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to encourage the use of the R and Maxima languages for computa tional
physics projects of modest size.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.
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1 Introduction

A summary of the the Hénon-Heiles potential and its generalizations can be found on Wikipedia
http://en.wikipedia.org/wiki/H%C3%A9non-Heiles_equa tion

from which we quote:

The Hénon-Heiles System [potential] is used to model stars. It is expressed as

V (x, y) =
1

2
(x2 + y2 + 2x2 y −

2

3
y3) (1.1)

While at Princeton in 1962, Michel Hénon and Carl Heiles worked on the non-linear motion of a star around
a galactic center where the motion is restricted to a plane. They published a paper that describes their work
in 1964.

The Hénon-Heiles System (HHS) is defined by the following four equations:

ẋ = px

ṗx = −Ax− 2x y

ẏ = py

ṗy = −B y + ǫ y2 − x2

whereA, B, andǫ are real numbers andA > 0, B > 0 . . . . It can be solved for some cases using Painlevé
Analysis. The Hamiltonian for the HHS is

H =
1

2
(p2x + p2y) +

1

2
(Ax2 +B y2) + x2 y −

1

3
ǫ y3 (1.2)

. . . [The] Hénon-Heiles system shows rich dynamical behavior.

And quoting a 2014 analysis by the mathematician A. Lesfari (http://arxiv.org/pdf/1401.3575.pdf )

First studied as a mathematical model to describe the chaotic motion of a test star in an axisymmetric galactic
mean gravitational field [7], this system is widely exploredin other branches of physics. It [is] well-known
from applications in stellar dynamics, statistical mechanics and quantum mechanics. It provides a model for
the oscillations of atoms in a three-atomic molecule [5]. Usually, the Hénon-Heiles system is not integrable
and represents a classical example of chaotic behaviour. Nevertheless at some special values of the parameters
it is integrable . . . .

in which the reference [7] is to
Hénon, M. and Heiles, C.: The applicability of the third integral of motion; some numerical experiments, Astron. J., 69,
73-79 (1964).

A brief introduction is at
http://mathworld.wolfram.com/Henon-HeilesEquation.h tml

which includes some examples of “surfaces of section.” The related webpage
http://mathworld.wolfram.com/SurfaceofSection.html

introduces the surface of section concept:

A surface (or ”space”) of section, also called a Poincaré section, is a way of presenting a trajectory in n-
dimensional phase space in an (n-1)-dimensional space. By picking one phase element constant and plotting
the values of the other elements each time the selected element has the desired value, an intersection surface
is obtained.
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A good theoretical introduction to general properties of orbits in the context of astrophysics is Chap.3: The Orbits of
Stars, in the textGalactic Dynamics, by James Binney and Scott Tremaine.

The website of Andreas Ernst, a computational astrophysicist (experimental stellar dynamics) at The University of Hei-
delberg
http://wwwstaff.ari.uni-heidelberg.de/mitarbeiter/e rnst/index.html\mvs

has a link to some movies and plots at
http://wwwstaff.ari.uni-heidelberg.de/mitarbeiter/e rnst/movies.html

One third of the way down that page are two surface of section plots for our potential, and he remarks

This is a collection of some of my plots. One the one hand, you can get an impression what it means to do
computational physics, on the other hand, you should see howmuch fun it is! For most of the plots, I used
different integrators, like 4th and 8th order Runge-Kutta,the Hermite scheme, or fancy ones, like a time-
transformed 8th order composition scheme where the highestaccuracy was needed. For the plotting itself, I
used gnuplot, IDL and Mathematica.

For the first plot, downloaded from his “Simply Integrate” webpage
http://www.simplyintegrate.de/sim/index.html

as apng file and converted to aneps file using Cygwin:

Figure 1:E = 0.02

he has the information:

Poincaré section in the Hénon-Heiles potential atE = 0.02 (no chaos, plotted are all orbits at the instant of
crossingx = 0 with vx > 0)
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And for the second plot, similarly downloaded and converted:

Figure 2:E = 0.125

he has the information:

This time atE = 0.125 (mixture of chaos and order, i.e., it is a “system with divided phase space”)

Two thirds of the way down the webpagehttp://www.massey.ac.nz/˜rmclachl/gi.html created by Robert
McLachlan at Massey University, New Zealand, is a row of 3 plots related to our potential. In reference to the third
plot in the row, he remarks

On the right, a (nonsymplectic) integrator has destroyed the torus. In the section picture,105 time steps for
10 different initial conditions are shown. Smooth curves (“KAM tori”) correspond to regular, quasiperiodic
motion; clouds correspond to chaotic motion.

A general feature of quasi-periodic motion is the appearance of elliptic and hyperbolic fixed points in a surface of section
plot.

We quote a comparison of elliptic and hyperbolic fixed pointsin the context of fluids and chaotic motion at the webpage
http://plus.maths.org/content/births-and-deaths-flu id-chaos

in an article “Births and Deaths in Fluid Chaos”, by MarianneFreiberger, which discusses the research of Jerry Gollub
(Haverford College) and Nick Ouellette (Yale University),and which has the figure

Figure 3: Fluid Flow Close to Elliptic and Hyperbolic Fixed Points



1 INTRODUCTION 6

and discussion

Rather than describing this complex motion by measuring thevelocity at a great number of points over time,
Ouellette and Gollub decided to look for geometric featuresthat characterise the whole flow. They were
interested in two sets of special points: those that lie at the centre of vortices, known as elliptic points, and
those towards which the flow converges along one direction, but from which it diverges along another di-
rection. These are known as hyperbolic points, or saddle points (see figure ). Elliptic points have the flow
whirling around them, while hyperbolic points arise, for example, at a point where four vortices meet, with
each neighbouring pair of vortices turning in different directions. These types of points tell you, at a given
point in time, where vortices are centred, and where the domain of one vortex ends and another starts – very
important information in a flow that is dominated by vortices. Could this information be enough to charac-
terise the whole flow?

The idea was a good one, but there was a problem: how do you locate the special points? One possibility is
to look for points of zero velocity, but this is hard to do accurately. But Ouellette had an ingenious idea. He
noted that near elliptic points, tracer particles circulate in very small circles, and near hyperbolic points, they
turn sharp corners. In both cases, the trajectories of particles exhibit very high curvature. Using ideas from
differential geometry, Ouellette came up with a reliable way of locating the special points by measuring the
curvature of the tracer particles’ trajectories.

The Nonlinear Dynamics webpage
http://dynamics.mi.fu-berlin.de/research/bif-eq-sur faces/index.php?q_menu=0

has the figures:

Figure 4: Particle Paths Near a Hyperbolic Fixed Point

and

Figure 5: Particle Paths Near an Elliptic Fixed Point

The language of fixed points is taken over from particle and fluid trajectory paths into the patterns that appear in a surface
of section plot (which is not a plot of particle paths). One speaks of “phase trajectories” in phase space (four dimensional
for the case of a single particle moving in a plane). And watching these phase trajectories in a surface of section plot is a
powerful method of finding regions of initial conditions which give rise to long term chaotic behavior.
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Quoting G.L. Baker and J.P. Gollub (p.41) in the second edition ofChaotic Dynamics:

The fundamental characteristic of a chaotic physical system is its sensitivity to the initial state. Sensitivity
means that if two identical mechanical systems are started at initial conditionsx andx+ ǫ respectively,
where [the magnitude of]ǫ is a very small quantity, their dynamical states will diverge from each other very
quickly in phase space, their separation increasing exponentially on the average.

We also quote from a 2014 paper by Jamal Sakhr (http://arxiv.org/pdf/1312.1978.pdf )

In numerical Poincaré surface-of-section (SOS) computations, the usual procedure is to compute numerical
trajectories (i.e., “pseudotrajectories”) for a large number of initial conditions and then observe the resulting
point pattern that ensues from the intersection of these numerically computed trajectories with a chosen SOS.
In 2D conservative systems, the visual signature of fully developed chaos is an apparently random scatter of
points (on the SOS) generated from one initial condition.

. . . Interestingly, this point pattern (obtained from classical deterministic laws and equations) is visually in-
distinguishable from a realization of a [two-dimensional homogeneous] Poisson point process in the SOS.

. . . For a fully chaotic 2D system, almost any pseudotrajectory of the Poincaré map will explore the full phase
space of the map ergodically, i.e., almost any pseudotrajectory of the Poincaré map will densely and uni-
formly cover the entire SOS.

. . . individual chaotic trajectories need not densely coverthe entire phase space. Successive point intersec-
tions of any such pseudotrajectory with a canonical SOS will(after sufficient time) uniformly cover some
subset W of the SOS. The ensuing point set should be indistinguishable (insofar as its distance characteristics
are concerned) from any suitably defined realization of a Poisson point process in W (of appropriate inten-
sity).

In generic mixed systems, there are no ergodic components (i.e., no positive-measure regions of phase space
completely devoid of islands). Nevertheless, there generally exist values of a system parameter at which
there are only a few observable islands and the fraction of the phase space volume occupied by these islands
is small (e.g.,< 0.1). In such cases, the chaotic sea covers nearly uniformly most of the available phase
space, . . .

The system parameter referred to above could be a coupling orperturbation parameter (e.g., kicked rotor
[31]), a shape parameter defining a family of billiards (e.g., the δ parameter defining the family of lemon
billiards [32]), or even simply the total system energy in time-independent potential systems (e.g., Hénon-
Heiles [33], Pullen-Edmonds [34] etc.).

The typical scenario in the last case (the most fundamental case for smooth Hamiltonian systems) is a phase
space dominated by regular trajectories at low energies andchaotic trajectories at high energies with a mix of
regular and chaotic trajectories at intermediate values ofthe energy. In the well-known Hénon-Heiles system,
for example, most trajectories are quasi-periodic atE = 1/12 and chaotic atE = 1/6 with a mix of regular
and chaotic trajectories atE = 1/8 (see Ref. [33]).
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2 Exploring the Hénon-Heiles Potential (Energy)

The Hénon-Heiles potential (energy) is, in the form originally explored for galactic motion of a star,

V (x, y) =
1

2
(x2 + y2) + y x2 −

1

3
y3 (2.1)

which is obviously equal to zero when bothx andy are zero. It is also obvious that the potential is an even function of x,
so the potential has the same value (for giveny) at positive and negative values ofx.

We can search for local minima and maxima, using the necessary (but not sufficient) conditions∂ V/∂ x = 0 and
∂ V/∂ y = 0.

(%i1) PE(x,y) := (xˆ2 + yˆ2)/2 + y * xˆ2 - yˆ3/3$
(%i2) eq1:diff(PE(x,y),x);
(%o2) 2 * x* y+x
(%i3) eq2:diff(PE(x,y),y);
(%o3) -yˆ2+y+xˆ2
(%i4) soln:solve([eq1,eq2],[x,y]);
(%o4) [[x = 0,y = 1],[x = 0,y = 0],[x = -sqrt(3)/2,y = -1/2],

[x = sqrt(3)/2,y = -1/2]]
(%i5) soln : fullmapl(’rhs,soln);
(%o5) [[0,1],[0,0],[-sqrt(3)/2,-1/2],[sqrt(3)/2,-1/2 ]]
(%i6) for s in soln do print(apply(’PE,s))$
1/6
0
1/6
1/6

We recover the zero potential value at the origin, and find three points at the corners of an isosceles triangle where the
potential has the value1/6 = 0.1667.

2.1 Equipotentials Using Maxima

We can use the contributed codeimplicit_plot to find equipotentials (contour lines) corresponding to specific numer-
ical values, with the syntax

implicit_plot(expr,[x,x1,x2],[y,y1,y2],...)
implicit_plot([expr1,epxpr2,...],[x,x1,x2],[y,y1,y2 ],...)

to plot points whereexpr = 0 . Thus we get points where the potential has value1/6 with (we first have to load the
code)

(%i7) load(implicit_plot);
(%o7) "C:/PROGRA˜1/MAXIMA˜3.2/share/maxima/5.31.2/sh are/

contrib/implicit_plot.lisp"
(%i8) implicit_plot (PE(x,y)-1/6,[x, -2, 2], [y, -2, 2],

[style,[lines,2]],[gnuplot_preamble, "set grid"])$
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which produces the plot
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Figure 6: Locus ofV (x, y) = 1/6

Here we plot six equipotential curves corresponding toV = −4 (cyan),V = −2 (green),V = 0.05 (black),V = 1/6
(blue),V = 2 (red), andV = 4 (magenta).

(%i9) implicit_plot ([PE(x,y)+4, PE(x,y)+2,PE(x,y)-0.0 5,
PE(x,y)-1/6,PE(x,y)-2,PE(x,y)-4],

[x, -4, 4], [y, -4, 4],[style,[lines,2]],
[color,cyan,green,black,blue,red,magenta],
[legend,"-4","-2","0.05","1/6","+2","+4"],
[gnuplot_preamble, "set grid"])$

which produces the plot
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Figure 7: Equipotentials ofV (x, y) Using Maxima

From this plot, we see that the three points at the corners of the isosceles triangle where the potential has the value
1/6 = 0.1667 are saddle points. Surrounding the central region whereV (x, y) < 1/6 there are three valleys, which
alternate with three ridges. With the total mechanical energy E = KE + V (x, y), we needE < 1/6 to prevent the
particle from escaping the central region near the origin.
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2.2 Equipotentials Using R

We use thecontour function inR. In the following,x andy areRvectors andz is aR matrix.

> x = seq(-4, 4, length=1000)
> y = seq(-4, 4, length=1000)
> z = outer(x,y,function(x,y) (xˆ2+yˆ2)/2 + y * xˆ2 - yˆ3/3)
> contour(x,y,z,
+ levels= c(-4,-2,0.05,1/6,2,4), lwd=2,
+ col=c("cyan","green","black","blue","red","magenta "),
+ drawlabels = FALSE, xlab = "x", ylab = "y")
> grid(lty="solid", col = "darkgray")
> legend("topright", lwd = 2,
+ col=c("cyan","green","black","blue","red","magenta "),
+ legend = c("-4","-2","0.05","1/6","2","4"), cex=1.2)

which produces the plot
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Figure 8: Equipotentials ofV (x, y) Using R

3 The Hamiltonian Equations of Motion

We describe the dynamical problem in terms of dimensionlessenergy, position vector, and momentum vector such that
the mass of the particle disappears from the Hamiltonian, which is assumed to be

H =
1

2

(

p2x + p2y
)

+ V (x, y) (3.1)

The particle moves in the(x, y) plane. The momentum components conjugate to the position components(x, y) are
(px, py). The equations of motion are then Hamilton’s equations

dx

d t
=

∂H

∂px
= px (3.2)

d y

d t
=

∂H

∂py
= py (3.3)
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d px
d t

= −

∂H

∂x
= −

∂V

∂x
= −2x y − x (3.4)

d py
d t

= −

∂H

∂y
= −

∂V

∂y
= y2 − y − x2 (3.5)

These equations (for anyV (x, y)) conserve the energyE, so the constraint

H(x, y, px, py) = E (3.6)

restricts the trajectory to lie in a three dimensional manifold embedded in the four-dimensional phase space.

These four coupled first-order ordinary differential equations are integrated using our homemade Runge-Kutta coderk4

andrk4_step (see the code fileexample2.mac ). The Runge-Kutta code returns a list of trajectory points which include
the times and have the form[t,x,y,px,py] . We extract thex andy values (for a trajectory plot) using our homemade
take function, for examplexL : take(rkpts,2) and yL : take(rkpts,3) . A trajectory plot is then produced
usingplot2d([discrete,xL,yL],[xlabel,"x"],[ylabel,"y"])$ , (plus other optional elements of the plot).

A function getsection takes as input that list of Runge-Kutta points, and notices whenx changes sign. Wheneverx
changes sign,getsection calls goback , which integrates the dynamical equations backwards tox = 0, and captures
the values of(y, py) at that moment.getsection then returns a list of(y, py) pairs which can be immediately used to
make a “surface of section” plot.

Because the right-hand sides of the four first-order differential equations do not explicitly contain the independent variable
t, the codegetsection usesx as the independent variable, and the equations of motion used there and ingoback are

d y

dx
=

d t

d x

d y

d t
=

1

dx/dt

d y

d t
=

py
px

(3.7)

d px
dx

=
d t

d x

d px
d t

= −

1

px

∂V

∂x
(3.8)

d py
dx

=
d t

d x

d py
d t

= −

1

px

∂V

∂y
(3.9)

With x as the independent variable, we use these equations to integrate the dependent variables(y(x), px(x), py(x)) from
the small value ofx found (after the change of sign) back tox = 0 using the special coderk41 .
An alternative methodxsection is also coded in which, rather than searching through a trajectory list for a change in
sign ofx, the result of each Runge-Kutta step is examined for a changein sign, and if found,goback is immediately
called to integrate back tox = 0, and the new(y, py) pair found atx = 0 is added to a list.

xsection returns a list of two lists, the surface of section list first,and then the trajectory list. The functionxsection_plot

only accumulates the surface of section list, makes an immediate plot, and also returns the list for possible later use
(such as combining surface of section results on the same plot eventually). Both of these functions call our homemade
rk4_step .

4 Hénon-Heiles Trajectory and Surface of Section

The code fileexample2.mac contains the Maxima functiontrajectory(E,tf,dt) , in which E is the dimensionless
energy,tf is the dimensionless final time for the integration (starting att = 0 ), anddt is the Runge-Kutta step size. The
initial value ofx0 is hard-wired to bex0 = 0 .

trajectory expects0 < E <= 1/6 = 1.66667 (to produce a confined trajectory), and interactively asks for the
value ofy0 andpy0 . The value ofpx0 is then calculated from conservation of energy:

E =
1

2

(

p2x0 + p2y0
)

+ V (x0, y0). (4.1)
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The required initial value ofy0 must satisfy
0 < V (0, y0) < E, (4.2)

(so that a zero-kinetic-energy particle at the initial position does not have the potential energy to allow escape from
confinement in the potential well), which is equivalent to solving for the value ofy such that

E =
1

2
y2

(

1−
2

3
y

)

(4.3)

We can use the Maxima functionrealroots to find the real roots of a polynomial. IfE = 0.1 , for example,

(%i1) fpprintprec:7$
(%i2) ratprint:false$
(%i3) float(realroots(0.1 -yˆ2/2 + yˆ3/3));
(%o3) [y = -0.39761,y = 0.56707,y = 1.330541]

The third root returned is a value ofy in they > 1 valley, which is irrelevant to motion in the central region around the
origin (which is where our initial conditions set the particle).

We can then construct a functionyminmax(E) which returns (as a list)ymin andymax.

(%i4) yminmax(E) :=
block([soln,numer],numer:true,

soln : float(realroots(E - yˆ2/2 + yˆ3/3 )),
soln : map(’rhs,soln),
rest(soln, -1))$

(%i5) yminmax(0.1);
(%o5) [-0.39761,0.56707]

These values will be used to check the initial value ofy used to begin the integration att = 0 . The user of the function
trajectory will be asked to input an initial value ofy inside a loop.

Here is a functiongety0(E) which incorporates awhile cond do loop design.

gety0(E) :=
block([ylim,ymin,ymax,ok,y0,numer],numer:true,

ylim : yminmax(E),
ymin : ylim[1],
ymax : ylim[2],
ok : false,
while not ok do (

print(" need ",ymin," < y0 < ",ymax),
y0 : read(" input y0 "),
if (y0 > ymin) and (y0 < ymax) then ok : true,
if y0 < -10 then ok : true),

y0)$

with the behavior

(%i6) gety0(0.1);
need -0.39761 < y0 < 0.56707
input y0

-20;
(%o6) -20
(%i7) gety0(0.1);

need -0.39761 < y0 < 0.56707
input y0

-1;
need -0.39761 < y0 < 0.56707
input y0

1;
need -0.39761 < y0 < 0.56707
input y0

0.095;
(%o7) 0.095
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GivenE andy0, we then requirepy0 such that even withpx0 = 0 there is not sufficient kinetic energy to escape confine-
ment, or

1

2
p2y0 < E − V (0, y0) (4.4)

so that (assumingpy0 > 0),
(py0)max =

√

2 (E − V (0, y0)). (4.5)

We then require that0 < py0 < (py0)max in order to start the integration.

GivenE, y0, andpy0, we then use conservation of energy Eq.(4.1) together with the assumptionpx0 > 0 to determinepx0.

Here is an example of the use oftrajectory , takingE = 0.1, y0 = 0.095, py0 = 0.096, andtf = 20.

(%i1) load(example2);
(%o1) "c:/k2/example2.mac"
(%i2) rkpts : trajectory(0.1, 20, 0.1)$

need -0.39761 < y0 < 0.56707
input y0

0.095;
need 0.0 < py0 < 0.43766
input py0

0.096;
E = 0.1 x0 = 0 y0 = 0.095
px0 = 0.427 py0 = 0.096
odeL = [px,py,-2 * x* y-1.0 * x,1.0 * yˆ2-1.0 * y-xˆ2]
varL = [x,y,px,py] initL = [0,0.095,0.427,0.096]

working ...
(%i3) fll(rkpts);
(%o3) [[0.0,0.0,0.095,0.427,0.096],

[20.0,0.14835,0.24069,0.22181,-0.26375],201]
(%i4) xL : take(rkpts,2)$
(%i5) fll(xL);
(%o5) [0.0,0.14835,201]
(%i6) yL : take(rkpts,3)$
(%i7) fll(yL);
(%o7) [0.095,0.24069,201]
(%i8) plot2d([discrete,xL,yL],[xlabel,"x"],[ylabel," y"],

[style,[lines,2]],[x,-0.5,0.5],[y,-0.5,0.5])$

which produces the trajectory plot
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Figure 9:E = 0.1, y0 = 0.095, py0 = 0.096, tf = 20
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The code fileexample2.mac contains the functiongetsection(pts, xtol) , in whichpts is the output list of inte-
gration points produced bytrajectory andxtol is the precision requested to go back to an integration pointat which
x = 0.

The functiongetsection searches for integration points wherex has changed sign, and callsgoback (which calls
rk41 , designed to land on the last “x”) to integrate backwards tox = 0 to find the corresponding values ofy andpy . A
list of these[y,py] values is returned bygetsection .

(%i9) ypy : getsection(rkpts,0.01)$
working...

(%i10) fll(ypy);
(%o10) [[0.095,0.096],[0.35446,-0.14214],7]
(%i11) plot2d([discrete, ypy],[xlabel,"y"],[ylabel,"p y"],

[style,[points,1,5,1]],[x,-0.6,0.6],[y,-0.6,0.6])$

which produces the “surface of section” plot
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Figure 10:E = 0.1, y0 = 0.095, py0 = 0.096, tf = 20

An alternative method is coded in the functionxsection(E,tf,dt,xtol) in example2.mac . This alternative method
calls rk4_step to perform a single Runge-Kutta step, and looks immediatelyfor a sign change inx, and if found, calls
goback to integrate backwards to recover the coordinates of the surface of section point corresponding tox = 0.

xsection returns a list with two elements, the first being the list of the surface of section coordinates (as returned by
getsection ), and the second being the list of Runge-Kutta points (as returned bytrajectory ).

This alternative method is used as follows:

(%i12) out : xsection(0.1,20,0.1,0.01)$
need -0.39761 < y0 < 0.56707
input y0

0.095;
need 0.0 < py0 < 0.43766
input py0

0.096;
E = 0.1 x0 = 0 y0 = 0.095
px0 = 0.427 py0 = 0.096

working...
(%i13) ypy : out[1]$
(%i14) rkpts : out[2]$
(%i15) xL : take(rkpts,2)$
(%i16) yL : take(rkpts,3)$
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(%i17) plot2d([discrete,xL,yL],[xlabel,"x"],[ylabel, "y"],
[style,[lines,2]],[x,-0.5,0.5],[y,-0.5,0.5])$

(%i18) plot2d([discrete, ypy],[xlabel,"y"],[ylabel,"p y"],
[style,[points,1,5,1]],[x,-0.6,0.6],[y,-0.6,0.6])$

and produces plots identical to those above.

The above results do not identify elliptic fixed points in thesurface of section plot, so we usetrajectory andgetsection

as above for the longer integration intervalstf = 500 andtf = 1000 which produce the following plots.
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Figure 11:E = 0.1, y0 = 0.095, py0 = 0.096, tf = 500
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Figure 12:E = 0.1, y0 = 0.095, py0 = 0.096, tf = 500
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Figure 13:E = 0.1, y0 = 0.095, py0 = 0.096, tf = 1000
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Figure 14:E = 0.1, y0 = 0.095, py0 = 0.096, tf = 1000

A pair of elliptic fixed points which both havepy = 0 and whosey values have opposite signs are now apparent.

5 Sensitivity of the Section Plot to∆ py0

When exploring the sensitivity of the surface of section plot to changes in one or more initial conditions, it is convenient to
code a functionxsection_plot(E,y0,py0,tf) in which the starting parameters are arguments to the function (which
are checked by the code) so we can avoid the interactive entrydelays.

In addition, we want an automatic plot of the resulting surface of section, and we also want this function to return the
list of the surface of section points for later use. This function can avoid saving the trajectory points and just return the
surface of section points.

In the following we usexsection_plot to get enough surface of section examples to illustrate how changes in the initial
value ofpy (holdingE andy0 constant) can give rise to new elliptic fixed points and to hyperbolic fixed points, as well as
transitional cases and additional structure.
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We also show two examples of small changes inpy0 leading to significant structural changes in the surface of section plot.

The first plot shows two cases of a pair of elliptic fixed pointshavingpy = 0 andy values with opposite signs. Notice
the additional structure with another set of sub-elliptic fixed points appearing. We bind the surface of section coordinate
lists to symbols, such asypy1 , to be able to combine with other cases on a future plot. When initially exploring, we don’t
know in advance which cases will be combined, since we don’t know in advance what the plot will look like.

(%i1) load(example2);
(%o1) "c:/k2/example2.mac"
(%i2) ypy1 : xsection_plot(0.1,0.095,0.096,1000)$
(%i3) ypy2 : xsection_plot(0.1,0.095,0.03,800)$
(%i4) plot2d([[discrete,ypy1],[discrete,ypy2]],

[style,[points,1]],[color,blue,red],
[xlabel,"y"],[ylabel,"py"],[legend,"0.096","0.03"]) $

which produces the plot
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Figure 15:E = 0.1, y0 = 0.095, Two Values ofpy0

Two cases of a pair of elliptic fixed points having centers on they = 0 axis and corresponding to positive and negative
values ofpy are shown next. Notice the additional structure with a set ofsub-elliptic fixed points appearing.

(%i5) ypy3 : xsection_plot(0.1,0.095,0.2,800)$
(%i6) ypy6 : xsection_plot(0.1,0.095,0.301,800)$
(%i7) plot2d([[discrete,ypy3],[discrete,ypy6]],

[style,[points,1]],[color,blue,red],
[xlabel,"y"],[ylabel,"py"],[legend,"0.2","0.301"])$

which produces
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Figure 16:E = 0.1, y0 = 0.095, Two Values ofpy0
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We next show a transitional case and a case with three (loose)hyperbolic fixed points .

(%i8) ypy5 : xsection_plot(0.1,0.095,0.33,800)$
(%i9) ypy8 : xsection_plot(0.1,0.095,0.32018,800)$
(%i10) plot2d([[discrete,ypy8],[discrete,ypy5]],

[style,[points,1]],[color,blue,red],
[xlabel,"y"],[ylabel,"py"],[legend,"0.32018","0.33" ])$

which produces
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Figure 17:E = 0.1, y0 = 0.095, Two Values ofpy0

Here is a first example of small changes inpy0 producing significant structure changes in the surface of section plot.

(%i11) ypy9 : xsection_plot(0.1,0.095,0.047,500)$
(%i12) ypy10 : xsection_plot(0.1,0.095,0.049,500)$
(%i13) plot2d([[discrete,ypy10],[discrete,ypy9]],

[style,[points,1]],[color,blue,red],
[xlabel,"y"],[ylabel,"py"],[legend,"0.049","0.047"] )$

which produces
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Figure 18:E = 0.1, y0 = 0.095, Two Close Values ofpy0
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Here is a second example of close values ofpy0 leading to large structural changes in the surface of section plot.

(%i14) ypy14 : xsection_plot(0.1,0.095,0.32,500)$
(%i15) ypy15 : xsection_plot(0.1,0.095,0.31,500)$
(%i16) plot2d([[discrete,ypy15],[discrete,ypy14]],

[style,[points,1]],[color,blue,red],
[xlabel,"y"],[ylabel,"py"],[legend,"0.31","0.32"])$

which produces the plot
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Figure 19:E = 0.1, y0 = 0.095, Two Close Values ofpy0

6 Trajectory and Surface of Section Plots Using R

As in our Maxima code, we have a interactiveR functiongety0(E) in a code fileexample2.R :

gety0 = function(E) {
ylim = yminmax(E)
ymin = ylim[1]
ymax = ylim[2]

ok = FALSE
while (! ok) {

cat(" need ",ymin," < y0 < ",ymax,"\n")
y0 = as.numeric(readline(" input y0: "))
if ((y0 > ymin) && (y0 < ymax)) ok = TRUE
if (y0 < -10) ok = TRUE}

y0}

As in our Maxima code, we have aR functionyminmax(E) in the same code fileexample2.R :

## yminmax(E) assumes KE = 0 and x = 0
## to find limits on initial y from energy conservation

yminmax = function(E) {
mroots = sort(Re(polyroot(c(E,0,-1/2,1/3))))
mroots[1:2]}

Likewise, a functionget_py0(pymax) .
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Since we use the fixed step homemade 4’th order Runge-Kutta code myrk4 (also included inexample2.R ), we have a
simplified form of a derivatives function which returns aR vector:

## global derivatives function in proper form for myrk4
## y[1] = x, y[2] = y, y[3] = px, y[4] = py

henon_heiles = function(t,y) {
with( as.list(y), {

dx = y[3]
dy = y[4]
dpx = -2 * y[1] * y[2] - y[1]
dpy = y[2]ˆ2 - y[2] - y[1]ˆ2
c(dx,dy,dpx,dpy)})}

We have definedmyrk4 to expect an external global list of times, such astL = seq(0,500,0.1) . This globalRvector
tL of times must be defined before callingtrajectory(E) which returns the solutionslist(xL,yL,pxL,pyL) . The
last line oftrajectory is myrk4(initL,tL,henon_heiles)} .

TheR functiongetsection(rkvecs,xtol) can be immediately used with the list output oftrajectory to produce
the list of the surface of section vectorslist(ysL,pysL) .

> source("example2.R")
> tL = seq(0,800,0.1)
> ## rk1 and ypy1 for py0 = 0.096
> ## (with E = 0.1, y0 = 0.095)
> rk1 = trajectory(0.1)

need -0.3976099 < y0 < 0.5670689
input y0: 0.095
need 0 < py0 < 0.4376604
input py0 0.096
E = 0.1 x0 = 0 y0 = 0.095
px0 = 0.4270019 py0 = 0.096

> ypy1 = getsection(rk1,0.01)
ns = 251

> yL1 = ypy1[[1]]
> pyL1 = ypy1[[2]]
> ## rk2 and ypy2 for py0 = 0.03
> rk2 = trajectory(0.1)

need -0.3976099 < y0 < 0.5670689
input y0: 0.095
need 0 < py0 < 0.4376604
input py0 0.03
E = 0.1 x0 = 0 y0 = 0.095
px0 = 0.4366309 py0 = 0.03

> ypy2 = getsection(rk2,0.01)
ns = 256

> yL2 = ypy2[[1]]
> pyL2 = ypy2[[2]]
> ## show SOS points for ypy1 case
> plot(yL1,pyL1,pch=19,xlab="y",ylab="py",cex=0.4)
> ## add SOS points for ypy2 case
> points(yL2,pyL2,pch=19,col = "red",cex=0.4)
> mygrid() ## homemade grid function in example2.R
> legend("topright",
+ legend = c("black - py0 = 0.095","red - py0 = 0.03"),cex=1.5 )
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which produces the plot
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Figure 20:E = 0.1, y0 = 0.095, py0 = 0.095, py0 = 0.03

We still have access to the lists of solution vectorsrk1 andrk2 , which we now use to get thexL andyL vectors in order
to plot an actual spatial trajectory of the particle.

> xL1 = rk1[[1]]
> fll(xL1)

0 0.07211231 8001
> yL1 = rk1[[2]]
> fll(yL1)

0.095 0.1080686 8001
> plot(xL1,yL1,type="l",xlab="x",ylab="y")

which produces
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Figure 21:E = 0.1, y0 = 0.095, py0 = 0.095
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Likewise with case 2 and the listrk2 :

> xL2 = rk2[[1]]
> fll(xL2)

0 -0.08530082 8001
> yL2 = rk2[[2]]
> fll(yL2)

0.095 0.4267989 8001
> plot(xL2,yL2,type="l",xlab="x",ylab="y")

which produces
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Figure 22:E = 0.1, y0 = 0.095, py0 = 0.03

7 Combining Surface of Section Plots with R

The R function xsection_plot(E,y0,py0) (in the file example2.R ) was used, with an external definition oftL ,
repeatedly with different values ofpy0 , to identify interesting values ofpy0 .

Since that function not only makes an immediate plot but alsoreturnslist(yL,pyL) , one should use the syntax (for
example)

> tL = seq(0,1500,0.1)
> ypy1 = xsection_plot(0.1,0.095,0.096)

ns = 470
> ypy2 = xsection_plot(0.1,0.095,0.03)

ns = 480

The filehhplota.R was created to automatically build up a plot of surface of section points for fixedE, and fixedy0,
and variablepy0.

## hhplota.R
## combine surface of section plots
## 21 values of py
E = 0.1
y = 0.095
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py = 0.096
tL = seq(0,1000,0.1)
ypy = xsection(E, y, py)
plot(ypy[[1]],ypy[[2]], pch=19, cex=0.05, xlab="y",

ylab="py", xlim=c(-0.5,0.6), ylim=c(-0.6,0.6))
pyval = c(0.005,0.02, 0.03, 0.032, 0.04,0.05, 0.06, 0.07,

0.08, 0.09,0.1, 0.2, 0.25, 0.301, 0.302, 0.303,
0.32018, 0.3202, 0.33, 0.4)

for (py in pyval) {
ypy = xsection(E, y, py)
points(ypy[[1]],ypy[[2]],pch=19,cex=0.05)}

A R function xsection(E,y0,py0) (in the file example2.R ) was used in this script.xsection(E,y0,py0) is a
simplified version which does not itself make a plot, but justreturns the surface of section pointslist(yL,pyL) . (It also
does not do checks on initial values.) One can then watch the plot gradually build up with new initial values added:

> source("example2.R")
> source("hhplota.R")

ns = 314
ns = 322
etc., etc.

to produce the plot corresponding to those 21 values ofpy0 :
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Figure 23:E = 0.1, y0 = 0.095, 21 values ofpy0

8 A Single Initial Condition Integrated for a Long Time

We integrate for a long time (32,000 “sec”) at the maximum confined energyE = 1/6 and for the single casey0 = 0 and
py0 = 0.

> tL = seq(0,32000,0.1)
> ypy = xsection_plot(1/6,0,0)
> plot(ypy[[1]],ypy[[2]],pch=19,cex=0.05,xlab="y",
+ ylab="py",xlim=c(-0.6,1),ylim=c(-0.6,0.6))
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which produces the plot
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Figure 24:E = 1/6, y0 = 0, py0 = 0

which illustrates a case of chaotic behavior.

9 Watching Section Points Accumulate in “Real Time”

The use ofxsection_plot above produced the surface of section plot with all the points appearing together suddenly,
and hence with no sense of the history of the points appearingin different locations.

An alternative is to plot each surface of section point as soon as its location is determined. The function
plot_sos(E,y0,py0,cex_val) callssection_plot(rkvecs,xtol,cex_val) which plots each section point as
it is found. (In addition the function returnslist(ysL,pysL) .) The syntax to use is, for example,

> tL = seq(0,5000,0.1)
> ypy = plot_sos(1/6,0,0,0.1)

ns = 1542

which allows one to watch the time development of the surfaceof section points. The x and y axis limits are hardwired
into the code ofsection_plot , as is a sleep command to slow down the development of the plot.

ysL[1] = rkvecs[[2]][1]
pysL[1] = rkvecs[[4]][1]
## plot first SOS point
plot(ysL[1], pysL[1], pch=19, cex = cex_val, xlab="y",

ylab="py", xlim=c(-0.6,1), ylim=c(-0.6,0.6))
## and later in the code:
ysL[k] = rgoback[1]
pysL[k] = rgoback[2]
points(ysL[k], pysL[k],pch=19, cex = cex_val)
Sys.sleep(0.01)

and would need to be edited to fit the problem being investigated or incorporated as additional arguments.
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10 Investigating Accuracy of Integration and Surface of Section Points

The following general suggestions do not take into account the special behavior one confronts when the system exhibits
chaotic behavior and is very sensitive to not only the initial conditions but also the order of the arithmetic operations
needed to calculate the trajectory.

10.1 Decrease the Step Size

Halving the step size in the integration initially done bymyrk4 , and also halving the value used forxtol when calling
goback and then comparing the results with the original step size0.1 andxtol=0.01 will give an indication of the
reliability of results produced.

10.2 Integrate Backwards

When integrating over many time steps, one should check the accuracy of the integrator by taking the final[t,x,y,px,py]

value, use it as the initial time and phase space point and integrate backwards (with the same step size) tot = 0 , and
compare the resulting values of[x,y,px,py] with the originalt=0 values used. Ideally, the values should closely agree.

10.3 Watch the Values of the Energy During the Integration

We know theoretically that the total energy (kinetic plus potential) remains a constant of the motion. Lack of accuracy
in the integration will show up in changes in the computed energy (pxˆ2 + pyˆ2)/2 + V(x,y) . This sum can be
retrieved from the output oftrajectory and plots of the energy versus time can reveal a lack of accuracy.

10.4 Use More Accurate Integrators

An obvious extension of what has been done here is to make use of the deSolvepackage integrators inR. Note that the
derivatives function needed withode has a different structure than that needed with our homemademyrk4 .

11 Suggestions for Further Exploration

In addition to the accuracy checks mentioned in the previoussections, we quote Steven Koonin’s suggestions:

Use the code to construct surfaces of section for the Hénon-Heiles potential at energies ranging from 0.025
to 0.15 in steps of 0.025. For each energy, consider various initial conditions and integrate each trajectory
long enough in time (some will require going tot ≈ 1000) to map out the surface-of-section adequately. For
each energy, see if you can find the elliptic fixed points, the tori (and tori of tori) around them, and the chaotic
regions of phase space and observe how the relative proportions of each change with increasing energy. . . . .


