cup of coffee which has
been cooled (at = 0) by the addition of cream (white coffee).

We seek to fit the data for the black coffee, using a model baseah exponential decrease (Newton’s law
of cooling), and lett. be the characteristic cooling time in units of minutes. AsBw the ambient room
temperature i$7 deg Celsius, and the initial temperature of the black caffée.3 deg Celsius, a one parameter
model of the data could be

T =17+ 65.3¢ 7/t (12.1)

since for large enough times>> t. the second term can be ignored compared with the first term.

(%i1) load(fit);

(%o01) "c:/work9/fit.mac"

(%i2) fname : "c:/work9/coffee.dat"$

(%i3) printfile(fname)$

0 82.3 68.8

2 78.5 64.8

4 74.3 62.1

6 70.7 59.9

8 67.6 57.7

10 65.0 55.9

12 62.5 53.9

14 60.1 52.3

16 58.1 50.8

18 56.1 49.5

20 54.3 48.1

22 52.8 46.8

24 51.2 45.9

26 49.9 44.8

28 48.6 43.7

30 47.2 42.6

32 46.1 41.7

34 45.0 40.8

36 43.9 39.9

38 43.0 39.3

40 41.9 38.6

42 41.0 37.7

44 40.1 37.0

46 39.5 36.4

(%i4) dataM : read_matrix (fname);

(%04) matrix([0,82.3,68.8],[2,78.5,64.8],[4,74.3,62. 1],[6,70.7,59.9],
[8,67.6,57.7],[10,65.0,55.9],[12,62.5,53.9],[14,60. 1,52.3],
[16,58.1,50.8],[18,56.1,49.5],[20,54.3,48.1],[22,52 .8,46.8],
[24,51.2,45.9],[26,49.9,44.8],[28,48.6,43.7],[30,47 .2,42.6],
[32,46.1,41.7],[34,45.0,40.8],[36,43.9,39.9],[38,43 .0,39.3],
[40,41.9,38.6],[42,41.0,37.7],[44,40.1,37.0],[46,39 .5,36.4])

(%i5) tL : list_matrix_entries (col(dataM,1));

(%o05) [0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32 ,34,36,38,40,42,44,46]

(%i6) TbL : list_matrix_entries (col(dataM,?2));

(%06) [82.3,78.5,74.3,70.7,67.6,65.0,62.5,60.1,58.1, 56.1,54.3,52.8,51.2,49.9,

48.6,47.2,46.1,45.0,43.9,43.0,41.9,41.0,40.1,39.5]

(%i7) TcL : list_matrix_entries (col(dataM,3));

(%07) [68.8,64.8,62.1,59.9,57.7,55.9,53.9,52.3,50.8, 49.5,48.1,46.8,45.9,44.8,

43.7,42.6,41.7,40.8,39.9,39.3,38.6,37.7,37.0,36.4]

(%i8) length(tL);

(%08) 24

In the absence of information about measurement errorset@e elements afigL  equal to unity.

(%i9) sigL : makelist (1,j,1,24);

(%o09) [1,1,2,1,21,1,11,12,1,1,1,1,1,1,1,1,1,1,1,1,1 1]
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(%il0) black_expr : 17 + 65.3 *exp (-t/tc);
(%010) 65.3 *%e"-(t/tc)+17
(%ill) dataMB : apply (‘'matrix, xyList(tL,TbL));

(%011) matrix([0,82.3],[2,78.5],[4,74.3],[6,70.7],[8 ,67.6],[10,65.01,[12,62.5],
[14,60.1],[16,58.1],[18,56.1],[20,54.3],[22,52.8],[ 24,51.2),
[26,49.9],[28,48.6],[30,47.2],[32,46.1],[34,45.0],[ 36,43.9)],

[38,43.0],[40,41.9],[42,41.0],[44,40.1],[46,39.5])

12.2 Using Vsearch (Visual Search) for One Parameter Fit

We first usevsearch with qdraw to get a rough feel for an appropriate size of the charati®dsoling time
t.. Recall that the syntax is

Vsearch (data-matrix,sigmal,y-expr,param-list, param- guess-list)

The model expression is a blue curve, the data is in black ethd After loadingdraw andqdraw , we start
with ¢, = 1.

(%il2) load(draw);

(%012) "C:/Program Files/Maxima-shcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%il3) load(qdraw);
" gdraw(...), gdensity(...), qdensityl(...), syntax: typ e gdraw(); "

(%013) "c:/work9/gdraw.mac"

(%i14) Vsearch(dataMB,sigL,black_expr,[tc],[1])$
param_list = [tc = 1]
yfit_expr = 65.3 * %oe”-t+17
chiSq = 32896.9

which produces the plot (the data is in black and red; the treg®ession curve is in blue)
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Figure 19: Temperature vs. time (t) for= 1

Now increase the value of the characteristic time scalg te 10 so the model temperature curve drops less

rapidly to zero.

(%i15) Vsearch(dataMB,sigL,black_expr,[tc],[10])$
param_list = [tc = 10]
yfit_expr = 65.3 *%e"-(0.1 *t)+17
chiSq = 13937.1
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which produces the plot

[tc = 10]

Figure 20: Temperature vs. time (t) for= 10

which is still too small a characteristic cooling time. Wexty ¢. = 100.

35

(%i16) Vsearch(dataMB,sigL,black_expr,[tc],[100])$
param_list = [tc = 100]
yfit_expr = 65.3 *%e"-(0.01 *t)+17
chiSq = 5682.54

which produces the plot
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Figure 21: Temperature vs. time (t) for= 100

which is too large a characteristic cooling time. We nexttry 30.

(%i17) Vsearch(dataMB,sigL,black_expr,[tc],[30])$
param_list = [tc = 30]
yfit_expr = 65.3 *%e"-(0.0333333  *t)+17
chiSq = 647.939
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which produces the plot
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Figure 22: Temperature vs. time (t) for= 30

36

which shows we are getting close to a reasonable chardaea®ling timet,., and we tryt. = 40 next:

param_list = [tc = 40]

chiSq = 78.5918

(%i18) Vsearch(dataMB,sigL,black_expr,[tc],[40])$

yfit_expr = 65.3 *%e"-(0.025 *t)+17

which produces the plot
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Figure 23: Temperature vs. time (t) for= 40

12.3 Using gridsearch for a Three Parameter Fit

We seek to use the three parameter expression

T =a; +aye /s

(12.2)
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to fit the black coffee cooling data woffee.dat , using thefitmac  function

‘ grid_search(data_matrix, sigma_list,ymodel_expr,para mL,param_startL,stepFactor). |

The last argumerdtepFactor  is used to help define the initial step size for each parameteording to the
code line

‘ for i thru Nparam do deltaAJi] : stepFactor *abs (acfi]), |

in which ac[i] is the starting value of the i'th parameter. If you get problmessages from the program
grid_search , you should first try decreasing the valuessépFactor  so that the program begins with
smaller steps in parameter space.

Each step of the search adjusts the value of one of the pagesaia time, seeking for the approximate position
of the valley bottom in values of?, and prints out the last three values\af chiSq1l , chiSg2 , andchiSg3 ,
which will give you an idea of how steep the ravine is for thatgmmeter and its current step size.

If the grid search of parameter space is working corredtbyvalues of? should steadily decrease. Remember
thaty? is inherently a non-negative number.

This type of grid search will give poor results if the valuéshe parameters (to achieve a minimumit) are
strongly correlated.

grid_search  returns a list of lists:

‘ [ [al, a2, ...], [dal, da2, ..]] |

in which the parameter uncertaintiesj are defined (assuming a local parabola fit) by how large a &ing
the parameter is required to cause the value of the noniuegaimbery? to change by the value

We continue with theoffee.dat  data matrixdataMB andsigL defined above but defining a three parameter
modelmyexpr .

Each “trial” adjusts separately the values of each of theghrarameters, looking for a minimum in the value
of x2. Atthe end of each trial, you are asked to either eatefto go on to the next trial) as; (to stop the grid
search).

(%i19) myexpr : al + a2 *exp (-t/a3)$
(%i20) grid_search(dataMB, sigL, myexpr,[al,a2,a3],[17 ,65.3,40],0.5);
ymodel = a2 *%e"-(t/a3)+al

trial = 1 starting chiSqgr = 78.5918

starting parameter values and step sizes for this trial
1 17 8.5

2 65.3 32.65

3 40 20.0

parameter 1

chiSql = 2219.68 chiSq2 = 78.5918 chiSgq3 = 1405.5
ac[j] = 16.0022 dac[j] = 0.204124 deltaA[j] = 0.288675
chiSgr = 54.6987

parameter 2

chiSql = 10555.4 chiSq2 = 54.6987 chiSqg3 9925.79

ac[j] = 64.7955 dac[j] = 0.323507 deltaA[j] = 0.457508
chiSgr = 52.2666
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parameter 3
chiSql = 1128.49 chiSg2 = 52.2666 chiSq3 = 4715.61
chiSgr-minimum is less than zero using parabola fit
compute using corresponding parameter value
acfj] = 46.2498 dac[j] = 0.373341 deltaA[j] = 0.527984
chiSgr = 163.46
chiSqgr increased: chiOld = 78.5918 new chiSqr = 163.46
Enter s; to stop trials, c; to continue
c

trial = 2 starting chiSqr = 163.46

starting parameter values and step sizes for this trial
1 16.0022 0.288675

2  64.7955  0.457508

3 46.2498  0.527984

parameter 1

chiSql = 47.0253 chiSg2 = 46.3918 chiSq3 = 49.7582
ac[j] = 13.7914 dac[j] = 0.204124 deltaA[j] = 0.288675
chiSgr = 46.1584

parameter 2
chiSql = 47.9371 chiSg2 = 46.1584 chiSq3 = 48.7984

ac[j] = 64.8401 dac[j] = 0.307798 deltaA[j] 0.435292
chiSgr = 46.1374

parameter 3

chiSql = 46.1374 chiSq2 = 45.3979 chiSg3 = 46.8094
ac[j] = 45.8043 dac[j] = 0.509126 deltaA[j] = 0.720012
chiSgr = 45.3717
Enter s; to stop trials, c; to continue
c

trial = 3 starting chiSqr = 45.3717

starting parameter values and step sizes for this trial
1 13.7914 0.288675
2 64.8401 0.435292
3  45.8043 0.720012

parameter 1

chiSql = 45.4999 chiSg2 = 45.3717 chiSq3 = 49.2484
ac[j] = 13.9265 dac[j] = 0.203997 deltaA[j] = 0.288496
chiSgr = 44,9331

parameter 2
chiSql = 46.8037 chiSg2 = 44.9331 chiSq3 = 47.041

acfj] = 64.8531 dac[j] = 0.308633 deltaA[j] 0.436474
chiSgr = 44,9314
parameter 3
chiSql = 48.6985 chiSq2 = 44.9314 chiSq3 = 45.1024
acfj] = 45.4756 dac[j] = 0.513108 deltaA[j] = 0.725644
chiSgr = 44.5209
Enter s; to stop trials, c; to continue
S;
(%020) [[13.9265,64.8531,45.4756],[0.203997,0.308633 ,0.513108]]

With three trials completed, we chose to stop the grid sedrahing very rough values, ~ 14, ay ~ 65,
andas ~ 46. We now proceed to use the non-linear fit functidgft , using these rough values as starting

guesses.
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12.4 Three Parameter Fit Using nlfit

We try athree parameter fit usintfit , using as starting values the final parameters found ggidgsearch
above.

Note that we make the replacement— ¢. in the definition of the model expressiatyexpr , and in the list
of parameter names.

(%i21) myexpr : al + a2  *exp(-t/tc);
(%021) a2 *%e -(t/tc)+al

(%i22) out : nlfit (dataMB,sigL,myexpr,[al,a2,tc],[14,6 5,46]);
Ndata = 24
Nparam = 3
dof = 21
ivar = t
start: params: [al = 14.0,a2 = 65.0,tc = 46.0] chi2 = 46.8298
n lam
1 0.001
p_oldL = [14.0,65.0,46.0]
p_newL = [30.1843,50.1806,26.8754] chi2_new = 11.5832
2 1.0e-4
p_oldL = [30.1843,50.1806,26.8754]
p_newlL = [32.287,49.5529,24.5566] chi2_new = 2.38017
3 1.0e-5
p_oldL = [32.287,49.5529,24.5566]
p_newL = [32.2182,49.6507,24.6676] chi2_new = 2.33385
4 1.0e-6

p_oldL = [32.2182,49.6507,24.6676]
p_newlL = [32.2146,49.6535,24.6717] chi2_new = 2.33385

chi2/dof = 0.111136

chi2_prob = 100.0 %

al = 322146 +/- 1.59692

a2 = 49.6535 +/- 1.36525

tc = 24.6717 +/- 1.768

(%022) [[al = 32.2146,a2 = 49.6535,tc = 24.6717],[1.59692,
2.33385,1.0]

(%i23) yfit : myexpr, out[1];

(%023) 49.6535 *%e"-(0.0405322 *t)+32.2146

(%i24) y_gaussian_PE (dataMB, 21, yfit);

(%024) 0.222247

1.36525,1.768],

If we use the assumption of Gaussian distribution errorsifertemperature measurements, and the resulting

estimate of the probable error thus returned/byaussian_PE , we can redefine the elementssigL to be

0.22 and redo the fit usinglfit

,0.22,0.22,0.22,0.22,0.22,

5,46]);

chi2 = 967.557

(%i25) sigL : makelist (0.22,j,1,24);
(%025) [0.22,0.22,0.22,0.22,0.22,0.22,0.22,0.22,0.22
0.22,0.22,0.22,0.22,0.22,0.22,0.22,0.22,0.22,0.22]
(%i26) out : nlfit (dataMB,sigL,myexpr,[al,a2,tc],[14,6
Ndata = 24
Nparam = 3
dof = 21
ivar = t
start: params: [al = 14.0,a2 = 65.0,tc = 46.0]
n lam
1 0.001
p_oldL = [14.0,65.0,46.0]
p_newlL = [30.1843,50.1806,26.8754] chi2_new = 239.321
2 1.0e-4
p_oldL = [30.1843,50.1806,26.8754]
p_newlL = [32.287,49.5529,24.5566] chi2_new = 49.1771
3 1.0e-5
p_oldL = [32.287,49.5529,24.5566]
p_newL = [32.2182,49.6507,24.6676] chi2_new = 48.2201
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4 1.0e6
p_oldL = [32.2182,49.6507,24.6676]
p_newl = [32.2146,49.6535,24.6717]  chi2_new = 48.22

chi2/dof = 2.29619
chi2_prob = 0.0641768 %

al 32.2146 +/- 0.351322

a2 49.6535 +/- 0.300356

tc = 24.6717 +/- 0.38896

(%026) [[al = 32.2146,a2 = 49.6535,tc = 24.6717],[0.351322 ,0.300356,0.38896],
48.22,6.41768e-4]

(%i27) yfit : myexpr, out[1];

(%027) 49.6535 +*%e"-(0.0405322 +*1)+32.2146

(%i28) y_gaussian_PE (dataMB, 21, yfit);

(%028) 0.222247

By changing the value of the elementss@fL in a trial and error method, each time invokim§it — again, we
can arrive at a combined instrumental error and random estimate of the temperature measurement errors
which finally gives reasonable values for tigprobability and the reduceg’ value,x?/dof.

(%i29) sigL : makelist (0.3,j,1,24);

(%029) [0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3, 0.3,0.3,0.3,0.3,0.3,0.3,
0.3,0.3,0.3,0.3,0.3,0.3,0.3]
(%i30) out : nlfit (dataMB,sigL,myexpr,[al,a2,tc],[14,6 5,46]);
Ndata = 24
Nparam = 3
dof = 21
ivar = t
start: params: [al = 14.0,a2 = 65.0,tc = 46.0] chi2 = 520.331
n lam
1 0.001

p_oldL = [14.0,65.0,46.0]
p_newlL = [30.1843,50.1806,26.8754] chi2_new = 128.702

2 1.0e-4

p_oldL = [30.1843,50.1806,26.8754]

p_newlL = [32.287,49.5529,24.5566] chi2_new = 26.4464
3 1.0e-5

p_oldL = [32.287,49.5529,24.5566]

p_newL = [32.2182,49.6507,24.6676] chi2_new = 25.9317
4 1.0e-6

p_oldL = [32.2182,49.6507,24.6676]
p_newlL = [32.2146,49.6535,24.6717] chi2_new = 25.9316

chi2/dof = 1.23484
chi2_prob = 20.9068 %

al = 32.2146 +- 0.479076

a2 = 49.6535 +/- 0.409576

tc = 24.6717 +- 0.5304

(%030) [[al = 32.2146,a2 = 49.6535,tc = 24.6717],[0.479076 ,0.409576,0.5304],
25.9316,0.209068]

We take the output aflfit  as the values of parameters for making a plot usisgarch . We already loaded
draw andqdraw above prior to using the graphigsearch method.

(%i31) Vsearch (dataMB,sigL,myexpr,[al,a2,tc],[32.22, 49.65,24.67])$
param_list = [al = 32.22,a2 = 49.65,tc = 24.67]
yfit_expr = 49.65 *%e"-(0.0405351 *t)+32.22
chiSq = 2.33405
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which produces the plot

[al = 32.22,a2 = 49.65,tc = 24.67]
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Figure 24: Temperature vs. time three parameter fit using nlfi

We see that the cooling coffee data can be fit closely if we ubesg parameter fit. We would expect a poorer
fit if we only allowed one or two parameters to be adjusted (stoould try this).

13 Ex. 8: Nonlinear Fit of the Decay of Two Excited States PluBack-
ground

Quoting Bevington (3rd), pdf 156, with some additions,

In a popular undergraduate physics laboratory experingergal silver quarter is irradiated with
thermal neutrons to create two short-lived isotopes oksildg;2® and Agil°, that subsequently
decay by beta emission. Students count the emitted betizlparin 15-s intervals for about 4
min to obtain a decay curve. Data collected from such an axeeit are listed in Table 8.1 and
plotted on a semi-logarithmic graph in Figure 8.1. The datareported at the end of each 15-s
interval, just as they were recorded by a scaler. The datdagdo not fall on a straight line because
the probability function that describes the process is time sf two exponential functions plus a
constant background. We can represent the decay by the model

C(t) = a1 + ag e /% + qg et/ (13.1)

where the parameter corresponds to the constant background radiationgaaddas correspond
to the amplitudes of the two excited states with mean liveendas, respectively. We assume that
the second term proportional&o’/ is the contribution due to the short-lived excited state, the
third term proportional te—*/¢s is the contribution due to the long-lived excited statey se < as.
C'(t) represents the number of beta particles recorded by thetdetiuring the 15 sec prior to the
time¢. Clearly, Equation (13.1) in not linear in the parameterandas, although it is linear in
the parameters,, a,, andas.
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13.1 Interactive Look at the Raw Data

The data for this example is in our filebe14-fit8.dat

(%i1) load(fit);

(%o01) "c:/work9/fit.mac"

(%i2) fname : "c:/work9/mbel4-fit8.dat"$

(%i3) printfile(fname)$

Radioactive decay
59
15 775 27.8
30 479 219
45 380 19.5
60 302 174
75 185 13.6
90 157 125
105 137 11.7
120 119 10.9
135 110 10.5
150 89 9.4
165 74 8.6
180 61 7.8
195 66 8.1
210 68 8.2
225 48 6.9
240 54 7.3
255 51 7.1
270 46 6.8
285 55 7.4
300 29 5.4
315 28 53
330 37 6.1
345 49 7.0
360 26 5.1
375 35 5.9
390 29 54
405 31 5.6
420 24 4.9
435 25 5.0
450 35 5.9
465 24 4.9
480 30 55
495 26 5.1
510 28 5.3
525 21 4.6
540 18 4.2
555 20 4.5
570 27 5.2
585 17 4.1
600 17 4.1
615 14 3.7
630 17 4.1
645 24 4.9
660 11 3.3
675 22 4.7
690 17 4.1
705 12 3.5
720 10 3.2
735 13 3.6
750 16 4.0
765 9 3.0
780 9 3.0
795 14 3.7
810 21 4.6
825 17 4.1
840 13 3.6
855 12 3.5
870 18 4.2
885 10 3.2

The first line of this data file is a title, the second line is #uwertised number of data points. In each of the
following lines we have the time {n sec), the number of betas recorded in the prior 156@cand the square
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root of the count/C). Note that we cannot usead_matrix  with this data file, since its use would result in the error
message “matrix: all rows must be the same length.” We cameask nested_list to produce a (nested) list of the
data file, usdll  to look at the first element, last element, and the length tlaeal useest (alist, 2) to remove
the first two sub-lists (the first sub-list contains the fiithe and the second sub-list contains the advertised nuoflozta
points). We then have the option of usiagply ('matrix, a-nested-list) to produce a matrix.

(%i4) data8L : read_nested_list(fname)$

(%i5) fll (data8L);

(%05) [[Radioactive,decay],[885,10,3.2],61]

(%i6) head (data8L);

(%06) [[Radioactive,decay],[59],[15,775,27.8],[30,47 9,21.9],[45,380,19.5],
[60,302,17.4]]

(%i7) rest([a,b,c,d],2);

(%07) [c,d]

(%i8) data8L : rest (data8L,2)$

(%i9) fll (data8L);

(%09) [[15,775,27.8],[885,10,3.2],59]

(%i10) data8M : apply (‘'matrix,data8L)$

(%ill) row (data8M,1);

(%011) matrix([15,775,27.8])

We lettL be the list of the timesCL be the list of the raw counts, arsigL be the list of the square-roots of the raw
counts.

(%i12) tL : list_matrix_entries (col (data8M,1))$

(%i13) fll (tL);

(%013) [15,885,59]

(%i14) CL : list_matrix_entries (col (data8M,2))$
(%i15) fll (CL);

(%015) [775,10,59]

(%i16) sigL : list_matrix_entries (col (data8M,3))$
(%i17) fll (sigL);

(%017) [27.8,3.2,59]

We first make a linear plot of the raw data, using our homenmxgtiest  function:

(%i18) tCL : xyList (tL, CL)$
(%i19) fll (tCL);
(%019) [[15,775],[885,10],59]
(%i20) load(draw)$
(%i21) load(gdraw)$
" gdraw(...), gdensity(...), qdensityl(...), syntax: typ e gdraw(); "
(%i22) qdraw (pts (tCL,pc(black),ps(1)),
xr (0,900), yr (0,800),
more (xlabel = "t", ylabel = "C"))$

which produces the plot
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Figure 25: Linear Plot of Raw Data: Counts vs. time
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We next make a semi-log pldiy(C') vs. t of the raw data. Remember that in Maxint@y returns the natural
logarithm. Note that if one of the counts w&dog(CL),numer  would return dog(0) error.

(%i23) InCL : log (CL),numer$
(%i24) fll (InCL);
(%024) [6.65286,2.30259,59]
(%i25) t_InCL : xyList (tL, InCL)$
(%i26) fll (t_InCL);
(%026) [[15,6.65286],[885,2.30259],59]
(%i27) qdraw (pts (t_InCL,pc(black),ps(1)),
xr (0,900), yr (2,7),
more (xlabel = "t, ylabel = "In(C)"))$

which produces the plot
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Figure 26: Raw Datan(C') vs. t

13.2 Estimates of the Mean Lifetime and Amplitude of each Exted State

After subtracting the constant background beta radiatoamts from the raw data, we can consider separately
the “early data”, corresponding to< 200 sec, in which the short-lived excited state dominates thaswmed
counts, and the “late data”, corresponding te 200 sec, in which the long-lived state dominates the measured
counts.

We can estimate the mean lifetime and amplitude of the loregtlexcited state by using only the corrected late
data points, assuming the corrected late data points arexpyately given by the third term of Eq. (13.1),
and fitting a straight line to the natural log of the late ceurg. time.

We can then subtract the estimated contribution of the livagt excited state from the early corrected data,
and assume the twice-corrected early data points are appately represented by the second term of 13.1, and
fitting another straight line to the natural log of the twim@+ected early data points, which will yield estimates
of the mean lifetime and amplitude of the short-lived state.

13.2.1 Subtraction of Background Beta Radiation Counts fron Raw Data

A separate measurement of the beta particle backgroundrebefadiation of the silver, produced the value
a1 ~ 10 beta particles per 15 sec. Leinb(C minus background) be the beta count numbers after stibgac
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the approximate background.

(%i28) Cmb : CL - 10$
(%i29) fll (Cmby);
(%029) [765,0,59]

13.2.2 Long-lived State Properties from Late Data Points

We can first work with only the large time (corrected) datanp®ifor whicht > 200. We assume they are
mainly due to the long-lived state decay, represented bietinea; e /.

To produce a list of times, corrected counts, and countegomresponding to the requirement 200, we use
our homemade functiopos_GT(alist,anumber) which returns the first list element numberadist  for
which the list element is greater thanumber .

Applied to the listiL , we find that the fourteenth elementtof is the first element ol which is greater than
200, and we can then define_late  as the list of times produced by stripping away the first &an elements
of tL . We can then strip away the first thirteen elementSmabandsigL to define the corresponding corrected
late counts and count errors.

(%i30) pos_GT (tL,200);

(%030) 14

(%i31) tL_late : rest(tL,13)$
(%i32) fll (tL_late);

(%032) [210,885,46]

(%i33) Cmb_late : rest(Cmb,13)$
(%i34) fll (Cmb_late);

(%034) [58,0,46]

(%i35) sigL_late : rest (sigL, 13)$
(%i36) fll (sigL_late);

(%036) [8.2,3.2,46]

We are going to fit the natural logarithm of the late correctednts to a straight line model in order to estimate
the lifetime and amplitude of the long-lived decay conttibn. We need to omit data points for which the late
corrected counts are less than or equal to 0, since Maxiow’y function returns an error if < 0.

We can use our homemade functipositions_LE(alist,anumber) which returns the list of positions
of elements which are less than or equal to the second arguréncan then use our homemade function
Remove (L, nL) to return a list which omits the elements whose positiongratbe listnL, thus defining
tL_late_pos and corresponding lists for the counts and count errors. Wedlyitake the natural log of the
resulting count list, producinip_Cmb_late_pos

(%i37) pL : positions_LE (Cmb_late,0);

(%037) [35,38,39,46]

(%i38) Cmb_late_pos : Remove (Cmb_late,pL)$
(%i39) fll (Cmb_late_pos);

(%039) [58,8,42]

(%i40) tL_late_pos : Remove (tL_late,pL)$

(%i41) fll (tL_late_pos);

(%041) [210,870,42]

(%i42) sigL_late_pos : Remove (sigL_late,pL)$
(%i43) fll (sigL_late_pos);

(%043) [8.2,4.2,42]

(%i44) In_Cmb_late_pos : log (Cmb_late_pos),numer$
(%i45) fll (In_Cmb_late_pos);

(%045) [4.06044,2.07944,42]

(%i46) dataM2 : apply (‘'matrix, xyList (tL_late_pos, In_Cm b_late_pos))$
(%i47) row (dataM2,1);

(%047) matrix([210,4.06044])
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For a rough estimate of the straight line fit, we leave theeslofsigL _late_pos  alone (ie., no attempt to
adapt to the switch to the natural log of the late correctamts). We then use

In(AB) =In(A) +In(B), In(e?) =4, "W =A (13.2)

to derive estimateas3e anda5e for a3 andas from the straight line fit.

(%i48) outl : fit_line (dataM2, sigL_late_pos);
fit model y(x) = a + b *X to given data
a = y-intercept, b = slope

ivar = X
num_data = 42
num_param = 2
dof = 40

chi2/dof = 0.0184701

chi2_prob = 100.0 %

a = 4.44145 +/- 2.49489

b = -0.00396122 +/- 0.0040118
(%048) [[a = 4.44145b = -0.00396122],[2.49489,0.0040118 1,0.738804,1.0]
(%i49) [av, bv] : map (rhs, outl[1]);
(%049) [4.44145,-0.00396122]

(%i50) abe : -1/bv;

(%050) 252.448

(%i51) a3e : exp(av);

(%051) 84.8976

13.2.3 Short-lived State Properties from Early Data Points

We now concentrate on the early data points 200.

(%i52) n200 : pos_GT (tL,200);

(%052) 14

(%i53) tL_early : rest (tL,-(length(tL) - n200 + 1))$
(%i54) fll (tL_early);

(%054) [15,195,13]

(%i55) Cmb_early : rest (Cmb,-(length(tL) - n200 + 1))$
(%i56) fll (Cmb_early);

(%056) [765,56,13]

(%i57) sigL_early : rest (sigL,-(length(tL) - n200 + 1))$
(%i58) fll (sigL_early);

(%058) [27.8,8.1,13]

We use our estimates8e anda53 to estimate the contribution of the long-lived state atyetirhes to define
the listlong_lived_early , and subtract these values from the corrected early cooffitstt a list of counts
approximately due just to the short-lived state.

We use the natural log of the early corrected counts due tslibd-lived state to fit another straight line,
thus obtaining estimatee for a, anda4e for a,.

(%i59) long_lived_early : map (lambda ([t],a3e xexp (-t/abe)), tL_early)$
(%i60) fll (long_lived_early);

(%060) [80.0001,39.213,13]

(%i61) C_short_early : Cmb_early - long_lived_early$

(%i62) fll (C_short_early);

(%062) [685.0,16.787,13]

(%i63) In_C_short_early : log (C_short_early)$

(%i64) fll (In_C_short_early);

(%064) [6.52942,2.8206,13]

(%i65) dataM1 : apply (‘'matrix, xyList (tL_early, In_C_sho rt_early))$
(%i66) row (dataMi,l);

(%066) matrix([15,6.52942])

(%i67) outl : fit_line (dataMl, sigL_early);

fit model y(x) = a + b *X to given data

a = y-intercept, b = slope

ivar = X
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num_data = 13
num_param = 2
dof = 11

chi2/dof = 7.18198e-4

chi2_prob = 100.0 %

a = 65285 +/- 9.80892

b = -0.0211175 +/- 0.0668757
(%067) [[a = 6.5285,b = -0.0211175],[9.80892,0.0668757], 0.00790018,1.0]
(%i68) [av, bv] : map (rhs, outl[l]);
(%068) [6.5285,-0.0211175]

(%i69) ade : -1/bv;

(%069) 47.3541

(%i70) a2e : exp(av);

(%070) 684.368

13.3 Five Parameter Fit using nlfit

We can now find a five parameter fit usingit . We define the raw data (for all times) matdataM using
the nested listCL of the raw data of times and counts.

(%i71) dataM : apply ('matrix, tCL)$

(%i72) row (dataM,1);

(%072) matrix([15,775])

(%i73) myexpr : al + a2 *exp(-t/ad) + a3 * exp(-t/ab);

(%073) a3 *%e"-(t/ab)+a2  *%e"-(t/ad)+al

(%i74) ale : 10;

(%074) 10

(%i75) outl : nlfit (dataM,sigL,myexpr,[al,a2,a3,a4,a5] [ale,a2e,a3e,a4e,a5¢€));
Ndata = 59

Nparam = 5

dof = 54

ivar = t

start:  params:

[al = 10.0,a2 = 684.368,a3 = 84.8976,a4 = 47.3541,

a5 = 252.448] chi2 = 116.335
n lam
1 0.001
p_oldL = [10.0,684.368,84.8976,47.3541,252.448]
p_newL = [10.6205,889.143,133.829,31.3675,177.516]
chi2_new = 120.391
increase
2 0.01
p_oldL = [10.0,684.368,84.8976,47.3541,252.448]
p_newL = [8.80802,884.114,113.44,34.9627,233.081]
chi2_new = 79.2254
3 0.001
p_oldL = [8.80802,884.114,113.44,34.9627,233.081]
p_newL = [10.0939,956.901,125.39,34.47,210.619] chi2_n ew =
66.2584
4 1.0e-4
p_oldL = [10.0939,956.901,125.39,34.47,210.619]
p_newL = [10.1581,957.652,128.391,34.2386,209.419]
chi2_new = 66.0562
5 1.0e-5

p_oldL = [10.1581,957.652,128.391,34.2386,209.419]
p_newL = [10.1732,957.981,128.636,34.2055,209.114]
chi2_new = 66.056

chi2/dof = 1.22326
chi2_prob = 125774 %

al = 10.1732 +/- 1.8923
a2 = 957.981 +/- 49.5375
a3 = 128.636 +/- 21.2337
a4 = 34.2055 +/- 251918
ab = 209.114 +/- 31.5955

(%075) [[al = 10.1732,a2 = 957.981,a3 = 128.636,a4 = 34.2055 ,a5 = 209.114],
[1.8923,49.5375,21.2337,2.51918,31.5955],66.056,0.1 25774]
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(%i76) yfit : myexpr, outl[1];
(%076) 128.636 *%e"-(0.00478209 *1)+957.981 *%e"-(0.029235 *1)+10.1732

13.4 Linear Plots for Early and Late Times
Linear plot of the five parameter fit and the data pointddte timest = 200 — 900 sec.

(%i77) load(draw);

(%077) "C:/Program Files/Maxima-shcl-5.36.1/share/max ima/5.36.1/share/draw/draw.lisp"
(%i78) load(qdraw);
" gdraw(...), gdensity(...), qdensityl(...), syntax: typ e gdraw(); "

(%078) "c:/work9/qdraw.mac"
(%i79) CL_late : rest (CL,n200 -1)$
(%i80) fll (CL_late);
(%080) [68,10,46]
(%i81) ptsL : xyList(tL_late,CL_late)$
(%i82) qdraw (pts (ptsL,pc(black),ps(1)),

errorbars (ptsL, sigL_late, Iw(3),Ic(blue)),

ex1 (yfit, t ,200, 900, Ic(brown)),
xr (200,900), yr (0,80),
more (xlabel = "t', ylabel = "C"))$

which produces the plot
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Figure 27: Linear Plot of Late Data and Five Parameter Fit

Linear plot of the five parameter fit and the data pointsefanly timest = 0 — 200 sec.

(%i83) CL_early : rest (CL,-(length(tL) - n200 + 1));
(%083) [775,479,380,302,185,157,137,119,110,89,74,61 ,66]
(%i84) length (CL_early);
(%084) 13
(%i85) ptsL : xyList(tL_early,CL_early);
(%085) [[15,775],[30,479],[45,380],[60,302],[75,185] ,[90,157],[105,137],
[120,119],[135,110],[150,89],[165,74],[180,61],[195 ,66]]

(%i86) qdraw (pts (ptsL,pc(black),ps(1)),

errorbars (ptsL, sigL_early, Iw(3),lc(blue)),

ex1l (yfit, t ,0, 200, Ic(brown)),
xr (0,200), yr (0,800),
more (xlabel = "t", ylabel = "C"))$
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which produces the plot
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Figure 28: Linear Plot of Early Data and Five Parameter Fit

13.5 Four Parameter Fit Using nlfit

Try a four parameter fit, enforcing the measured backgroahaev

(%i87) ymodel_4param : 10 + a2 *exp(-t/ad) + a3 * exp(-t/ab);
(%087) a3 *%e -(t/ab)+a2  *%e"-(t/ad)+10

(%i88) outl : nlfit (dataM,sigL,ymodel_4param,[a2,a3,a4 ,ab],[a2e,a3e,ade,a5¢€]);
Ndata = 59
Nparam = 4
dof = 55
ivar = t
start: params: [a2 = 684.368,a3 = 84.8976,a4 = 47.3541,a5 = 2 52.448]
chi2 = 116.335
n lam
1 0.001
p_oldL = [684.368,84.8976,47.3541,252.448]
p_newL = [891.203,129.935,31.8702,191.623] chi2_new =
104.811
2 1.0e-4
p_oldL = [891.203,129.935,31.8702,191.623]
p_newlL = [958.954,127.742,34.3479,211.159] chi2_new =
66.0768
3 1.0e-5
p_oldL = [958.954,127.742,34.3479,211.159]
p_newL = [957.992,127.205,34.3338,211.748] chi2_new =
66.0637
4 1.0e-6

p_oldL = [957.992,127.205,34.3338,211.748]
p_newlL = [958.007,127.202,34.3335,211.756]  chi2_new =
66.0637

chi2/dof = 1.20116
chi2_prob = 14.5928 %

a2 = 958.007 +/- 49.2896
a3 = 127.202 +/- 14.7266
a4 = 343335 +/- 2.1612
ab = 211.756 +/- 14.9265

(%088) [[a2 = 958.007,a3 = 127.202,a4 = 34.3335,a5 = 211.756 1
[49.2896,14.7266,2.1612,14.9265],66.0637,0.145928]
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We show the late data and fit on a linear plot.

(%i89) yfit : ymodel_4param, outl[1];
(%089) 127.202 *%e"-(0.00472242 *1t)+958.007 *%e"-(0.029126 *t)+10.0
(%i90) ptsL : xyList(tL_late,CL_late)$
(%i91) qdraw (pts (ptsL,pc(black),ps(1)),

errorbars (ptsL, sigL_late, lw(3),Ic(blue)),

ex1 (yfit, t ,200, 900, Ic(brown)),
xr (200,900), yr (0,80),
more (xlabel = "t', ylabel = "C"))$

which produces the plot
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Figure 29: Linear Plot of Late Data and Four Parameter Fit

which shows that a four parameter fit, enforcing the measuakee of the background, results in a poorer fit
than the five parameter fit, in which we let all five parameteradhjustable.

14 General Model Fitting Background

This section presents some context about the least squgresaah to fitting a model to a set of data.

Quoting Numerical Recipes (1992), Sec. 15.0,

The basic approach in all cases is usually the same: You elayakesign digure-of-merit function
(“merit function,” for short) that measures the agreemestivMeen the data and the model with a
particular choice of parameters. The merit function is emiwnally arranged so that small values
represent close agreement. The parameters of the modélearadjusted to achieve a minimum
in the merit function, yielding “best-fit parameters.” Thdjstment process is thus a problem in
minimization in many dimensions. ...however, there exp&csal, more efficient, methods that
are specific to modeling, and we will discuss these in thiptdra

There are important issues that go beyond the mere findingsitfti parameters. Data are gen-
erally not exact. They are subject to measurement erroliedcaoise in the context of signal-

processing). Thus, typical data never exactly fit the molat is being used, even when that
model is correct. We need the means to assess whether oenooitttel is appropriate, that is, we
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need to test the goodness-of-fit against some useful gtatistandard. We usually also need to
know the accuracy with which parameters are determineddyalta set. In other words, we need
to know the likely errors of the best-fit parameters. Finatlys not uncommon in fitting data to
discover that the merit function is not unimodal, with a $&ngninimum. In some cases, we may
be interested in global rather than local questions. Naiw'lgood is this fit?” but rather, “how
sure am | that there is not a very much better fit in some corheam@meter space?”

... To be genuinely useful, a fitting procedure should pre\iyiparameters, (ii) error estimates on
the parameters, and (iii) a statistical measure of goodoks When the third item suggests that
the model is an unlikely match to the data, then items (i) @pdre probably worthless.

Quoting the forward of Statistical Methods for Experimefthysics, Frederick James, 2nd. ed., 2006

A very common tacit assumption in the everyday use of skedis$ that the set of data is large
enough for asymptotic conditions to apply.

When we define the number of degrees of freedom in a model fatm th which the model has unknown
parameters and we haveé data points, as dof v = N — m, this may be true asymptotically, but not for
smaller amounts of data.

On the use of “language” in statistics, we quote James (C8ed.2):

Statistics, like any other branch of learning, has its owmteology which one has to become

accustomed to. Certain confusion may, however, arise wiesame term has a different meaning
in statistics and in physics, or when the same concept higeafit names. In the former case we
usually imply the statistical meaning (obliging the phystito recognize and learn the difference);
in the second case we often choose the physical term.

An example of the first kind [same term, different meaninghis following:

Physicists  Statisticians
say say

Determine Estimate
Estimate Guess

Thus the word “estimate” has different meaning in physias ianstatistics. We use it as statisti-
cians do. (We use three chapters to explain what statisticieean thereby).

An example of the second kind is “the demographic approazigkperimental physics. Much of
statistics has been developed in connection with populatiodies (sociology, medicine, agricul-
ture) and at the production line (industrial quality coljtrdhen one is not able to study the whole
population, so one “draws a sample”. And the populationtexisa real sense.

In experimental physics, the set of all measurements urtddy £orresponds to the “sample”.
Increasing the number of measurements, the physicistaeesethe “size of the sample”, but he
never attains the “population”. Thus the “population” iswarderlying abstraction which does not
exist in any real sense. These “demographic” terms areftirereo some extent inappropriate and
unnecessary, and we try to avoid some of them:
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For the “demographic” we use the
term physics term
Sample Data (set)
Draw a sample Observe, measure
Sample of size N N observations
Population Observable space

Still, one has to be able to distinguish between, say, thenroéthe data at hand, and the mean
if the data set were infinite. When this distinction is neeegswe usesample mean sample
variance, etc. as contrasted fgarent mean, parent variance, etc., or mean and variance of the
underlying distribution. Thus

‘ Parent mean = Mean of the underlying distribution = Populati on mean |

We avoid the physical term “error”, which is misleading, ars# instead “variance of estimate”,
“confidence interval”, or “interval estimate”. We also tky &avoid the words “precision” and “ac-

curacy”, because they are not well defined. In many booksatissts one finds whole chapters
dealing with the “propagation of errors”. Such a term, in ouinds, is confusing. The correspond-
ing notion here is “change of variables”. Other topics whithly seem to have got lost, may also
sometimes be refound under other names. For instance, the‘tegression analysis” is never
used, but the techniques are treated under least-squaretliitear models.

Despite James’ avoidance of the term “errors” in his bookcastinue to use language such as “propagation
of errors” and “likely errors”, because that language is sdespread in physics.

Quoting from Bevington, ch. 1

Error is defined by Webster as “the difference between an obsenaalaulated value and the true
value.” Usually we do not know the “true” value; otherwiseith would be no reason for perform-
ing the experiment. We may know approximately what it shdxddhowever, either from earlier
experiments or from theoretical predictions. Such appnations can serve as a guide but we must
always determine in a systematic way from the data and thergwmpntal conditions themselves
how much confidence we can have in our experimental results.

There is one class of error that we can deal with immediataiyars that originate from mistakes
or blunders in measurement or computations. Fortunatedget errors are usually apparent either
as obviously incorrect data points or as results that areeastonably close to expected values.
They can be classified @tegitimate errorsand generally can be corrected by carefully repeating
the operations.

Our interest is iruncertaintiesntroduced by random fluctuations in our measurements sgad
tematic errorghat limit the precision and accuracy of our results in maress well-defined ways.
Generally, we refer to the uncertainties aséh®rsin our results, and the procedure for estimating
them aserror analysis.
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Accuracy Versus Precision

It is important to distinguish between the teraturacyandprecision.The accuracy of an exper-
iment is a measure of how close the result of the experimdnttise true value; the precision is
a measure of how well the result has been determined, witkeéertence to its agreement with the
true value. The precision is also a measure of the reprotliticdd the resultin a given experiment.

And also quoting the Univ. of North Carolina measurementuan

When analyzing experimental data, it is important that yodarstand the difference between pre-
cision and accuracyPrecision indicates the quality of the measurement, without any guaea
that the measurement is “correcXccuracy, on the other hand, assumes there is an ideal value,
and tells you how far your answer is from that ideal, “rightisaver. These concepts are directly
related torandom andsystematicmeasurement errors.

Measurement errors may be classified as eitdwedom or systematic depending on how the mea-
surement was obtained (an intrument could cause a randomirirne situation and a systematic
error in another).

Random errors are statistical fluctuations (in either direction) in theasered data due to the pre-
cision limitations of the measurement device. Random srcan be evaluated through statistical
analysis and can be reduced by averaging over a large nurhbleservations (see standard error).

Systematic errorsare reproducible inaccuracies that are consistently isdnge direction. These
errors and difficult to detect and cannot be analyzed sttt If a systematic error is identifed
when calibrating against a standard, applying a correaiocorrection factor to compensate for
the effect can reduce the bias. Unlike random errors, systerarrors cannot be detected or re-
duced by increasing the number of observations.

... Gross personal errors, sometimes cathéstakesor blunders, should be avoided and corrected
if discovered. As a rule, personal errors are excluded fioenetrror analysis discussion because
it is generally assumed that the experimental result weasiodd by following correct procedures.
The term “human error” should also be avoided in error amalgig&scussions because it is too
general to be useful.

14.1 Propagation of Errors

Suppose the quantity is some function of measured parameterandb, which each have some estimated
uncertaintyda = o,, b = oy, and

y = f(a,b) (14.1)
The uncertainty iry if b were exactly known would be
R ACL) (14.2)
oa
and likewise the uncertainty inif « were exactly known would be
oy = 21@0) (14.3)

ob
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If both & andb have uncertainties then we assume that the uncertaintieis @gladrature in the sense

(0y)* = oy = (0ya)® + (9ys)? (14.4)
or
3= | L] o+ |2 oy (145

Thusify = a — btheno? = o7 + 0.

If ¥ depends on more than two measured or observed quantieshtive approach can be easily extended to
obtaino—s appropriate to the situation, as we will see in the next eacti

14.2 Moments of a Distribution: Mean, Variance, Standard D&iation

This section in included so we can remind the reader aboudlifferences between therfeasured meaf
and the frue mean” and likewise for the variance. We also review the usefudrnafsthe Gaussian (Normal)
statistical distribution for error analysis.

If there areN elements{z4, ..., xy} in the set of data, and we assume each element is drawn frosathe
parent distribution, then eaah has the same uncertainty

ox; =0, =oforall ¢ (14.6)

Thesample mean or themeasured mearof the values; is the “arithmetic mean”

T=4 Zx (14.7)

In the same way you can calculate the mean value of any furygtio:

1 X
f=% ;ﬂm (14.8)

We can simplify our notation by omitting mention of the indelken we sum oveN measurements:

N
>ow=> (14.9)
i=1

The value of thgparent meanor thetrue mean i corresponding ta is defined by

) 1
W= ]\}I_Iil)o (N E xi) (14.10)
Using (14.5) we can calculate the statistical errpof the sample mean. Taking into account that
8372‘
L =5 14.11
833']‘ J ( )

the Kronecker delta symbol, which equalg : = j and equal$ otherwise, and hence

i
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Then, using
0T 1
et 14.13
833']‘ N’ ( )
we get
1 2 1 2 1 2 A 5_2
(7;: (N) Ui1+...+ (N) UiN: <N) NU2:N (1414)
SO .
07 =05 = ——. (14.15)
T \/N

As a numerical example, suppose= 0.1 and N = 100. Then you can quote the sample mean as (ignoring
units here)
T=9.84+0.01 (14.16)

According to (14.15) you can decrease the statistical @fdhe sample mean by increasing the number of
independent measurements, but if one increases the nurhberasurements by a factor ¢f the statistical
error of the sample mean is only decreased by a factér(aﬂ other things being equal).

When measured values are quoted with an error estimatertioaiestimate is a “Gaussian standard deviation.”
If you say the length i$9.84 + 0.01) cm, you mean that you have used a measuring instrument whieh g
answers that differ from the true value by withi).01 cm 68% of the time, within+0.02 cm 95% of the time,
and +0.03 cm 99.7% of the time. Errors on measurements and average resulteaszajly well described
by the Gaussian distribution, which is, of course, why itlanown as the “normal distribution.” Thus a
measurement reported as

Measurement= (measured valuet- standard uncertainty ) unit of measurement (14.17)

where thetstandard uncertainty indicates approximatetg# confidence interval

The last digit retained in the estimate of the mean shoulahltled same decimal place as the first digit of the
standard error. The resultant number of significant figunekeé reported mean indicates the precision of the
experiment.

14.3 Gaussian (Normal) Distribution

Quoting Bevington, Ch.2, somewhat loosely,

The Gaussian probability density is defined as

1 1 (fx—p 2
PG = exp | —= (14.18)
ovV2m 2 o

This is a continuous function describing the probabilityabtaining the valuer in a random
observation from a parent distribution with parameterand o, corresponding to the mean and
standard deviation, respectively. Because the distobus continuous, we must define an interval
in which the value of the observatianmust fall. .. .the probabilityl P;(x; 11, o) that the value of

a random observation will fall within an infinitesimal int@t dx aroundz is given by

dPg(x; p,0) = pg(x; p, o) dx (14.19)



14 GENERAL MODEL FITTING BACKGROUND 56

The probability density function is normalized such thatrthis al00% probability that the value
of a random observation will lie in the “interval:co < = < 400:

+o0
/ pe(x;p,o)dr =1 (14.20)
“The curve has unit area.” The peak of the curve iscat p, and the width of the curve is
determined by the value of such that forr = u + o, the height of the curve is reduced to
e~1/2 = 0.606531 of its value at the peak

pe(p £ o;p,0) = e e p, o) (14.21)

The Gaussian distribution curve has a characteristic bajpe and is symmetric about the mean
We can characterize a distribution byfitdl-width at half maximunt’, often referred to as thealf-

width defined as the range ofbetween values at which the probability density is half isskimum
value:

1 1
pepE 5L, 0) = Spalp; p, o) (14.22)
which implies the value (see below)
I =2.3548 ¢ (14.23)

The Gaussian distribution moments can be summarized bylatiltg the expected value of making use of
Maxima'sintegrate  function, (note that we use a Maxima “expression” for thebaitality density, instead
of a Maxima function),

+00
<z >= / rpe(z;p,o)de =p (14.24)
— 0o
(%i1) rho : exp(-(x-mu)~2/2/sig™2)/sig/sqrt(2 * %opi)$
(%i2) assume(sig>0,mu>0);
(%02) [sig > O,mu > 0]
(%i3) xbar : integrate(x *rho,x,-inf,inf);
(%03) mu
and the “variance”,
+00
<(z—<z>)>= / (x — p)? pa(x; p, o) de = o (14.25)
— 0o
(%i4) variance : integrate((x-mu)"2 * rho,x,-inf,inf);

(%04) sig™2

We make a simple plot of the Gaussian probability densityfercases = 0, ando = 1, 2.

(%i5) rhol : rho,mu=0,sig=1;

(%05) %e"-(X"2/2)/(sqrt(2) * sqrt(%pi))

(%i6) rho2 : rho,mu=0,sig=2;

(%06) %e™-(x"2/8)/(2°(3/2) * sqrt(%pi))

(%i7) plot2d([rhol,rho2],[x,-6,6],[legend,"sig=1","s ig=2"],

[style,[lines,2]], [ylabel,"rho"])$
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which produces the plot
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Figure 30: Gaussian Probability Density for= 0,0 = 1,2

Integral Probability

The probability that any random value ofwill deviate from the mean by less tham\z is

PG(A$7M7U) = exp [__ (x ,u)
g

1 Az 2
— = P+(Az) = — e 2d 14.26
oV2m Ju—ns 2 6(47) Vor /—Az : ( )

where dimensionlessis defined by

=1 M, Az = g
g g
Thus Az measures the deviation from the mean in units of the stardiarétions. Values of the “Normal
Probability Integral’P;(Az) can be found tabulated in various places. We can easily eif@xima function
norm_prob(delz)  which returns values aP;(Az) after a little interactive experimentation.

(14.27)

(%i8) np : integrate(exp(-z°2/2),z,-dz,dz)/sqrt(2 * %0pi);
(%08) erf(dz/sqrt(2))

(%i9) np,dz = 1,numer;

(%09) 0.6826894921370859

(%il0) np,dz = 2,numer;

(%010) 0.9544997361036416

(%ill) np,dz = 3,numer;

(%011) 0.9973002039367398

(%i212) norm_prob(delz) := float (erf(delz/sqrt(2)))$
(%i13) norm_prob(1);

(%013) 0.6826894921370859

(%il4) norm_prob(2);

(%014) 0.9544997361036416

These results mean that rouglo of random values of drawn from a parent Gaussian distribution having
meanu and standard deviatianwill have values in the range + o, and roughly95% will have values in the
rangey + 20, and roughlyd9.7% will have values in the range + 3o.

The “probable error”
2
PE.= 0, =0.67450 ~ 3 o (14.28)

defines an interval — o, < x < p + o, Within which half $60%) of the values of: measured will lie.
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(%il5) norm_prob (0.6745);
(%015) 0.5000065142726016
(%il6) find_root (norm_prob(dz) - 0.5, dz, 0.6, 0.7);
(%016) 0.6744897501960818

Working with the dimensionless variabieand the probability density function

1 2
_ —22/2 14.29
p(2) Nrh ( )
we can define the half-width as2 z,, where
p(20) = p(0)/2 (14.30)
which implies, usingn e = A,
=22 =2Vv21In2=2.3548 (14.31)

(%il7) 2 *sqrt(2 *log(2));
(%017) 2°(3/2)  *sqrt(log(2))
(%il18) float(%);

(%018) 2.35482004503095

Quoting Lyons, p. 15

One feature which helps to make the Gaussian distributiosuoh widespread relevance is the
central limit theorem. One statement of this is that,ifis a set of N independent variables of
meany and variance?, then for largeV

1
Y= D (14.32)

tends to a Gaussian distribution of mgaand variance/N. The distribution of the individuat;
isirrelevant. Furthermore, the can even come from different distributions with differergams.;
and variances? in which casey tends to a Gaussian of meéry N) > u; and variance_ o?/N.

If the x; are already Gaussian distributed, then the distributiof14132) is already Gaussian for
all values of NV from 1 upwards. But even if; is, say, uniformly distributed over a finite range,
then the sum of a few; will already look Gaussian. ... Thus whatever the initiagtdbutions, a
linear combination of a few variables almost always degatesrinto a Gaussian distribution

Sample Variance and Standard Deviation

The sample mean describes all your data with just one number, but doesné giwy information about how
spread out the data values are. We need a number to expressréagl or dispersion of the data about the
mean. The average squared deviation from the mean is a em&hsure of the spread of the data. It is called
the sample varianceor themeasured variancel’ ()

1 L, 1 ) 1 S
Vi =y Llo-ap =5 Yot - (5 L) =7 - (14.39)
Thus the sample variance is the mean square minus the squaeed

The root mean squared deviation is called shenple standard deviationand given the symbat. It is just
the square root of the sample variance and can be expresgaddns forms

oc=V(x)=Va?-32= \/% Z(x, —I)? (14.34)

Quoting Barlow (see References section at the end), Se@ 2w 2.4.3,
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o represents a reasonable amount for a particular data podiffer from the mean. The exact
numerical details depend on the case, but usually one isunptised by data points one or two
standard deviations from the mean, whereas a data poime thn@ores away would cause a few
raised eyebrows.

The definition ofs is a minefield of alternatives, and to call it the ‘standarelVidtion is something
of a sick joke. It is important to face up to this, for when pkeogre unaware of the differences
between the definitions they get confused and dismayed bgréaof \/N/(N — 1) that appear
apparently out of nowhere. This leads to a tendency to isseft factors at random and generally
incorrect moments. (14.34) defined the standard deviafiardata sample as

o= \/% > (z—x)? (14.35)

So far so good. However, our data are presumably taken as @lesénom a parent distribution,
which has a mean and a standard deviation, denotattlo. In terms of expectation values:

p={(z), o=+/(22) = ()2 = /(a?) — p? (14.36)

There is thus a clear distinction betweenthe mean of the sample, apdthat of the parent, and
complete confusion betweern the standard deviation of the sample, anthat of the parent. This
is not really too bad, as it is generally clear which is me&itiwever, it gets worse. Some authors
define the term ‘standard deviation’ as the r.m.s. deviaticthe data points from the ‘true’ mean

1, rather than the sample mean
1
\/ < 3 (@ — p)? (14.37)

This is felt to be a more fundamental and ‘truer’ quantityrtiiaat defined in (14.34), but it is not
much use if you do not know the value of However, an estimate of this, which (when squared)
gives an unbiased estimatedf of the parent, is given by

s = \/ ﬁ > (x;— 1)’ (14.38)

...itis not a matter of ‘right’ and ‘wrong’ definitions: yowan use whichever definition of standard
deviation you please, provided you make it clear to othepfeewhat that is, and when using
other people’s results and formulae involviagr ¢ you check what they mean by it. Some
authors helpfully use the name “sample standard deviagapficitly for the quantity defined in
(14.38). Unfortunately others use it for the quantity defiie (14.35). Definitions of variance,
andsample varianceare similarly confused. In this book we will consistentlyeusas defined

in (14.35) ands for the quantity defined by (14.38). This is not universall aifferent authors
use either symbol for either quantity — you have been warisenne authors use Greek symbols
for quantities from distributions and the Roman alphabettose of data samples, but the usage
of o is so entrenched that this has no chance of universal adp@ti@ anyway this still leaves
the ambiguity between (14.35), (14.37), and (14.38). Ifaseary, the distinction can be made
completely clear and explicit by denoting the quantity dediby (14.35) as,y and that of (14.38)
asoy_1, though this involves extra subscripts which lead to mdgsiing formulae.

A low value of the standard deviation indicates a high prenis- the data points are closely clustered, with
low scatter. Hence, the smaller the standard error, the prexase are the set of measurements, and the more
reproducible are the results.
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Our preference for using (14.38) rather tham (14.35) can be illustrated by assuming we have only one
measurement of which we callx,, and withV = 1, our rule for calculating: (14.7), which we repeat here:

1
= Zx (14.39)

says thatt = x;. If we then use (14.35), we get= /(z; — z)? = 0, which is an unacceptably low estimate

of the standard deviation. If we instead use (14.38), we g.et\/g which is an indeterminate result, and forces

us to use at least two measured valu¥s= 2) to get acceptable values for both the mean and the standard
deviation. The denominatdy — 1 is called the “number of degrees of freedom*= dof. Of course, ifN is
large, there will be no practical difference between using s as a measure of the standard deviation of the
random values af.

The accuracy of a measurement refers to how closely a measurement coswétea known “standard” or
“accepted” or “theoretical” value. Sometimes, measurdmeith a high precision may cluster very closely
around an inaccurate mean value, usually due to the presésgstematic errors.

If you have a large data set (lar@é), the data can be “binned” into small sample “classes” aedleans of
the individual bins (“classes”) can be used to plot a histagof the data set. With only random errors present,
the plot of the histogram (“plot of the frequency distrilmunt?) will be a characteristic bell-shaped curve that is
symmetric about the mean of the data setf the “normal distribution” is instead asymmetric and theak

of the histogram plot does not coincide with the positioncpbut is shifted either right or left, one should
investigate the possibility of systematic measuremewtrgiin addition to random errors).

Our estimate of the statistical standard error on the meman {d4.15) for a situation in which we knew that
the uncertainty of each individual measurement was apprabdlyo; = ¢ for all i was

oz o (14.40)

xr = O'j - . .
VN

If we don’t know the uncertainty of each repeated measurémemwant to check if our estimate was realistic,
we can use our data and (14.38) to calculatihe square root of the unbiased variance, and then ustead
of the unknown or suspect value ®to calculate the standard statistical errorzof

5@50‘@:

(14.41)

B

14.4 They? Goodness-of-Fit Test

The? (chi-square) “goodness-of-fit” test involves using whatiuical Recipes calls the “incomplete gamma
function” Q(a, x) defined by

_ > —t ya—1
Qa,x) = Ta) /I e "t dt (14.42)
wherel'(z) is the gamma function
['(2) :/ t“te tdt (14.43)
0
When the argumentis an integer
I(n) = (n—1)! (14.44)

sol'(4) = 3!, T'(5) = 4!, etc.
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(%il) gamma(l);
(%01) 1
(%i2) 0
(%02) 1
(%i3) gamma(4);
(%03) 6
(%i4) gamma(s);
(%04) 24

This version of the “incomplete gamma functio@?{«, x) has the limiting values
Q(a,0) =1 and Q(a,00) =0 (14.45)

To computel)(a, =) using Maxima, we use

‘ Q(a,x) <==> gamma_incomplete(a,x) / gamma(a) |

With the above notation, we can estimate the “goodnesd-afffthe data to the model in terms of a number
we callQ. The quantitiyQ, defined using the current data and fit valugcdfa, b) defined in (3.1) in terms of
the functionQ(a, x), is (we justify this definition below):

v 2
Q=0Q (5, %) (14.46)

and is the (fractional) “chi-square probability” that a edpon of the same experiment (same number of data
points and same number of degrees of freedom (def) N — m and same model) would produce a value of
\? greater than the value foundn(is the number of model parameters fitted, which is 2 in ouiigtttdine
model.) From the limiting values (14.45) we see that thesthiare probability that a degree of freedom fit
results in a valug? > 0 is 100%.

If the “reduced chi-square}? = x?/v is reasonably close to 1, théhis reasonably close @5 ( 50% prob-
ability). Equivalently, we can say that if the valueof predicted by the data and fit is approximately equal to
the number of degrees of freedom (defv = N — 2 for a straight line fit) , therd) is reasonably close t@5 (
50% probability).

We can use ouiit.mac  functionchi2_prob(chi2, dof) to illustrate this for the case = 8 andy? =
7.35:

(%i1) load(fit);

(%o01) "c:/work9/fit.mac"
(%i2) chi2_prob(7.35,8)$
chi2/dof = 0.91875
chi2_prob = 49.9383 %

If we use the underlying? distribution, which governs the value of the megnand variancer?(y?), justified
if the experimentally observed valugsare Gaussian distributed with mean- b x; and with variance?, the
sum (3.1) is distributed as predicted by the ‘distribution”, decribed by the probability distributionrfction

(pdf)

1 v $2
2 dyv = ———— [Pz em T dy? 14.47
for
0<x*< o0 (14.48)
and one can show that B
X2 =v, 02(X2) =2 (14.49)

For example, witle standing for the integration variablé (these definitions are alsofinmac ),
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(%il) p(chi2,nu) := chi2"(nu/2 -1) * exp(-chi2/2)/2"(nu/2) | gamma(nu/2)$
(%i2) chi2_moment (m,nu) := integrate(z'm *p(z,nu),z,0,inf)$
(%i3) chi2_norm(nu) := chi2_moment (0,nu)$

(%i4) chi2_mean (nu) := chi2_moment (1,nu)$

(%i5) chi2_variance (nu) := (chi2_moment (2,nu) - chi2_mea n (nu)"2)$
(%i6) chi2_norm(8);

(%06) 1

(%i7) map (‘chi2_norm,[8,9]);

(%07) [1,1]

(%i8) map (‘'chi2_mean,[8,9]);

(%08) [8,9]

(%i9) map (‘chi2_variance,[8,9]);

(%09) [16,18]

(%i10) qgdraw (ex1(p(z,6),z,0.2,20,lc(blue),lk("6")),
ex1(p(z,10),z,0.2,20,lc(red),lk("10")),

more (xlabel = "chi2"))$

which produces the plot
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Figure 31:y? prob. d.f. for two values of

This means that “large” values @f are unlikely, and very small values of are also unlikely. Thus very large
or very small values of? probably indicate that the data cannot be modelled well witraight line fit (or
else the experimental uncertainties in the dataave not been accurately estimated).

Returning to they? goodness-of-fit valu&), quoting Numerical Recipes (1992, Sec. 15.2)

...If Q is larger than, say).1 (i.e., the chi-square probability is greater th&iVc), then the
goodness-of-fit is believable. If it is larger than, s&g01 (i.e., the chi-square probability is larger
than0.1%) , then the fitmaybe acceptable if the errors are nonnormal [non-gaussiargw® been
moderately underestimated.dfis less thar).001 then the model and/or estimation procedure can
rightly be called into question.

Now that we have introduced the definition of té probability distribution function (pdfp(chi2,dof)
we can use that function together with Maximaigsegrate  to calculate the probabilty of finding a new
value of x? (in a repetition of the experiment and fit) greater than solremey “observed” value of?(a, b).
Repeating the example above (by doing the implied integrattly), we assume the observgdl = 7.35 and
dof = v = 8.
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(%i1) load(fit);

(%o01) "c:/work9/fit.mac"

(%i2) integrate(p(z,8),z,7.35,inf);
(%02) 0.499383

(%i3) chi2_prob(7.35,8)$
chi2/dof = 0.91875
chi2_prob = 49.9383 %

By usingintegrate  with symbolic values for the lower limit of the integral araf the number of degrees of
freedomv, we arrive at the same definition as we used above to defineotiingss-of-fit numbep.

(%i4) integrate(p(z,nu),z,z0,inf);
Is nu positive, negative or zero?

(‘%04) gamma_incomplete(nu/2,z0/2)/gamma(nu/2)

15 General Linear Fit Matrix Solution Derivation

We assume the mathematical model in termg/ofinknown parameters, is

M
y(ria) = f(x) + > ap Xp(w), (15.1)
k=1

in which the X, (x) are arbitrary given functions of the independent variable

Given a data sdtr;, y;, 0;) having N data points, withr; being the estimated uncertainty of each measyyed
and given a mathematical modg?f, is defined as

2 i yi — y(zi;a) ’ (15.2)
o i=1 i . '
We now assume that the values which satisfy thé/ equations

o? B

s (15.3)

will yield a good fit to the data. The resulting solution shibhé checked visually with a simple plot of the data
and the model together. We use

%y(xi; a) = X,,(x;) (15.4)

to simplify this set of equations for the..

In our matrix notation, the transpose of a matdixs denoted4A™ and we will use boldfaced lower case letters,
such asl, to denote matrix column vectors.

Let
and
Ay = Xl@d) (15.6)
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Then theM equations (15.3) become

N

N M

1=1 i=1 m=1

In the first term, we define
de =) e A=Y (A7), e, (15.8)

or, using matrix notation
d=A"e. (15.9)

In the second term, we interchange the order of summatiomgend

M N M
m=1 \i=1 m=1

thus defining

B=ATA. (15.11)
Thus theM equations (15.3) reduce to the single matrix equation
Ba=d, (15.12)
from which we get
a=Bl'd=(ATA)"" (4"e). (15.13)

Errors inay, arise only from errors in the measured data valyesince we are assuming the corresponding
are known exactly or at least with much less error. To cateulze estimated errer(a;) in the parameted,
we add contributions in quadrature, as usual,

Z (aa’f) o2, (15.14)

0y,

and it is convenient to define
C =B, (15.15)

so that
a=C0Cd. (15.16)

Now B and henc&’ do not depend on the data valugsand can be treated as constants in finding the variation
of a;, due to the estimated errors of the Thus

day, od,,
o E —. 15.17
0, C (15.17)

m=1
and

ZAW e = ZAW— ZAW - —. (15.18)
8y] — ) .

8% op 0

We have used the Kronecker delta sym&g)lwhlch is equal to unlty il equalsj, and is otherwise equal to
zero. For example, singg andy; are independent numbers fog j,
y;

—— = 0;;. 15.19
ayj J ( )
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We then have

%—izMjc Xo(2) (15.20)
dy;  oF 4k '

J m

forj =1,...,Nandk = 1,..., M. Using (15.20) in (15.14), interchanging the order of surtioms, and
using

M
> CuBin = (CB)im = (B™'B),, = 0. (15.21)
=1

we get

o?(ax) =

M-

M M
o (O 3 Ot

1 =1 J m=1 J

J
N

Xi(z:) X (2
C’szka—l( ])02 (z;)
j=1 J

M-

N
Il
—

N
CriChm > AjiAjm

J=1

M-

N
Il
—

< 1= 1M:

CutCrmBim

M=M=
3
[l

Ckmékm

3
1§

I
e
T

Hence the uncertainty im, is given by
O'(ak) = \/ Ckk: (1522)

With some changes in notation, the above matrix method i®#sés of the code for the functions which are
called by the general linear fit methtid  in fit. mac

16 General Nonlinear Fit Search Method

The method used farlfit  is called the Levenberg-Marquardt method (or just the Mardumethod). This
method is summarized by Bevington (3rd ed), pdf 162, and laysNumerical Recipes (Fortran 77, 2nd ed.,
1992, p. 678).

A dimensionless parameter (fudge factdiy used to combine the advantages of two different searchodst
adjusting the value of in response to whether the value\gfincreases or decreases as one change the values
of the adjustable model parameters.

Quoting Numerical Recipes: “This ... method ...works vesllwn practice, and has become the standard of
nonlinear least-squares routines.”
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