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1 Introduction

A summary of the the Hénon-Heiles potential and its geimxtibns can be found on Wikipedia
http://en.wikipedia.org/wiki/lH%C3%A9non-Heiles_equa tion
from which we quote:

The Hénon-Heiles System [potential] is used to model stars expressed as
1 2 2 2 2 3
Viwy) = 5" +y" + 227y = 39°) (1.1)
While at Princeton in 1962, Michel Hénon and Carl Heiles keak on the non-linear motion of a star around

a galactic center where the motion is restricted to a plahey published a paper that describes their work
in 1964.

The Hénon-Heiles System (HHS) is defined by the followingy fequations:

T = pg
pr=—Ax—2xy
y:py

py:—By+ey2—m2

whereA, B, ande are real numbers and > 0, B > 0 .... It can be solved for some cases using Painlevé
Analysis. The Hamiltonian for the HHS is

1 1 1
H:i(pi—kpz)—ki(sz—i-Byz)—kxzy—gey?’ (1.2)
...[The] Henon-Heiles system shows rich dynamical bedravi
And quoting a 2014 analysis by the mathematician A. Leskatp{/arxiv.org/pdf/1401.3575.pdf )

First studied as a mathematical model to describe the chaation of a test star in an axisymmetric galactic
mean gravitational field [7], this system is widely exploiadther branches of physics. It [is] well-known
from applications in stellar dynamics, statistical meébsuand quantum mechanics. It provides a model for
the oscillations of atoms in a three-atomic molecule [5]udlly, the HEnon-Heiles system is not integrable
and represents a classical example of chaotic behaviouwertieless at some special values of the parameters
itis integrable ....

in which the reference [7] is to
Hénon, M. and Heiles, C.: The applicability of the thirdagtal of motion; some numerical experiments, Astron. J., 69
73-79 (1964).

A brief introduction is at
http://mathworld.wolfram.com/Henon-HeilesEquation.h tml
which includes some examples of “surfaces of section.” Bteted webpage
http://mathworld.wolfram.com/SurfaceofSection.html

introduces the surface of section concept:

A surface (or "space”) of section, also called a Poincar&ise, is a way of presenting a trajectory in n-
dimensional phase space in an (n-1)-dimensional spaceicBiyng one phase element constant and plotting
the values of the other elements each time the selected ei¢nae the desired value, an intersection surface
is obtained.
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A good theoretical introduction to general properties dfitsrin the context of astrophysics is Chap.3: The Orbits of
Stars, in the texGalactic Dynamics by James Binney and Scott Tremaine.

The website of Andreas Ernst, a computational astroplstsiekperimental stellar dynamics) at The University of-Hei

delberg

http://wwwstaff.ari.uni-heidelberg.de/mitarbeiter/e rnst/index.html\mvs
has a link to some movies and plots at
http://wwwstaff.ari.uni-heidelberg.de/mitarbeiter/e rnst/movies.html

One third of the way down that page are two surface of seciiatis for our potential, and he remarks

This is a collection of some of my plots. One the one hand, yaouget an impression what it means to do
computational physics, on the other hand, you should seenmagh fun it is! For most of the plots, | used
different integrators, like 4th and 8th order Runge-Kuttee Hermite scheme, or fancy ones, like a time-
transformed 8th order composition scheme where the higloestracy was needed. For the plotting itself, |
used gnuplot, IDL and Mathematica.

For the first plot, downloaded from his “Simply Integrate” page
http://www.simplyintegrate.de/sim/index.html
as apng file and converted to agps file using Cygwin:

0.2

a1

0.05 -

-0.05

-0.2 -0.15 -0.1 -0.05 a Q.08 a1 a.15 0.2 0.25

Figure 1: £ = 0.02

he has the information:

Poincaré section in the Hénon-Heiles potentiakat 0.02 (no chaos, plotted are all orbits at the instant of
crossingr = 0 with v, > 0)
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And for the second plot, similarly downloaded and converted

05

a4

03

a2 -

a1+

0.8

Figure 2: £ = 0.125

he has the information:
This time atE’ = 0.125 (mixture of chaos and order, i.e., it is a “system with didg#ase space”)

Two thirds of the way down the webpadgtp://www.massey.ac.nz/"rmclachl/gi.html created by Robert
McLachlan at Massey University, New Zealand, is a row of 3pielated to our potential. In reference to the third
plot in the row, he remarks

On the right, a (nonsymplectic) integrator has destroyecddahus. In the section picturé)® time steps for
10 different initial conditions are shown. Smooth curvasAM tori”) correspond to regular, quasiperiodic
motion; clouds correspond to chaotic motion.

A general feature of quasi-periodic motion is the appearafelliptic and hyperbolic fixed points in a surface of seati
plot.

We quote a comparison of elliptic and hyperbolic fixed pointhe context of fluids and chaotic motion at the webpage
http://plus.maths.org/content/births-and-deaths-flu id-chaos

in an article “Births and Deaths in Fluid Chaos”, by Mariartreiberger, which discusses the research of Jerry Gollub
(Haverford College) and Nick Ouellette (Yale Universitghd which has the figure

Hyperbolic Elliptic

A
L7 @

Figure 3: Fluid Flow Close to Elliptic and Hyperbolic FixediRts
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and discussion

Rather than describing this complex motion by measurinyéhecity at a great number of points over time,
Ouellette and Gollub decided to look for geometric featutes characterise the whole flow. They were
interested in two sets of special points: those that lie @tcéntre of vortices, known as elliptic points, and
those towards which the flow converges along one directiahfrbm which it diverges along another di-
rection. These are known as hyperbolic points, or saddletp¢see figure ). Elliptic points have the flow
whirling around them, while hyperbolic points arise, fomaxple, at a point where four vortices meet, with
each neighbouring pair of vortices turning in differenteditions. These types of points tell you, at a given
point in time, where vortices are centred, and where the doofane vortex ends and another starts — very
important information in a flow that is dominated by vortic&ould this information be enough to charac-
terise the whole flow?

The idea was a good one, but there was a problem: how do yotelteaspecial points? One possibility is

to look for points of zero velocity, but this is hard to do aately. But Ouellette had an ingenious idea. He
noted that near elliptic points, tracer particles circaliatvery small circles, and near hyperbolic points, they
turn sharp corners. In both cases, the trajectories ofgbestexhibit very high curvature. Using ideas from

differential geometry, Ouellette came up with a reliableywélocating the special points by measuring the
curvature of the tracer particles’ trajectories.

The Nonlinear Dynamics webpage
http://dynamics.mi.fu-berlin.de/research/bif-eq-sur faces/index.php?q_menu=0

AL

Figure 4: Particle Paths Near a Hyperbolic Fixed Point

and

X

7N

N\ 2/

Figure 5: Particle Paths Near an Elliptic Fixed Point

The language of fixed points is taken over from particle and thajectory paths into the patterns that appear in a serfac
of section plot (which is not a plot of particle paths). Oneals of “phase trajectories” in phase space (four dimeakion
for the case of a single particle moving in a plane). And wiatghhese phase trajectories in a surface of section plot is a
powerful method of finding regions of initial conditions whigive rise to long term chaotic behavior.
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Quoting G.L. Baker and J.P. Gollub (p.41) in the second eulitif Chaotic Dynamics

The fundamental characteristic of a chaotic physical syseits sensitivity to the initial state. Sensitivity
means that if two identical mechanical systems are staitéuitel conditionsx and x + e respectively,
where [the magnitude of is a very small quantity, their dynamical states will divefgom each other very
quickly in phase space, their separation increasing exypiatly on the average.

We also quote from a 2014 paper by Jamal Saktip:(/arxiv.org/pdf/1312.1978.pdf )

In numerical Poincaré surface-of-section (SOS) comjartat the usual procedure is to compute numerical
trajectories (i.e., “pseudotrajectories”) for a large t@mof initial conditions and then observe the resulting

point pattern that ensues from the intersection of theseenigally computed trajectories with a chosen SOS.

In 2D conservative systems, the visual signature of fullyettlgped chaos is an apparently random scatter of
points (on the SOS) generated from one initial condition.

... Interestingly, this point pattern (obtained from cleskdeterministic laws and equations) is visually in-
distinguishable from a realization of a [two-dimensionaitogeneous] Poisson point process in the SOS.

... For a fully chaotic 2D system, almost any pseudotrajgadthe Poincaré map will explore the full phase
space of the map ergodically, i.e., almost any pseudotmajeof the Poincaré map will densely and uni-
formly cover the entire SOS.

...individual chaotic trajectories need not densely cdlierentire phase space. Successive point intersec-
tions of any such pseudotrajectory with a canonical SOS (after sufficient time) uniformly cover some
subset W of the SOS. The ensuing point set should be indistihgble (insofar as its distance characteristics
are concerned) from any suitably defined realization of &$wi point process in W (of appropriate inten-

Sity).

In generic mixed systems, there are no ergodic componeatsr(o positive-measure regions of phase space
completely devoid of islands). Nevertheless, there gdlyesaist values of a system parameter at which
there are only a few observable islands and the fractioneoptiase space volume occupied by these islands
is small (e.g.,< 0.1). In such cases, the chaotic sea covers nearly uniformlyt ofake available phase
space, ...

The system parameter referred to above could be a couplipgrturbation parameter (e.g., kicked rotor
[31]), a shape parameter defining a family of billiards (etlge 5 parameter defining the family of lemon
billiards [32]), or even simply the total system energy imérindependent potential systems (e.g., Hénon-
Heiles [33], Pullen-Edmonds [34] etc.).

The typical scenario in the last case (the most fundameata for smooth Hamiltonian systems) is a phase
space dominated by regular trajectories at low energieslaactic trajectories at high energies with a mix of
regular and chaotic trajectories at intermediate valugiseoénergy. In the well-known Hénon-Heiles system,
for example, most trajectories are quasi-periodi&at 1/12 and chaotic atZ = 1/6 with a mix of regular
and chaotic trajectories & = 1/8 (see Ref. [33]).
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2 Exploring the Hénon-Heiles Potential (Energy)

The Hénon-Heiles potential (energy) is, in the form oradfiy explored for galactic motion of a star,

1 1
Viz,y) = 5 (@ +y") +ya® = 2 (2.1)
which is obviously equal to zero when battandy are zero. It is also obvious that the potential is an eventiomof z,

so the potential has the same value (for giygat positive and negative values.of

We can search for local minima and maxima, using the negegbat not sufficient) condition® V/dx = 0 and
oV/oy=0.

(%il) PE(xy) = (X2 + y2)/2 +y *X'2 - y'3/3%

(%i2) eql:diff(PE(X,y),X);

(%02) 2 *x*y+x

(%i3) eq2:diff(PE(X,y),y);

(%03) -y 2+y+x"2

(%i4) soln:solve([eql,eq2],[x,y]);

(%04) [[x = 0,y = 1],[x = 0,y = 0],[x = -sqrt(3)/2,y = -1/2],
[x = sart(3)/2,y = -1/2]]

(%i5) soln : fullmapl(’rhs,soln);

(%05) [[0,1],[0,0],[-sqrt(3)/2,-1/2],[sqrt(3)/2,-1/2 1

(%i6) for s in soln do print(apply(PE,s))$

1/6

0

1/6

1/6

We recover the zero potential value at the origin, and findehpoints at the corners of an isosceles triangle where the
potential has the value/6 = 0.1667.
2.1 Equipotentials Using Maxima

We can use the contributed codwlicit_plot to find equipotentials (contour lines) corresponding tacgmenumer-
ical values, with the syntax

implicit_plot(expr,[x,x1,x2],[y,y1,y2],...)
implicit_plot([exprl,epxpr2,...],[x,x1,x2],[y,y1,y2 |

to plot points whereexpr = 0 . Thus we get points where the potential has vdlife with (we first have to load the
code)

(%i7) load(implicit_plot);
(%07) "C:/PROGRA™1/MAXIMA"3.2/share/maxima/5.31.2/sh are/
contrib/implicit_plot.lisp"
(%i8) implicit_plot (PE(x,y)-1/6,[x, -2, 2], [y, -2, 2],
[style,[lines,2]],[gnuplot_preamble, "set grid"])$
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which produces the plot

15

0.5
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X

Figure 6: Locus oV (z,y) = 1/6

Here we plot six equipotential curves corresponding’te= —4 (cyan)y = —2 (green),V = 0.05 (black),V = 1/6
(blue),V = 2 (red), andl” = 4 (magenta).

(%i9) implicit_plot ([PE(x,y)+4, PE(x,y)+2,PE(x,y)-0.0 5,
PE(x,y)-1/6,PE(x,y)-2,PE(x,y)-4],
[x, -4, 4], [y, -4, 4],[style,[lines,2]],
[color,cyan,green,black,blue,red,magenta],
[legend,"-4","-2","0.05","1/6","+2" "+4"],
[gnuplot_preamble, "set grid"])$

which produces the plot

: \ 7/
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Figure 7: Equipotentials df (z,y) Using Maxima

From this plot, we see that the three points at the cornerbeisosceles triangle where the potential has the value
1/6 = 0.1667 are saddle points. Surrounding the central region wh&re y) < 1/6 there are three valleys, which
alternate with three ridges. With the total mechanical gnét = KE + V(x,y), we needE < 1/6 to prevent the
particle from escaping the central region near the origin.
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2.2 Equipotentials Using R

We use theontour function inR. In the following,x andy areR vectors and: is aR matrix.

> x = seq(-4, 4, length=1000)

>y = seq(-4, 4, length=1000)

> z = outer(x,y,function(x,y) (X"2+y"2)/2 + y *X'2 - y'3/3)

> contour(x,y,z,

+ levels= ¢(-4,-2,0.05,1/6,2,4), lwd=2,

+ col=c("cyan","green","black","blue","red","magenta "),
+ drawlabels = FALSE, xlab = "x", ylab = "y")

> grid(lty="solid", col = "darkgray")

> legend("topright", lwd = 2,

+ col=c("cyan","green","black","blue","red","magenta "),
+ legend = c("-4","-2","0.05","1/6","2","4"), cex=1.2)

which produces the plot

[ME
1XK
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Figure 8: Equipotentials df (z,y) Using R

3 The Hamiltonian Equations of Motion

We describe the dynamical problem in terms of dimensionde®sgy, position vector, and momentum vector such that
the mass of the patrticle disappears from the Hamiltoniamgis assumed to be

=3 (0 +9) + V() (3.)

The particle moves in thér,y) plane. The momentum components conjugate to the positiotpepents(z, y) are
(pz, py). The equations of motion are then Hamilton’s equations

dx oOH
T . =Pz (3.2)
dy OH

Y = p, (3.3)

at " oy
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dp,  OH 9V

dt ~ ox Oz
%_ oOH ov

=2zxy—=x (3.4)

2 _y—a? (3.5)

at oy oy 7
These equations (for ariy(x, y)) conserve the energy, so the constraint
H(‘Tayapxapy) =F (36)

restricts the trajectory to lie in a three dimensional maldiembedded in the four-dimensional phase space.

These four coupled first-order ordinary differential edprag are integrated using our homemade Runge-Kutta idde
andrk4_step (see the code filexample2.mac ). The Runge-Kutta code returns a list of trajectory pointéolv include

the times and have the forfax,y,px,py] . We extract ther andy values (for a trajectory plot) using our homemade
take function, for examplexL : take(rkpts,2) andyL : take(rkpts,3) . A trajectory plot is then produced
usingplot2d([discrete,xL,yL],[xlabel,"x"],[ylabel,"y"])$ , (plus other optional elements of the plot).

A function getsection  takes as input that list of Runge-Kutta points, and noticheme changes sign. Whenever
changes sigmgetsection  callsgoback , which integrates the dynamical equations backwards 0 0, and captures
the values ofy, p,) at that momentgetsection  then returns a list ofy, p,) pairs which can be immediately used to
make a “surface of section” plot.

Because the right-hand sides of the four first-order difféa¢equations do not explicitly contain the independeartable
t, the codayetsection  usesr as the independent variable, and the equations of motiahthsee and igoback are

@_dt@_ 1 dy_p_y

= = - = 3.7
dr dx dt dx/dt dt p, 3.7)

dpy dt dp, 1 9V

de dx dt  pg Ox (3.8)

dpy _dtdpy 10V (3.9)

de dx dt  py Oy
With z as the independent variable, we use these equations todteege dependent variablegz), p,(z), py(x)) from
the small value of: found (after the change of sign) backite= 0 using the special cod&41 .
An alternative methodsection is also coded in which, rather than searching through acti@je list for a change in
sign of z, the result of each Runge-Kutta step is examined for a chamgign, and if foundgoback is immediately
called to integrate back te = 0, and the newy, p,) pair found atz = 0 is added to a list.

xsection returns alist of two lists, the surface of section list fiestd then the trajectory list. The functiesection_plot

only accumulates the surface of section list, makes an irmateeg@lot, and also returns the list for possible later use
(such as combining surface of section results on the sameydmtually). Both of these functions call our homemade
rk4_step

4 Heéenon-Heiles Trajectory and Surface of Section

The code fileexample2.mac contains the Maxima functiomajectory(E,tf,dt) , in which E is the dimensionless
energytf isthe dimensionless final time for the integration (stgrat = 0 ), anddt is the Runge-Kutta step size. The
initial value ofx0 is hard-wired to b&0 = 0.

trajectory expects0 < E <= 1/6 = 1.66667 (to produce a confined trajectory), and interactively askstlie
value ofy0 andpy0. The value oipx0 is then calculated from conservation of energy:

E =5 (P30 +Pjo) + V(0. 0)- (4.1)

1
2
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The required initial value of0 must satisfy
0<V(0,y) < E, (4.2)

(so that a zero-kinetic-energy particle at the initial gosi does not have the potential energy to allow escape from
confinement in the potential well), which is equivalent tévsa for the value ofy such that

E:%yz (1—%;;) (4.3)

We can use the Maxima functionalroots  to find the real roots of a polynomial. = 0.1 , for example,

(%i1) fpprintprec:7$

(%i2) ratprint:false$

(%i3) float(realroots(0.1 -y"2/2 + y"3/3));

(%03) [y = -0.39761,y = 0.56707,y = 1.330541]

The third root returned is a value ¢fin they > 1 valley, which is irrelevant to motion in the central regiaioand the
origin (which is where our initial conditions set the palic

We can then construct a functigminmax(E) which returns (as a lisjmin andymax.

(%i4) yminmax(E) :=
block([soln,numer],numer:true,
soln : float(realroots(E - y"2/2 + y"3/3)),
soln : map(rhs,soln),
rest(soln, -1))$
(%i5) yminmax(0.1);
(%05) [-0.39761,0.56707]

These values will be used to check the initial valug efsed to begin the integrationtat= 0 . The user of the function
trajectory will be asked to input an initial value gfinside a loop.

Here is a functiorgetyO(E) which incorporates while cond do loop design.

getyO(E) :=
block([ylim,ymin,ymax,ok,y0,numer],numer:true,
ylim : yminmax(E),

ymin : ylim[1],
ymax : ylim[2],
ok : false,

while not ok do (
print(" need ",ymin," < y0 < ",ymax),
y0 : read(" input yO "),
if (y0O > ymin) and (yO < ymax) then ok : true,
if yO < -10 then ok : true),
y0)$

with the behavior

(%i6) gety0(0.1);

need -0.39761 < y0 < 0.56707
input yo

-20;

(%06) -20

(%i7) gety0(0.1);

need -0.39761 < y0 < 0.56707
input yo

_1;

need -0.39761 < y0 < 0.56707
input yo

1;
need -0.39761 < y0 < 0.56707
input yo

0.095;

(%07) 0.095
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Given I¥ andyq, we then require,o such that even witlp,, = 0 there is not sufficient kinetic energy to escape confine-
ment, or

1
5P < B =V(0,3) (4.4)

so that (assuming,o > 0),
(y0) e = V2 (E = V(0,30))- (4.5)

We then require thai < p,o < (pyo) in order to start the integration.

max

GivenF, yo, andp,o, we then use conservation of energy Eq.(4.1) together Wwitlassumptiop,, > 0 to determinegp,.

Here is an example of the usetodjectory  , taking £/ = 0.1, yo = 0.095, pyo = 0.096, andt; = 20.

(%il) load(example2);

(%01) "c:/k2/example2.mac"

(%i2) rkpts : trajectory(0.1, 20, 0.1)$

need -0.39761 < y0 < 0.56707

input yo

0.095;

need 0.0 < py0O < 0.43766

input py0

0.096;

E= 01 x0= 0 y0o = 0.09

px0 = 0.427 py0 = 0.096

odeL = [px,py,-2  *x*y-1.0 *x,1.0 *y'2-1.0 *y-X"2]

varL = [xy,px,py] initL = [0,0.095,0.427,0.096]

working ...

(%i3) fll(rkpts);

(%03) [[0.0,0.0,0.095,0.427,0.096],
[20.0,0.14835,0.24069,0.22181,-0.26375],201]

(%i4) xL : take(rkpts,2)$

(%i5) fl(xL);

(%05) [0.0,0.14835,201]

(%i6) yL : take(rkpts,3)$

(%i7) fli(yL);

(%07) [0.095,0.24069,201]

(%i8) plot2d([discrete,xL,yL],[xlabel,"x"],[ylabel," v,
[style,[lines,2]],[x,-0.5,0.5],[y,-0.5,0.5])$

which produces the trajectory plot

0.4 r

02 r

-0.2

04 -

Figure 9:F = 0.1, yo = 0.095, pyo = 0.096, ty = 20
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The code fileexample2.mac contains the functiogetsection(pts, xtol) , in whichpts is the output list of inte-
gration points produced hyajectory andxtol is the precision requested to go back to an integration @inwthich
z =0.

The functiongetsection  searches for integration points whetenas changed sign, and cafsback (which calls
rk41 , designed to land on the last “x”) to integrate backwards to 0 to find the corresponding values ypfandpy. A
list of thesely,py] values is returned byetsection

(%i9) ypy : getsection(rkpts,0.01)$
working...
(%i10) fli(ypy);
(%010) [[0.095,0.096],[0.35446,-0.14214],7]
(%ill) plot2d([discrete, ypy],[xlabel,"y"],[ylabel,"p v,
[style,[points,1,5,1]],[x,-0.6,0.6],[y,-0.6,0.6])$

which produces the “surface of section” plot

0.6

04 -
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y

Figure 10:F = 0.1, yo = 0.095, pyo = 0.096, ty = 20
An alternative method is coded in the functixsection(E,tf,dt,xtol) in example2.mac . This alternative method
callsrk4_step to perform a single Runge-Kutta step, and looks immedidtalya sign change in, and if found, calls
goback to integrate backwards to recover the coordinates of thfaciof section point corresponding:to= 0.

xsection  returns a list with two elements, the first being the list & 8urface of section coordinates (as returned by
getsection ), and the second being the list of Runge-Kutta points (asmed bytrajectory ).

This alternative method is used as follows:

(%i12) out : xsection(0.1,20,0.1,0.01)$
need -0.39761 < y0 < 0.56707
input yo

0.095;
need 0.0 < py0O < 0.43766
input py0

0.096;

E= 01 x0= 0 y0 = 0.09
px0 = 0.427 py0 = 0.096
working...

(%i13) ypy : out[1]$

(%i14) rkpts : out[2]$

(%i15) xL : take(rkpts,2)$

(%i16) yL : take(rkpts,3)$
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(%il7) plot2d([discrete,xL,yL],[xlabel,"x"],[ylabel, "y,
[style,[lines,2]],[x,-0.5,0.5],[y,-0.5,0.5])$
(%il18) plot2d([discrete, ypy],[xlabel,"y"],[ylabel,"p v,

[style,[points,1,5,1]],[X,-0.6,0.6],[y,-0.6,0.6])$

and produces plots identical to those above.

The above results do not identify elliptic fixed points in igface of section plot, so we useajectory andgetsection
as above for the longer integration intervals= 500 andty = 1000 which produce the following plots.
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Figure 11:E = 0.1, yo = 0.095, p,o = 0.096, t; = 500
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Figure 12:F = 0.1, yo = 0.095, p,o = 0.096, ty = 500
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Figure 13:F = 0.1, yo = 0.095, pyo = 0.096, t; = 1000
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Figure 14:E = 0.1, yo = 0.095, p,o = 0.096, t; = 1000

A pair of elliptic fixed points which both have, = 0 and whoseg, values have opposite signs are now apparent.

5 Sensitivity of the Section Plot toA p,

When exploring the sensitivity of the surface of sectiort pdachanges in one or more initial conditions, it is convante
code a functiorxsection_plot(E,y0,py0,tf) in which the starting parameters are arguments to the fum¢tvhich
are checked by the code) so we can avoid the interactive delays.

In addition, we want an automatic plot of the resulting stefaf section, and we also want this function to return the
list of the surface of section points for later use. This tiorxccan avoid saving the trajectory points and just retten t
surface of section points.

In the following we usesection_plot to get enough surface of section examples to illustrate h@mges in the initial
value ofp,, (holding £/ andy, constant) can give rise to new elliptic fixed points and todrpplic fixed points, as well as
transitional cases and additional structure.
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We also show two examples of small changeg,inleading to significant structural changes in the surfacectien plot.

The first plot shows two cases of a pair of elliptic fixed poinésingp, = 0 andy values with opposite signs. Notice
the additional structure with another set of sub-ellipti@éi points appearing. We bind the surface of section coatelin
lists to symbols, such agy1 , to be able to combine with other cases on a future plot. Whigally exploring, we don't
know in advance which cases will be combined, since we darotkin advance what the plot will look like.

(%il) load(example2);

(%01) "c:/k2/example2.mac"

(%i2) ypyl : xsection_plot(0.1,0.095,0.096,1000)$

(%i3) ypy2 : xsection_plot(0.1,0.095,0.03,800)$

(%i4) plot2d([[discrete,ypyl],[discrete,ypy2]],
[style,[points,1]],[color,blue,red],
[xlabel,"y"],[ylabel,"py"],[legend,"0.096","0.03"]) $

which produces the plot
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Figure 15:F = 0.1, yo = 0.095, Two Values ofp,

Two cases of a pair of elliptic fixed points having centerstmmt = 0 axis and corresponding to positive and negative
values ofp, are shown next. Notice the additional structure with a ssubtelliptic fixed points appearing.

(%i5) ypy3 : xsection_plot(0.1,0.095,0.2,800)$

(%i6) ypy6 : xsection_plot(0.1,0.095,0.301,800)$

(%i7) plot2d([[discrete,ypy3],[discrete,ypy6]],
[style,[points,1]],[color,blue,red],
[xlabel,"y"],[ylabel,"py"],[legend,"0.2","0.301"]))$

which produces
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Figure 16:F = 0.1, yo = 0.095, Two Values ofp,
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We next show a transitional case and a case with three (Ibgperbolic fixed points .

(%i8) ypy5 : xsection_plot(0.1,0.095,0.33,800)$

(%i9) ypy8 : xsection_plot(0.1,0.095,0.32018,800)$

(%i10) plot2d([[discrete,ypy8],[discrete,ypy5]],
[style,[points,1]],[color,blue,red],
[xlabel,"y"],[ylabel,"py"],[legend,"0.32018","0.33" D$

which produces
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Figure 17:F = 0.1, yo = 0.095, Two Values ofp,

Here is a first example of small changeijp producing significant structure changes in the surfaceafaeplot.

(%i11) ypy9 : xsection_plot(0.1,0.095,0.047,500)$

(%i12) ypyl0 : xsection_plot(0.1,0.095,0.049,500)$

(%il3) plot2d([[discrete,ypy10],[discrete,ypy9]],
[style,[points,1]],[color,blue,red],
[xlabel,"y"],[ylabel,"py"],[legend,"0.049","0.047"] )$

which produces

0.4

0.049"
0.047

03|

02| i

0.1r R ST tan.,

2 of- 5
i . R

o1l '.. . L) ".‘r_,,.._..v o . -.. s

02f L

03| .

g
04 ‘ ‘ ‘ ‘ ‘ ‘ ‘
04 03 02 -01 0 0.1 0.2 0.3 0.4 05

Figure 18:F = 0.1, yo = 0.095, Two Close Values of,
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Here is a second example of close valueg,gfleading to large structural changes in the surface of segiiot.

(%i14) ypyl4 : xsection_plot(0.1,0.095,0.32,500)$

(%i15) ypyl5 : xsection_plot(0.1,0.095,0.31,500)$

(%il6) plot2d([[discrete,ypyl5],[discrete,ypyl4]],
[style,[points,1]],[color,blue,red],
[xlabel,"y"],[ylabel,"py"],[legend,"0.31","0.32"])$

which produces the plot
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Figure 19:F = 0.1, yo = 0.095, Two Close Values of,

6 Trajectory and Surface of Section Plots Using R

As in our Maxima code, we have a interactméunctiongetyO(E) in a code fileexample2.R :

gety0 = function(E) {
ylim = yminmax(E)
ymin = ylim[1]
ymax = ylim[2]

ok = FALSE
while (! ok) {
cat(" need "ymin," < y0 < ",ymax,"\n")
y0 = as.numeric(readline(" input y0: "))
if ((yO > ymin) && (yO < ymax)) ok = TRUE
if (y0 < -10) ok = TRUE}
yO0}

As in our Maxima code, we haverafunctionyminmax(E) in the same code filexample2.R :

## yminmax(E) assumes KE = 0 and x = 0
#it to find limits on initial y from energy conservation

yminmax = function(E) {
mroots = sort(Re(polyroot(c(E,0,-1/2,1/3))))
mroots[1:2]}

Likewise, a functionget_py0(pymax)
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Since we use the fixed step homemade 4'th order Runge-Kutlanegrk4 (also included irexample2.R ), we have a

simplified form of a derivatives function which returnKRaector:

## global derivatives function in proper form for myrk4
## o y[1] = x, y[2] =y, y[3] = px, y[4] = py

henon_heiles = function(t,y) {
with( as.list(y), {
dx = y[3]
dy = y[4]
dpx = -2 *y[1] *y[2] - y[1]
dpy = y[2]'2 - y[2] - y[1]'2

c(dx,dy,dpx,dpy)}h}
We have definechyrk4 to expect an external global list of times, suchlas= seq(0,500,0.1) . This globalrR vector
tL of times must be defined before callifigjectory(E) which returns the solutionst(xL,yL,pxL,pyL) . The
last line oftrajectory is myrk4(initL,tL,henon_heiles)}
TheR function getsection(rkvecs,xtol) can be immediately used with the list outputtiafectory to produce

the list of the surface of section vectdisg(ysL,pysL)

source("example2.R")

tL = seq(0,800,0.1)

## rkl and ypyl for py0O = 0.096
## (with E = 0.1, yO = 0.095)
rkl = trajectory(0.1)

need -0.3976099 < y0 < 0.5670689
input y0: 0.095

need 0 < py0 < 0.4376604
input py0 0.096

E= 01 x0= 0 y0 = 0.095
px0 = 0.4270019 py0O = 0.096

> ypyl = getsection(rk1,0.01)

ns = 251

> yL1 = ypyl[1]]

> pyLl = ypyl[[2]]

> ## rk2 and ypy2 for pyO = 0.03

> rk2 = trajectory(0.1)

need -0.3976099 < y0 < 0.5670689
input y0: 0.095

need 0 < py0 < 0.4376604
input py0 0.03

E= 01 x0= 0 y0 = 0.095
px0 = 0.4366309 py0 = 0.03

> ypy2 = getsection(rk2,0.01)

ns = 256

yL2 = ypy2[[1]]

pyL2 = ypy2[[2]]

## show SOS points for ypyl case

V VV VYV

## add SOS points for ypy2 case
points(yL2,pyL2,pch=19,col = "red",cex=0.4)
mygrid() ## homemade grid function in example2.R
legend("topright",
legend = c("black - py0 = 0.095""red - py0 = 0.03"),cex=1.5 )

+ V VVVVVVYV
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which produces the plot
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Figure 20:E = 0.1, yo = 0.095, p,o = 0.095, p,o = 0.03

We still have access to the lists of solution vectérds andrk2 , which we now use to get the. andyL vectors in order
to plot an actual spatial trajectory of the particle.

> xL1 = rk1[[1]]
> fll(xL1)
0 0.07211231 8001
> yL1 = rk1[[2]]
> fli(yL1)
0.095 0.1080686 8001
> plot(xL1,yL1,type="1",xlab="x",ylab="y")

which produces
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Figure 21:E = 0.1, yo = 0.095, pyo = 0.095
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Likewise with case 2 and the ligt2 :

\%

xL2 = rk2[[1]]

fll(xL2)

0  -0.08530082 8001
yL2 = rk2[[2]]

fli(yL2)

0.095 0.4267989 8001
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Figure 22:F = 0.1, yo = 0.095, pyo = 0.03

7 Combining Surface of Section Plots with R

The R function xsection_plot(E,y0,py0) (in the file example2.R ) was used, with an external definition t@f,
repeatedly with different values p§0, to identify interesting values qiy0 .

Since that function not only makes an immediate plot but ed$ornslist(yL,pyL) , one should use the syntax (for
example)

> tL = seq(0,1500,0.1)
> ypyl = xsection_plot(0.1,0.095,0.096)

ns = 470
> ypy2 = xsection_plot(0.1,0.095,0.03)
ns = 480

The filehhplota.R  was created to automatically build up a plot of surface ofise@oints for fixedE, and fixedyq,
and variablep,.

##  hhplota.R

##  combine surface of section plots
## 21 values of py

E =01

y = 0.095
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py = 0.096
tL = seq(0,1000,0.1)
ypy = xsection(E, y, py)
plot(ypy[[1]].ypy([2]]. pch=19, cex=0.05, xlab="y",
ylab="py", xlim=c(-0.5,0.6), ylim=c(-0.6,0.6))
pyval = ¢(0.005,0.02, 0.03, 0.032, 0.04,0.05, 0.06, 0.07,
0.08, 0.09,0.1, 0.2, 0.25, 0.301, 0.302, 0.303,
0.32018, 0.3202, 0.33, 0.4)
for (py in pyval) {
ypy = xsection(E, y, py)
points(ypy[[1]].ypy[[2]].pch=19,cex=0.05)}

A R function xsection(E,y0,py0) (in the file example2.R ) was used in this scriptxsection(E,y0,py0) is a
simplified version which does not itself make a plot, but jestirns the surface of section poifigs(yL,pyL) . (Italso
does not do checks on initial values.) One can then watchlthgmadually build up with new initial values added:

> source("example2.R")
> source("hhplota.R")

ns = 314
ns = 322
etc., etc.

to produce the plot corresponding to those 21 valugs/of
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Figure 23:F = 0.1, yo = 0.095, 21 values opq

8 A Single Initial Condition Integrated for a Long Time

We integrate for a long time (32,000 “sec”) at the maximumfied energy” = 1/6 and for the single casg = 0 and
pyo = 0.

tL = seq(0,32000,0.1)

ypy = xsection_plot(1/6,0,0)

plot(ypy[[1]].ypyl[2]].pch=19,cex=0.05,xlab="y",
ylab="py" ,xlim=c(-0.6,1),ylim=c(-0.6,0.6))

+ V V V
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which produces the plot
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Figure 24:E = 1/6,yp = 0, pyo =0

which illustrates a case of chaotic behavior.

9 Watching Section Points Accumulate in “Real Time”

The use oksection_plot above produced the surface of section plot with all the gaappearing together suddenly,
and hence with no sense of the history of the points appearidiferent locations.

An alternative is to plot each surface of section point asismits location is determined. The function
plot_sos(E,y0,py0,cex_val) calls section_plot(rkvecs,xtol,cex_val) which plots each section point as
it is found. (In addition the function returrist(ysL,pysL) .) The syntax to use is, for example,

> tL = seq(0,5000,0.1)
> ypy = plot_sos(1/6,0,0,0.1)
ns = 1542

which allows one to watch the time development of the surfdection points. The x and y axis limits are hardwired
into the code ofection_plot  , as is a sleep command to slow down the development of the plot

ysL[1] = rkvecs[[2]][1]

pysL[1] = rkvecs[[4]][1]

## plot first SOS point

plot(ysL[1], pysL[1], pch=19, cex = cex_val, xlab="y",
ylab="py", xlim=c(-0.6,1), ylim=c(-0.6,0.6))

## and later in the code:

ysL[K] = rgoback[1]

pysL[k] = rgoback[2]

points(ysL[K], pysL[k],pch=19, cex = cex_val)

Sys.sleep(0.01)

and would need to be edited to fit the problem being investijat incorporated as additional arguments.
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10 Investigating Accuracy of Integration and Surface of Seton Points

The following general suggestions do not take into accdumspecial behavior one confronts when the system exhibits
chaotic behavior and is very sensitive to not only the ihitianditions but also the order of the arithmetic operations
needed to calculate the trajectory.

10.1 Decrease the Step Size

Halving the step size in the integration initially done ayrk4 , and also halving the value used faol when calling
goback and then comparing the results with the original step 8ize andxtol=0.01  will give an indication of the
reliability of results produced.

10.2 Integrate Backwards

When integrating over many time steps, one should checlctheacy of the integrator by taking the firigk,y,px,py]
value, use it as the initial time and phase space point aedriate backwards (with the same step size) t00 , and
compare the resulting values[afy,px,py] with the originalt=0 values used. Ideally, the values should closely agree.

10.3 Watch the Values of the Energy During the Integration

We know theoretically that the total energy (kinetic plusgmiial) remains a constant of the motion. Lack of accuracy
in the integration will show up in changes in the computedrgnéx"2 + py™2)/2 + V(X,y) . This sum can be
retrieved from the output afajectory and plots of the energy versus time can reveal a lack of acgura

10.4 Use More Accurate Integrators

An obvious extension of what has been done here is to makefike deSolvepackage integrators iR. Note that the
derivatives function needed withle has a different structure than that needed with our homemgdet .

11 Suggestions for Further Exploration

In addition to the accuracy checks mentioned in the prevéaations, we quote Steven Koonin’s suggestions:

Use the code to construct surfaces of section for the Hétmles potential at energies ranging from 0.025
to 0.15 in steps of 0.025. For each energy, consider varmitialiconditions and integrate each trajectory
long enough in time (some will require going#te= 1000) to map out the surface-of-section adequately. For
each energy, see if you can find the elliptic fixed points, dhig{&and tori of tori) around them, and the chaotic
regions of phase space and observe how the relative propsif each change with increasing energy. ....



