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1 INTRODUCTION 2

examplel.pdf describes the major example which accompanie S

Chapter 1 of Computational Physics with Maxima or R,

and is made available to encourage the use of the R and

Maxima languages for computational physics projects of mod est size.

R language free and open-source software:
http://www.r-project.org/

Maxima language free and open-source software:
http://maxima.sourceforge.net/

Code files available on the author's webpage are

1. examplel.R :use in R: e.g., source("c:/kl/examplel.R") to load
2. examplel.mac :use in Maxima: e.g., load("c:/kl/example 1.mac") to load
The author uses the XMaxima interface exclusively, with the startup
file setting: display2d:false$, which allows denser scree n output.
The author normally uses the default RGui interface when cod ing in R.

COPYING AND DISTRIBUTION POLICY:
NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printi ng.

Feedback from readers is the best way for this series of noteecome more helpful to users RfandMaxima. All
comments and suggestions for improvements will be appgestiend carefully considered

1 Introduction

The major example worked out in Chapter 1 of Steven Koongxs €Computational Physicsapplies root finding and
quadrature methods to the task of finding the approximatetidnal energy levels of a diatomic molecule in the quasi-
classical approximation.

We use the resources of the free and open source sofRvtep://www.r-project.org/ ) and Maxima
(http://maxima.sourceforge.net/ ) to write code which helps to solve this type of problem.

The use of such modern powerful “command interpreters” erages a “bottom-up” style of code development, in which
small jobs are coded first, checked interactively for cdarbabhavior, and then used as part of slightly larger codig jo
in an iterative fashion. Our discussion provides expligdraples (in both languages) of this coding style.
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2 Approximate Bound State Energies in the WKB Method

See Sec. 16.2 of R. Shank&rinciples of Quantum Mechanics 2nd ed., 1994, for derivations and discussions of ap-
plications of the WKB method. See albtip://en.wikipedia.org/wiki/WKB_method

In the usual case in which none of the boundaries are infauitex; andxs are the classical turning points, wita > x1,
and withp(x) = \/2m [E — V(x)], the possible energy eigenvaluBsare constrained by the relation

/X2 p(x)dx = (n+ %)71’1’_1 (2.1)

1

inwhichn=0,1,2,....

2.1 Example: Simple Harmonic Oscillator and the WKB Approximation

This approximate method actually gives the correct eneiggnealues for the simple harmonic oscillator, for whick th
potential (energy) is

V(x) = % m w? x? (2.2)
with energy eigenvalues

E, = (n—i— %) hw (2.3)

We solve for the turning points and predicted energies usiagima (as an exercise and practice in using Maxima):

(%il) V @ m *wW2*x"2/2;

(%01) m*w"2+*x"2/2

(%i2) sl : solve(E - V,X);

(%02) [x = -sqrt(2) *sqrt(E/m)/w,x = sqrt(2) * sqrt(E/m)/w]
(%i3) x1 : rhs(s1[1]);

(%03) -sqrt(2) * sqrt(E/m)/w

(%id) x2 : - x1,;

(%04) sqgrt(2)  *sqrt(E/m)/w

(%i5) assume(m > 0, w > 0, E > 0);

(%05) [m > O,w > O,E > (]

(%i6) action : integrate(sqrt(2 *mr(E - V)),x,x1,x2);
(%06) %pi * E/w
(%i7) solve (action = %pi *hbar * (n+1/2), E);

(%07) [E = (2 =*hbar *n+hbar) *w/2]
(%i8) factor(%);
(%08) [E = hbar =*(2*n+1) »w/2]

However, this accuracy is not the norm. Usually, the lowastma/alues predicted by this method are not very accurate,
and the accuracy gets better for the higher eigenvalues.

3 Diatomic Molecule and the Lennard-Jones Potential

See ch. 21, Molecules, in Gordon Bayhgctures on Quantum Mechanics 1974, for an excellent discussion of di-
atomic molecule energy orders of magnitude and the Borne@ipgimer approximation.

Ch.2, Sec.4 o€Computational Physicsby Steven E. Koonin introduces this example with:

As an example combining several basic mathematical opasgtive consider the problem of describing a diatomic
molecule such a®,, which consists of two nuclei bound together by the eledritvat orbit about them. Since the
nuclei are much heavier than the electrons, we can assuiréhatter move fast enough to readjust instantaneously
to the changing position of the nuclei (Born-Oppenheimgrapimation). The problem is therefore reduced to one
in which the motion of the two nuclei is governed by a potdrigaergy],V , depending only upon, the distance
between them.
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The physical principles responsible for generatfwill be discussed in Project VIII, but on general grounds oae
say that the potential [energy] is attractive at large dists (van der Waals interaction) and repulsive at shoriists
(Coulomb interaction of the nuclei and Pauli repulsion @& étectrons).

A commonly used form fo¥ embodying these features is the Lennard-Jones (or 6-18hpalt[energy]:

r

V(r) = 4V [(%)12 - (3)6], (3.1)

in whichr is the positive distance between the two nucléj, is some adjustable positive energy, anis an adjustable
length parameter.

The Lennard-Jones form of the effective potential energptefaction (responsible for the changes in the radiahdist
between the two nuclei) is a phenomenological model withddjoistable parameters.

The quasiclassical WKB method seeks ener@iigsuch that

/r2 Pn(r)dr = (n + %)wh (3.2)
or ro
\/2m/ \/En—V(r)dr:(n—l-%)ﬂ'h (3.3)

in which the classical turning pointg andrs are such thap, (r) = 0 or, equivalentlyE,, = V(r).

We first reduce the problem to dimensionless form, with V/V, e = E/Vy, andx = r/a. Then

VEn — V(r)dr = a\/Vg /e — v(x) dx (3.4)

with the dimensionless potential (energy) being

1 1
The quasiclassical quantization condition then takesdha f
/ Ven—v(x)dx = (n+ %)g (3.6)

in which
B 2ma2V0 1/2 (3 7)
Y 2 . .
Quoting Koonin again:
The quantityy is a dimensionless measure of the quantum nature of theggmobh the classical limiti{ small orm
large),~ becomes large. By knowing the moment of inertia of the md&e(fuom the energies of its rotational motion)
and the dissociation energy (energy required to separatmtiiecule into its two constituent atoms), it is possible to
determine from observation the parameteendV o and hence the quantity.

For the H, molecule;y = 21.7, while for the HD moleculey = 24.8 ... and for the much heavier ;@nolecule made
of two %O nuclei,y = 150. These rather large values indicate that a semiclassipabgimation is a valid description
of the vibrational motion.

The dimensionless energyis represented bg in our code. The dimensionless turning poirts(represented byin )
andx, (represented byout ) are both functions of the dimensionless energgnd are defined by the equation- v(x).
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UsingRto make a plot of(x):

> fun = function(x) 4 *( 1/X"12 - 1/X°6)
> curve(fun,.8,2,ylab = "v",ylim=c(-1,2),lwd=2,col="bl ue")
> abline(h=0)
we get
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Figure 1: dimensionless Lennard-Jones potential v(x)

3.1 Analytic Positions of the Potential Minimum and Turning Points Using Maxima

We can use Maxima to help find the valuexofit whichv(x) takes on its minimum value (here, where the first derivative
of v(x) is zero).

(%il) v: 1/X"12 - 1/X76;
(%01) 1/x"12-1/X"6
(%i2) dv : diff(v,x);
(%02) 6/X"7-12/X"13
(%i3) dv : factor(dv);
(%03) 6 *(x'6-2)/X"13

Solvingx® — 2 = 0 givesxmin = 21/6. Returning toR we evaluatdun at this value to get the minimum value oft.

> xmin = 27(1/6); xmin
[1] 1.122462

> fun(xmin)

[1] -1

Hence bound states must have values of the dimensionlegg/enia the range-1 < € < 0.

1—x8

Sincev(x) is proportional to| 1z — J5| or L%, we see thak = 1 is the only location where = 0.

Hence the classical turning pointg andxs are both always greater than
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The classical turning pointg; andxs are positive numbers (greater than 1) determined by thetiequa(x) = 0, or
e =v(x),0rg y2 +y —1=0, (inwhichy = x%. Solving by hand via the usual quadratic equation formulajsing
Maxima as in ( recall tha¢, which represents, is a negative number)

(%il) sl: solve((e/4) *y2 +y -ly);

(%01) [y = -(2 =sqgrt(etl)+2)leyy = (2 *sqri(e+1)-2)/e]
(%i2) sl : factor(sl);

(%02) [y = -2 =(sqrt(e+1)+1)le)y = 2 * (sqgrt(e+1)-1)/e]
(%i3) slby2 : s1/2;

(%03) [y/2 = -(sqrt(e+1)+1)/e,y/2 = (sqrt(e+1)-1)/e]

Our two turning points are then proportional to the posi{iié) root of these two expressions. We write these dimen-
sionless turning points in terms gdin = 2°(1/6) . We anticipate here which rootxn and which isxout .

(%i4) xin : xmin = (rhs(s1by2[2]))"(1/6);

(%04) ((sqrt(e+1)-1)/e)"(1/6) *Xmin
(%i5) xout : xmin = (rhs(s1by2[1]))"(1/6);
(%05) (-1)"(1/6) * (sqrt(e+1)+1)7(1/6) * Xxmin/e”™(1/6)

We then simplify the definition akout by hand:

(%i6) xout : (sqrt(e+1)+1)7(1/6) *xmin/(-e)"(1/6);
(%06) (sqrt(e+1)+1)"(1/6) *xmin/(-e)"(1/6)

Finally, we assigixmin to a floating point number, and evaluad@ andxout fore = -0.5 , to check our supposi-
tions:

(%i8) xmin : 27(1/6),numer;

(%08) 1.122462048309373

(%i9) xin,e = -1/2, numer,expand;
(%09) 1.026742528828304

(%i10) xout,e = -1/2, numer,expand;
(%010) 1.377378965676005

So we satisfy xout > xin

If we were unable to find analytic expressions for the turmoints as expressions depending on the dimensionlessyenerg
g, we would need to resort to numerical root searches for eaetyg We show how to set up such code at the end of this
example.

3.2 Plots of Dimensionless Potential and an Energy level Ug R

We now useR to show the potential and a hypothetical energy level, witime extra lines and text labels. We have
already defined (ifR) xmin andfun , the latter the function which describes the dimensionfes® of the Lennard-
Jones potential.

> e = -1/2; e

[1] -0.5

> xin = xmin *(sqgrt(e+1)/e-1/e)*(1/6); xin

[1] 1.026743

> xout = xmin *(sqrt(e+1)+1)"(1/6)/(-e)"(1/6); xout
[1] 1.377379
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We then uséNotepad2to construct a plot text file calleeix2.R with the contents:

## ex2.R Lennard-Jones Potential

curve(fun,.8,2,ylab = "v",ylim=c(-1,2),
lwd=2,col="blue", las = 1)

## black lines:

abline(h=0, v=1)

## red line for energy level:

lines(c(xin,xout),c(e,e),col="red",lwd=2)

##  black lines for xin and xout

lines(c(xin,xin),c(e,0) )

lines(c(xout,xout),c(e,0))

## text labels for xin and xout

text(xin, 0.1, "xin", adj = 0,font=2)

text(xout, 0.1, "xout",font=2)

We then use th& functionsource to “load and execute” this code for constucting a plot, ushegpreviously defined
parameterg, xmin , xin , xout , and the functiorfun .

> source("c:/kl/ex2.R")

We can then go back and forth frdrto our fileex2.R , and experiment with small changes to the commands, ang easi
see the overall results each time, continuing to issuwece("c:/k1/ex2.R") to redraw the plot from scratch.

The version defined by the above code produces:

15

1.0

Xin xout
0.0

-0.5

0.8 1.0 1.2 14 1.6 18 2.0

Figure 2: Lennard-Jones potential with one energy level
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We can fiddle with the y-axis label by using tRdunctionpar to increase the margin on the left side of the plot, using
par(mar = c(bottom,left,top,right)) , andmtext to write in the margins.

We also rotate the y-axis tick mark values to horizontal, #edy-axis label to horizontal by using the optias = 1 .
We also use the opticiont=2 to get a bold label. The opticside=2 specifies the left side of the plot.

Experimenting with plot parameter settings is easier if westruct a small script filex3.R with the contents:

## ex3.R

## plot of lennard jones (6-12) potential

H#Ht with energy level, xin, xout

#it add horizontal v(x) y-axis label

oldpar = par(mar=c(5.1,4.1,4.1,2.1))

## mar = c(bottom,left,top,right)

par(mar = ¢(5.1,6.1,4.1,2.1)) # add extra margin area on lef t side

curve(fun,.8,2,ylab = " ylim=c(-1,2),lwd=2,
col="blue",las=1,cex.lab= 1.6)

## black lines

abline(h=0,v=1)

## red line for energy level:

lines(c(xin,xout),c(e,e),col="red",lwd=2)

## solid black lines for xin and xout

lines(c(xin,xin),c(e,0) )

lines(c(xout,xout),c(e,0) )

## text labels for xin and xout

text(xin, 0.1, "xin", adj = 0,font=2)

text(xout, 0.1, "xout",font=2)

## horizontal y-axis label

mtext("v(x)",side=2,las=1,line=3,font=2,cex=1.6)

## restore default par settings

par(oldpar)

All of this work (which is usually not worth the effort) redslin

V(X) 05

xin xout

0.0

_0.5 —

-1.0

0.8 1.0 12 14 1.6 18 2.0

Figure 3: Lennard-Jones potential with one energy level
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4 Solving for Energy Levels Using Maxima’s findroot and quad_gags Functions

We will use the Maxima functionsnd_root  andquad_qgags in order to find the values of the dimensionless energy
e such that (for a given value af) wkb(~,e,n) = 0 (see EQ.(3.6)), where

\/e—v(x)dx—(n—f—%)% (4.1)

Xg(e)

wkb(v,e,n) = /

Xl(E)

is represented bywkb(gam,e,n) in our code.gamis used to representin our code.

wkb(gam,e,n) :=

block([x,v,xmin,xin,xout,numer,glist],numer:true,
if e <= -1.0 then error(" e must be greater than -1 "),
if e >= 0.0 then error(" e must be less than zero "),
xmin : 2°(1/6),
vV 4 +(1/X12 - 1/X'6),
Xin : xmin *(sqrt(e+1)/e-1/e)"(1/6),
xout : xmin *(sqgrt(e+1)+1)"(1/6)/(-e)"(1/6),
glist: quad_gags(sqgrt(e - v),x,xin,xout),
if qglistf{4] # 0 then error(" quad_gags errcode = ",qglist[4])
glist[1] - (n+1/2) * %pi/gam)$

Here we usavkb with find_root  after pasting this definition into XMaxima.

(%i2) fpprintprec:8%

(%i3) find_root('wkb(50,e,0),e,-.99,-5e-4);
(%03) -0.896672

(%i4) wkb(50,%,0);

(%04) -1.38777878E-17

(%i5) find_root('wkb(50,e,1),e,%th(2),-5e-4);
(%05) -0.710907

(%i6) wkb(50,%,1);

(%06) 1.38777878E-16

In the above we assumeg@dm = 50 and assumed the ground state was greater-th&9 and less tharbe-4 (neg-
ative but close to zero), and found the dimensionless erergy -0.896672 for then = 0 solution (ie., the ground
state).

Note also thesingle quotein 'wkb(50,e,0) , when supplied as the first slot ahd_root , which prevents immedi-
ate evaluation ofvkb, lettingfind_root  take charge of using and evaluating the function.

In the step%i4) , we evaluateavkb(50,e,0)  at the dimensionless energy found (the root of the functianjl found
that the result was numerically close to zero (remember weising 16 digit arithmetic in Maxima, the default).

In the step(%i5) we sought then = 1 case energy value, which is assumed to lie in the range
-0.896672 < e < -5e-4 . We used the Maxima functig¥bth(2) which gets the second previous output, rather
than the previous output found by usifig

If you have (or might have!) a global value ferset, then you shoulduote e, as in’e , both places it appears, so the
call tofind_root  would look like find_root('wkb(50,’e,0),’e,-.99,-5e-4); . The quote prevents
immediate evaluation in the global environment, and presethe meaning af as a symbol in the call thnd_root

It will be easier to shift the bottom starting energy usedtifierroot search if we design a function
find_e(gam,ebott,etop,n)

find_e(gam,ebott,etop,n) := (find_root('wkb(gam,ee,n) ,ee,ebott,etop))$
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and after pasting this definition into XMaxima, we get

(%i8) find_e(50,-0.99,-5e-4,0);
(%08) -0.896672

(%i9) find_e(50,%,-5e-4,1);
(%09) -0.710907

(%i10) find_e(50,%,-5e-4,2);
(%010) -0.551659

We can then design a functidavels(gam,num) which calculates the firstumenergy levels based on the chosen

value ofgam, beginning with the ground state, and prints out the comedimg values oh ande.

levels(gam,num) :=
block([bott:-0.99,top:-5e-4,nn,en],
for nn:0 thru (num-1) do (
en : find_e(gam,bott,top,nn),
print(*  ",nn," ",en),
bott : en))$

and after pasting this definition into XMaxima, we get

(%i12) levels(50,6);
-0.896672
-0.710907
-0.551659
-0.41725
-0.305917
5 -0.215801
(%012) done
(%i13) time(%);
(%013) [3.03]

A wWNEFEO

with the last step indicating a time of about 3 seconds toueeihe commantkevels(50,6)

If we want to print outalso the value ofwkb(gam,e,n) at the root foundand the values of the turning points, we need

to do more work, as itevels_info

levels_info(gam,num) :=
block([bott:-0.99,top:-5e-4,nn,en,xmin],local(x1,x2 ),numer:true,
xmin : 27(1/6),
x1(e) := xmin =*(sqrt(e+1)/e-1/e)"(1/6),
x2(e) := xmin = (sqrt(e+1)+1)"(1/6)/(-e)"(1/6),
for nn:0 thru (num-1) do (
en : find_e(gam,bott,top,nn),
print(*  ",nn,"  "en," ",abs(wkb(gam,en,nn))," ",x1(en), " "x2(en)),
bott : en))$

(%i15) levels_info(50,2);
0 -0.896672  1.38777878E-17  1.0715111  1.197405
1 -0.710907  1.38777878E-16  1.0447867  1.2764788

(%015) done

(%i16) x1(-0.5);

(%016) x1(-0.5)

(%i17) xmin;

(%017) xmin

In the next to last step, we find that the functidi{e) , defined inside the functidevels_info , remains unknown at the global

level; this is due to the separdteal(x1,x2) declaration used inside the definitionlefels_info
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4.1 Energy Level Diagram Using Maxima’s plot2d

To make a plot of energy levels (in addition to the energy

printouts), we can use:

11

levels_plot(gam,num) :=
block([bott:-0.99,top:-5e-4,nn,en,level_list:[]],
for nn:0 thru (num-1) do (
en : find_e(gam,bott,top,nn),

print(*  ",nn," ",en),
level_list : cons(en, level_list),
bott : en),
plot2d(reverse(level_list),[x,0,1],[y,-1,0],[style, [lines,3,1],
[lines,3,2],[lines,3,3],[lines,3,4]],
[xlabel,"],[ylabel,"energy"],[legend,false]))$
and after pasting into XMaxima,
(%i19) levels_plot(50,6);
0 -0.896672
1 -0.710907
2 -0.551659
3 -0.41725
4 -0.305917
5 -0.215801
(%019) ™
which produces the energy level diagram
0
0.2
0.4 |
&
Y o6l
_08 [
1 | | | |
0 0.2 0.4 0.6 08

Figure 4: bottom six energy levels: gamma = 50

The eps file for inclusion in this tex file was produced by addiwo extra options to the above interactive code and
changing[lines,3,n] to [lines,5,n] . The two extra options added were:

[gnuplot_out_file,"c:/k1/ex5.eps"],
[gnuplot_term,’eps]

4.2 A Maxima Method Using a Search for the Turning Points

Koonin's code searches for the location of the turning @fot a given energy (rather than use analytic expressions).

His code, as a consequence, gains in versatility, since amese the code with other potentials (with suitable scaing
that the dimensionless potential has a minimum value hifand the corrected value gfin is used) for which analytic

turning point expressions are repriori known.
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Let’s first design code to find than turning point, given the dimensionless enemand a starting locatiorstart
which is assumed to be greater than .

find_xin(e,xstart) :=
block([x,fstart,xnew,fnew,dx:0.001,numer],local(fdi ff),numer:true,
fdiff(x) = e - 4 *(1/x"12 - 1/X°6),
fstart : fdiff(xstart),
xnew : xstart - dx,
fnew : fdiff(xnew),
do (if fnew =fstart < O then return(),
xnew : xnew - dx,
fnew : fdiff(xnew)),
find_root(‘fdiff(x),x,xnew,xstart))$

and after pasting this definition into Maxima,

(%i2) find_xin(-0.5,1.122);
(%02) 1.026742528828304

A similar style of code can fingout .

find_xout(e,xstart) :=
block([x,fstart,xnew,fnew,dx:0.001,numer],local(fdi ff),numer:true,
fdiffx) = e - 4 *(1/xX"12 - 1/X°6),
fstart : fdiff(xstart),
xnew : xstart + dx,
fnew : fdiff(xnew),
do (if fnew =fstart < O then return(),
xnew : xnew + dx,
fnew : fdiff(xnew)),
find_root(‘fdiff(x),x,xstart,xnew))$

and after pasting this definition into Maxima,

(%i4) find_xout(-0.5,1.122);
(%04) 1.377378965676005

We redesign and renamekb(gam,e,n) aswkbl(gam,e,n) which callsfind_xin  andfind_xout

wkbl(gam,e,n) :=
block([xmin,xin,xout,x,v,qglist,numer],numer:true,
xmin : 2°(1/6),
xin : find_xin(e,xmin),
xout : find_xout(e,xmin),
v 4 +(1/X12 - 1/X'6),
glist: quad_gags(sqgrt(e - v),x,xin,xout),
if glistf4] # 0 then error(" quad_gags errcode = ",qglist[4])
glist[1] - (n+1/2) * Obpi/gam)$

and after pasting this definition into Maxima,

(%i6) wkb1(50,-0.5,2);
(%06) 0.0228478

We redesign and renanfiad_e(gam,ebott,etop,n) asfind1l_e(gam,ebott,etop,n) which callswkb1.

find1_e(gam,ebott,etop,n) := (find_root('wkb1(gam,ee, n),ee,ebott,etop))$
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and after pasting in this definition, we get

(%i8) find1_e(50,-0.99,-5e-4,0);
(%08) -0.896672

We next redesign and renaneeels(gam,num)  aslevelsl(gam,num)  which callsfindl_e

levelsl(gam,num) :=
block([bott:-0.99,top:-5e-4,nn,en],
for nn:0 thru (num-1) do (
en : findl_e(gam,bott,top,nn),
print(*  ",nn," ",en),
bott : en))$

and after pasting in this definition, we get

(%i10) levels1(50,6);
0 -0.896672
-0.710907
-0.551659
-0.41725
-0.305917
-0.215801
(%010) done
(%i11) time(%);
(%011) [5.83]

O~ WN P

with the last step indicating a time of about 6 seconds for thatkincorporating turning point searches, which is about
twice the time required for a method based on the analytitrigrpoints use.

5 Solving for Energy Levels Using R’s uniroot and integrate kinctions

We will use the R functionsniroot  andintegrate  in order to find the values of the dimensionless energuch that
(for a given value oh) wkb(v,e,n) = 0 (see Eq.(3.6)), where

Xg(e)
wkb(vy,e,n) = / ve—v(x)dx— (n+ %)% (5.1)
Xl(E)

is represented bwkb(gam,e,n) in our code. The symbalam representsy. TheR functionintegrate  is used to
integrate between the turning points in Réunctionwkb(gam,e,n)

wkb = function(gam,e,n) {
if (e <= -1.0) stop(" e must be greater than -1 ")
if (¢ >= 0.0) stop(" e must be less than zero ")
xmin = 27(1/6)
vfun = function(x) 4 *(1/X"12 - 1/X°6)
Xin = xmin *(sqrt(e+1)/e-1/e)"(1/6)
xout = xmin *(sqrt(e+1)+1)7(1/6)/(-e)"(1/6)
integrand = function(x) sqrt(e - vfun(x))
nint = integrate(integrand,xin,xout,abs.tol=1e-14,sub divisions=500L)$value
nint - (n + 1/2) * pi/gam}

After pasting in the above code, we get

> options(digits=8)

> root = uniroot(function(e) wkb(50,e,0),c(-0.99,-5e-4) ,tol=1e-14)$root;root
[1] -0.89667158

> wkb(50,root,0)

[1] 6.9388939e-18
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> root = uniroot(function(e) wkb(50,e,1),c(root,-5e-4), tol=1e-14)$root;root
[1] -0.71090663

> wkb(50,root,1)

[1] -9.7144515e-17

We assumedam = 50 and assumed the ground state was greater-th&9 and less tharbe-4 (negative but close
to zero), and found the dimensionless enaxgy -0.89667158 for then = 0 solution (ie., the ground state).

In the next step, we evaluatedkb(50,e,0)  at the dimensionless energy found (the root of the functianil found
that the result was numerically close to zero (remember weising 16 digit arithmetic iR, the default).

In the next step we sought time = 1 case energy value, which is assumed to lie in the range
-0.896672 < e < -5e-4

It will be easier to shift the bottom starting energy usedtifi@r root search if we design a function
find.e(gam,ebott,etop,n)

find.e = function(gam,ebott,etop,n) uniroot(function(e ) wkb(gam,e,n),
c(ebott,etop),tol=1e-14)$root

with the behavior

> find.e(50,-0.99,-5e-4,0)

[1] -0.89667158

> find.e(50,.Last.value,-5e-4,1)
[1] -0.71090663

> find.e(50,.Last.value,-5e-4,2)
[1] -0.5516587

We can then design a functidavels(gam,num) which calculates the firgiumenergy levels based on the chosen
value ofgam, beginning with the ground state, and prints out the coomedimg values oh ande.

levels = function(gam,num) {
bott = -0.99
top = -5e-4
for (nn in O:(num-1)){
en = find.e(gam,bott,top,nn)
cat("  ",nn,"  ",en,"\n")
bott = en}}

with the behavior:

> system.time(levels(50,6))

0 -0.89667158
1 -0.71090663
2 -0.5516587

3 -0.41725034
4 -0.30591728

5 -0.2158009
user system elapsed
0.02 0.00 0.01

We have wrapped the functidavels  with the R function system.time()
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If we want to print out also the value ofkb(gam,e,n) at the root found, and the values of the turning points, welnee

to do more work, as ifevels.info

15

levels.info = function(gam,num) {

bott = -0.99
top = -5e-4
xmin = 27°(1/6)

x1 = function(e) xmin * (sqrt(e+1)/e-1/e)"(1/6)
x2 = function(e) xmin * (sqrt(e+1)+1)"(1/6)/(-e)"(1/6)
for (nn in O:(num-1)) {

en = find.e(gam,bott,top,nn)

bott = en}}

cat(" ",nn,” ".en,"” ",abs(wkb(gam,en,nn))," "x1(en)," " X2(en),"\n")

with the behavior:

> levels.info(50,2)
0 -0.89667158 6.9388939%e-18 1.0715111 1.197405

1 -0.71090663 9.7144515e-17 1.0447867 1.2764788
> x1(-0.5)
Error: could not find function "x1"
> xmin

Error: object 'xmin’ not found

In the next to last step, we find that the functixi(e) , defined inside the functiolevels.info
at the global level. Likewisgmin is not known at the global level.

5.1 Energy Level Diagram Using R

To make a plot of energy levels (in addition to te energy printouts), we can use:

, remains unknown

levels.plot = function(gam,num) {
bott = -0.99
top = -5e-4
plot(0:1, -1:0, type="n",xlab="",ylab="energy")
for (nn in O:(num-1)){
en = find.e(gam,bott,top,nn)

cat(" ",nn," ",en,"\n")
abline(h = en,col = "blue",lwd=2)
bott = en}}

> levels.plot(50,6)

0 -0.89667158
1 -0.71090663
2 -0.5516587
3 -0.41725034
4 -0.30591728
5 -0.2158009
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which produces the plot
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Figure 5: bottom six energy levels: gamma = 50

5.2 AR Method Using a Search for the Turning Points

16

Koonin’s code searches for the location of the turning @fot a given energy (rather than use analytic expressions).
His code, as a consequence, gains in versatility, sinceamese the code with other potentials (with suitable scaing
that the dimensionless potential has a minimum value ifand the corrected value gin is used) for which analytic
turning point expressions are repriori known.

Let’s first design code to find than turning point, given the dimensionless enemand a starting locatiorstart
which is assumed to be greater than .

find.xin = function(e,xstart) {
dx = 0.001
fdiff = function(x) e - 4
fstart = fdiff(xstart)
xnew = xstart - dx
fnew = fdiff(xnew)
repeat {

if (fnew =fstart < 0)
xnew = xnew - dx
fnew = fdiff(xnew)}

uniroot(fdiff,c(xnew,xstart),tol=1e-14)$root}

*(1/X12 - 1/x6)

break

with the behavior

> find.xin(-0.5,1.122)
[1] 1.0267425

A similar style of code can fingdout .

find.xout = function(e,xstart) {
dx = 0.001
fdiff = function(x) e - 4
fstart = fdiff(xstart)
Xnew = xstart + dx

*(1/X°12 - 1/X6)
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fnew = fdiff(xnew)
repeat {
if (fnew =*fstart < 0) break
Xnew = xnew + dx
fnew = fdiff(xnew)}
uniroot(fdiff,c(xstart,xnew),tol=1e-14)$root}

with the behavior:

> find.xout(-0.5,1.122)
[1] 1.377379

We redesign and renamkb(gam,e,n)  aswkbl(gam,e,n)  which callsfind.xin andfind.xout

wkbl = function(gam,e,n) {
xmin = 27°(1/6)
xin = find.xin(e,xmin)
xout = find.xout(e,xmin)
vfun = function(x) 4 *(1/X"12 - 1/X°6)
integrand = function(x) sqrt(e - vfun(x))
nint = integrate(integrand,xin,xout,abs.tol=1e-14,sub divisions=500L)$value
nint - (n + 1/2) * pi/gam}

with the behavior:

> wkb1(50,-0.5,2)
[1] 0.022847833

We redesign and renanfiad.e(gam,ebott,etop,n) asfindl.e(gam,ebott,etop,n) which callswkb1.

findl.e = function(gam,ebott,etop,n) uniroot(function( e) wkbl(gam,e,n),
c(ebott,etop),tol=1e-14)$root

with the behavior

> find1.e(50,-0.99,-5e-4,0)
[1] -0.89667158

We next redesign and renanewels(gamma,num)  aslevelsl(gamma,num)  which callsfindl.e

levelsl = function(gam,num) {
bott = -0.99
top = -5e-4
for (nn in 0:(num-1)){
en = findl.e(gam,bott,top,nn)
cat(" ",nn," "en,"\n")
bott = en}}

with the behavior:

> system.time(levels1(50,6))
0 -0.89667158

1 -0.71090663
2 -0.5516587
3 -0.41725034
4 -0.30591728
5 -0.2158009

user system elapsed
0.44 0.00 0.44

having wrappedevelsl in the R function system.time , to show the increase in time compared to the method whick use

analytic expressions for the turning points.



