
Computational Physics with Maxima or R:
Example 1

Semiclassical Quantization of Molecular Vibrations∗

Edwin (Ted) Woollett

August 31, 2015

Contents

1 Introduction 2

2 Approximate Bound State Energies in the WKB Method 3
2.1 Example: Simple Harmonic Oscillator and the WKB Approximation . 3

3 Diatomic Molecule and the Lennard-Jones Potential 3
3.1 Analytic Positions of the Potential Minimum and TurningPoints Using Maxima 5
3.2 Plots of Dimensionless Potential and an Energy level Using R . 6

4 Solving for Energy Levels Using Maxima’s findroot and quad qags Functions 9
4.1 Energy Level Diagram Using Maxima’s plot2d 11
4.2 A Maxima Method Using a Search for the Turning Points 11

5 Solving for Energy Levels Using R’s uniroot and integrate Functions 13
5.1 Energy Level Diagram Using R 15
5.2 A R Method Using a Search for the Turning Points 16

∗The code examples useR ver. 3.0.1andMaxima ver. 5.28usingWindows XP. This is a live document which will be updated when needed.
Check http://www.csulb.edu/ ˜ woollett/ for the latest version of these notes. Send comments and suggestions for improvements to
woollett@charter.net

1

1 INTRODUCTION 2

example1.pdf describes the major example which accompanie s
Chapter 1 of Computational Physics with Maxima or R,
and is made available to encourage the use of the R and
Maxima languages for computational physics projects of mod est size.

R language free and open-source software:
http://www.r-project.org/

Maxima language free and open-source software:
http://maxima.sourceforge.net/

Code files available on the author’s webpage are
1. example1.R :use in R: e.g., source("c:/k1/example1.R") to load
2. example1.mac :use in Maxima: e.g., load("c:/k1/example 1.mac") to load

The author uses the XMaxima interface exclusively, with the startup
file setting: display2d:false$, which allows denser scree n output.

The author normally uses the default RGui interface when cod ing in R.

COPYING AND DISTRIBUTION POLICY:
NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printi ng.

Feedback from readers is the best way for this series of notesto become more helpful to users ofR andMaxima. All
comments and suggestions for improvements will be appreciated and carefully considered.

1 Introduction

The major example worked out in Chapter 1 of Steven Koonin’s text Computational Physicsapplies root finding and
quadrature methods to the task of finding the approximate vibrational energy levels of a diatomic molecule in the quasi-
classical approximation.

We use the resources of the free and open source softwareR (http://www.r-project.org/) and Maxima
(http://maxima.sourceforge.net/) to write code which helps to solve this type of problem.

The use of such modern powerful “command interpreters” encourages a “bottom-up” style of code development, in which
small jobs are coded first, checked interactively for correct behavior, and then used as part of slightly larger coding jobs
in an iterative fashion. Our discussion provides explicit examples (in both languages) of this coding style.

2 APPROXIMATE BOUND STATE ENERGIES IN THE WKB METHOD 3

2 Approximate Bound State Energies in the WKB Method

See Sec. 16.2 of R. Shankar,Principles of Quantum Mechanics, 2nd ed., 1994, for derivations and discussions of ap-
plications of the WKB method. See alsohttp://en.wikipedia.org/wiki/WKB_method .

In the usual case in which none of the boundaries are infinite,andx1 andx2 are the classical turning points, withx2 > x1,
and withp(x) =

√

2m [E−V(x)], the possible energy eigenvaluesE are constrained by the relation
∫

x2

x1

p(x)dx = (n+
1

2
)π h̄ (2.1)

in whichn = 0,1,2,

2.1 Example: Simple Harmonic Oscillator and the WKB Approximation

This approximate method actually gives the correct energy eigenvalues for the simple harmonic oscillator, for which the
potential (energy) is

V(x) =
1

2
mω

2 x2 (2.2)

with energy eigenvalues

En =

(

n+
1

2

)

h̄ω (2.3)

We solve for the turning points and predicted energies usingMaxima (as an exercise and practice in using Maxima):

(%i1) V : m * wˆ2 * xˆ2/2;
(%o1) m* wˆ2 * xˆ2/2
(%i2) s1 : solve(E - V,x);
(%o2) [x = -sqrt(2) * sqrt(E/m)/w,x = sqrt(2) * sqrt(E/m)/w]
(%i3) x1 : rhs(s1[1]);
(%o3) -sqrt(2) * sqrt(E/m)/w
(%i4) x2 : - x1;
(%o4) sqrt(2) * sqrt(E/m)/w
(%i5) assume(m > 0, w > 0, E > 0);
(%o5) [m > 0,w > 0,E > 0]
(%i6) action : integrate(sqrt(2 * m* (E - V)),x,x1,x2);
(%o6) %pi * E/w
(%i7) solve (action = %pi * hbar * (n+1/2), E);
(%o7) [E = (2 * hbar * n+hbar) * w/2]
(%i8) factor(%);
(%o8) [E = hbar * (2 * n+1) * w/2]

However, this accuracy is not the norm. Usually, the lowest eigenvalues predicted by this method are not very accurate,
and the accuracy gets better for the higher eigenvalues.

3 Diatomic Molecule and the Lennard-Jones Potential

See ch. 21, Molecules, in Gordon Baym,Lectures on Quantum Mechanics, 1974, for an excellent discussion of di-
atomic molecule energy orders of magnitude and the Born-Oppenheimer approximation.

Ch.2, Sec.4 ofComputational Physicsby Steven E. Koonin introduces this example with:

As an example combining several basic mathematical operations, we consider the problem of describing a diatomic
molecule such asO2, which consists of two nuclei bound together by the electrons that orbit about them. Since the
nuclei are much heavier than the electrons, we can assume that the latter move fast enough to readjust instantaneously
to the changing position of the nuclei (Born-Oppenheimer approximation). The problem is therefore reduced to one
in which the motion of the two nuclei is governed by a potential [energy],V , depending only uponr , the distance
between them.

3 DIATOMIC MOLECULE AND THE LENNARD-JONES POTENTIAL 4

The physical principles responsible for generatingV will be discussed in Project VIII, but on general grounds onecan
say that the potential [energy] is attractive at large distances (van der Waals interaction) and repulsive at short distances
(Coulomb interaction of the nuclei and Pauli repulsion of the electrons).

A commonly used form forV embodying these features is the Lennard-Jones (or 6-12) potential [energy]:

V(r) = 4V0

[

(a

r

)12

−
(a

r

)6
]

, (3.1)

in which r is the positive distance between the two nuclei,V0 is some adjustable positive energy, anda is an adjustable
length parameter.

The Lennard-Jones form of the effective potential energy ofinteraction (responsible for the changes in the radial distance
between the two nuclei) is a phenomenological model with twoadjustable parameters.

The quasiclassical WKB method seeks energiesEn such that
∫

r2

r1

pn(r)dr = (n+
1

2
)π h̄ (3.2)

or
√
2m

∫

r2

r1

√

En −V(r)dr = (n+
1

2
)π h̄ (3.3)

in which the classical turning pointsr1 andr2 are such thatpn(r) = 0 or, equivalently,En = V(r).

We first reduce the problem to dimensionless form, withv = V/V0, ε = E/V0, andx = r/a. Then
√

En −V(r)dr = a
√

V0

√

ε− v(x)dx (3.4)

with the dimensionless potential (energy) being

v(x) = 4

[

1

x12
−

1

x6

]

. (3.5)

The quasiclassical quantization condition then takes the form
∫

x2

x1

√

εn − v(x)dx = (n+
1

2
)
π

γ
(3.6)

in which

γ =

[

2ma2 V0

h̄2

]1/2

. (3.7)

Quoting Koonin again:

The quantityγ is a dimensionless measure of the quantum nature of the problem. In the classical limit (̄h small orm
large),γ becomes large. By knowing the moment of inertia of the molecule (from the energies of its rotational motion)
and the dissociation energy (energy required to separate the molecule into its two constituent atoms), it is possible to
determine from observation the parametersa andV0 and hence the quantityγ.

For the H2 molecule,γ = 21.7, while for the HD molecule,γ = 24.8 . . . and for the much heavier O2 molecule made
of two 16O nuclei,γ = 150. These rather large values indicate that a semiclassical approximation is a valid description
of the vibrational motion.

The dimensionless energyε is represented bye in our code. The dimensionless turning pointsx1 (represented byxin)
andx2 (represented byxout) are both functions of the dimensionless energyε, and are defined by the equationε = v(x).

3 DIATOMIC MOLECULE AND THE LENNARD-JONES POTENTIAL 5

UsingR to make a plot ofv(x):

> fun = function(x) 4 * (1/xˆ12 - 1/xˆ6)
> curve(fun,.8,2,ylab = "v",ylim=c(-1,2),lwd=2,col="bl ue")
> abline(h=0)

we get

0.8 1.0 1.2 1.4 1.6 1.8 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

x

v

Figure 1: dimensionless Lennard-Jones potential v(x)

3.1 Analytic Positions of the Potential Minimum and Turning Points Using Maxima

We can use Maxima to help find the value ofx at whichv(x) takes on its minimum value (here, where the first derivative
of v(x) is zero).

(%i1) v: 1/xˆ12 - 1/xˆ6;
(%o1) 1/xˆ12-1/xˆ6
(%i2) dv : diff(v,x);
(%o2) 6/xˆ7-12/xˆ13
(%i3) dv : factor(dv);
(%o3) 6 * (xˆ6-2)/xˆ13

Solvingx6 − 2 = 0 givesxmin = 21/6. Returning toRwe evaluatefun at this value to get the minimum value of−1.

> xmin = 2ˆ(1/6); xmin
[1] 1.122462
> fun(xmin)
[1] -1

Hence bound states must have values of the dimensionless energy ε in the range−1 < ε < 0.

Sincev(x) is proportional to
[

1

x12 − 1

x6

]

or 1−x6

x12 , we see thatx = 1 is the only location wherev = 0.

Hence the classical turning pointsx1 andx2 are both always greater than1.

3 DIATOMIC MOLECULE AND THE LENNARD-JONES POTENTIAL 6

The classical turning pointsx1 andx2 are positive numbers (greater than 1) determined by the equation p(x) = 0, or
ε = v(x), or ε

4
y2 + y − 1 = 0, (in whichy = x6. Solving by hand via the usual quadratic equation formula, or using

Maxima as in (recall thate, which representsε, is a negative number)

(%i1) s1: solve((e/4) * yˆ2 + y -1,y);
(%o1) [y = -(2 * sqrt(e+1)+2)/e,y = (2 * sqrt(e+1)-2)/e]
(%i2) s1 : factor(s1);
(%o2) [y = -2 * (sqrt(e+1)+1)/e,y = 2 * (sqrt(e+1)-1)/e]
(%i3) s1by2 : s1/2;
(%o3) [y/2 = -(sqrt(e+1)+1)/e,y/2 = (sqrt(e+1)-1)/e]

Our two turning points are then proportional to the positive(1/6) root of these two expressions. We write these dimen-
sionless turning points in terms ofxmin = 2ˆ(1/6) . We anticipate here which root isxin and which isxout .

(%i4) xin : xmin * (rhs(s1by2[2]))ˆ(1/6);
(%o4) ((sqrt(e+1)-1)/e)ˆ(1/6) * xmin
(%i5) xout : xmin * (rhs(s1by2[1]))ˆ(1/6);
(%o5) (-1)ˆ(1/6) * (sqrt(e+1)+1)ˆ(1/6) * xmin/eˆ(1/6)

We then simplify the definition ofxout by hand:

(%i6) xout : (sqrt(e+1)+1)ˆ(1/6) * xmin/(-e)ˆ(1/6);
(%o6) (sqrt(e+1)+1)ˆ(1/6) * xmin/(-e)ˆ(1/6)

Finally, we assignxmin to a floating point number, and evaluatexin andxout for e = -0.5 , to check our supposi-
tions:

(%i8) xmin : 2ˆ(1/6),numer;
(%o8) 1.122462048309373
(%i9) xin,e = -1/2, numer,expand;
(%o9) 1.026742528828304
(%i10) xout,e = -1/2, numer,expand;
(%o10) 1.377378965676005

So we satisfy xout > xin .

If we were unable to find analytic expressions for the turningpoints as expressions depending on the dimensionless energy
ε, we would need to resort to numerical root searches for each energy. We show how to set up such code at the end of this
example.

3.2 Plots of Dimensionless Potential and an Energy level Using R

We now useR to show the potential and a hypothetical energy level, with some extra lines and text labels. We have
already defined (inR) xmin and fun , the latter the function which describes the dimensionlessform of the Lennard-
Jones potential.

> e = -1/2; e
[1] -0.5
> xin = xmin * (sqrt(e+1)/e-1/e)ˆ(1/6); xin
[1] 1.026743
> xout = xmin * (sqrt(e+1)+1)ˆ(1/6)/(-e)ˆ(1/6); xout
[1] 1.377379

3 DIATOMIC MOLECULE AND THE LENNARD-JONES POTENTIAL 7

We then useNotepad2to construct a plot text file calledex2.R with the contents:

ex2.R Lennard-Jones Potential
curve(fun,.8,2,ylab = "v",ylim=c(-1,2),

lwd=2,col="blue", las = 1)
black lines:
abline(h=0, v=1)
red line for energy level:
lines(c(xin,xout),c(e,e),col="red",lwd=2)
black lines for xin and xout
lines(c(xin,xin),c(e,0))
lines(c(xout,xout),c(e,0))
text labels for xin and xout
text(xin, 0.1, "xin", adj = 0,font=2)
text(xout, 0.1, "xout",font=2)

We then use theR functionsource to “load and execute” this code for constucting a plot, usingthe previously defined
parameterse, xmin , xin , xout , and the functionfun .

> source("c:/k1/ex2.R")

We can then go back and forth fromR to our fileex2.R , and experiment with small changes to the commands, and easily
see the overall results each time, continuing to issuesource("c:/k1/ex2.R") to redraw the plot from scratch.

The version defined by the above code produces:

0.8 1.0 1.2 1.4 1.6 1.8 2.0

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x

v

xin xout

Figure 2: Lennard-Jones potential with one energy level

3 DIATOMIC MOLECULE AND THE LENNARD-JONES POTENTIAL 8

We can fiddle with the y-axis label by using theR functionpar to increase the margin on the left side of the plot, using
par(mar = c(bottom,left,top,right)) , andmtext to write in the margins.

We also rotate the y-axis tick mark values to horizontal, andthe y-axis label to horizontal by using the optionlas = 1 .
We also use the optionfont=2 to get a bold label. The optionside=2 specifies the left side of the plot.

Experimenting with plot parameter settings is easier if we construct a small script fileex3.R with the contents:

ex3.R
plot of lennard jones (6-12) potential
with energy level, xin, xout
add horizontal v(x) y-axis label
oldpar = par(mar=c(5.1,4.1,4.1,2.1))
mar = c(bottom,left,top,right)
par(mar = c(5.1,6.1,4.1,2.1)) # add extra margin area on lef t side
curve(fun,.8,2,ylab = "",ylim=c(-1,2),lwd=2,

col="blue",las=1,cex.lab= 1.6)
black lines
abline(h=0,v=1)
red line for energy level:
lines(c(xin,xout),c(e,e),col="red",lwd=2)
solid black lines for xin and xout
lines(c(xin,xin),c(e,0))
lines(c(xout,xout),c(e,0))
text labels for xin and xout
text(xin, 0.1, "xin", adj = 0,font=2)
text(xout, 0.1, "xout",font=2)
horizontal y-axis label
mtext("v(x)",side=2,las=1,line=3,font=2,cex=1.6)
restore default par settings
par(oldpar)

All of this work (which is usually not worth the effort) results in

0.8 1.0 1.2 1.4 1.6 1.8 2.0

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

x

xin xout

v(x)

Figure 3: Lennard-Jones potential with one energy level

4 SOLVING FOR ENERGY LEVELS USING MAXIMA’S FINDROOT AND QUAD QAGS FUNCTIONS 9

4 Solving for Energy Levels Using Maxima’s findroot and quad qags Functions

We will use the Maxima functionsfind_root andquad_qags in order to find the values of the dimensionless energy
ε such that (for a given value ofn) wkb(γ, ε,n) = 0 (see Eq.(3.6)), where

wkb(γ, ε,n) =

∫

x2(ε)

x1(ε)

√

ε− v(x)dx− (n+
1

2
)
π

γ
(4.1)

is represented bywkb(gam,e,n) in our code.gam is used to representγ in our code.

wkb(gam,e,n) :=
block([x,v,xmin,xin,xout,numer,qlist],numer:true,

if e <= -1.0 then error(" e must be greater than -1 "),
if e >= 0.0 then error(" e must be less than zero "),
xmin : 2ˆ(1/6),
v : 4 * (1/xˆ12 - 1/xˆ6),
xin : xmin * (sqrt(e+1)/e-1/e)ˆ(1/6),
xout : xmin * (sqrt(e+1)+1)ˆ(1/6)/(-e)ˆ(1/6),
qlist: quad_qags(sqrt(e - v),x,xin,xout),
if qlist[4] # 0 then error(" quad_qags errcode = ",qlist[4]) ,
qlist[1] - (n+1/2) * %pi/gam)$

Here we usewkb with find_root after pasting this definition into XMaxima.

(%i2) fpprintprec:8$
(%i3) find_root(’wkb(50,e,0),e,-.99,-5e-4);
(%o3) -0.896672
(%i4) wkb(50,%,0);
(%o4) -1.38777878E-17
(%i5) find_root(’wkb(50,e,1),e,%th(2),-5e-4);
(%o5) -0.710907
(%i6) wkb(50,%,1);
(%o6) 1.38777878E-16

In the above we assumedgam = 50 and assumed the ground state was greater than-0.99 and less than-5e-4 (neg-
ative but close to zero), and found the dimensionless energye = -0.896672 for then = 0 solution (ie., the ground
state).

Note also thesingle quotein ’wkb(50,e,0) , when supplied as the first slot offind_root , which prevents immedi-
ate evaluation ofwkb, letting find_root take charge of using and evaluating the function.

In the step(%i4) , we evaluatedwkb(50,e,0) at the dimensionless energy found (the root of the function), and found
that the result was numerically close to zero (remember we are using 16 digit arithmetic in Maxima, the default).

In the step(%i5) we sought then = 1 case energy value, which is assumed to lie in the range
-0.896672 < e < -5e-4 . We used the Maxima function%th(2) which gets the second previous output, rather

than the previous output found by using%.

If you have (or might have!) a global value fore set, then you shouldquote e, as in’e , both places it appears, so the
call to find_root would look like find_root(’wkb(50,’e,0),’e,-.99,-5e-4); . The quote’ prevents
immediate evaluation in the global environment, and preserves the meaning ofe as a symbol in the call tofind_root .

It will be easier to shift the bottom starting energy used forthe root search if we design a function
find_e(gam,ebott,etop,n) .

find_e(gam,ebott,etop,n) := (find_root(’wkb(gam,ee,n) ,ee,ebott,etop))$

4 SOLVING FOR ENERGY LEVELS USING MAXIMA’S FINDROOT AND QUAD QAGS FUNCTIONS 10

and after pasting this definition into XMaxima, we get

(%i8) find_e(50,-0.99,-5e-4,0);
(%o8) -0.896672
(%i9) find_e(50,%,-5e-4,1);
(%o9) -0.710907
(%i10) find_e(50,%,-5e-4,2);
(%o10) -0.551659

We can then design a functionlevels(gam,num) which calculates the firstnum energy levels based on the chosen
value ofgam, beginning with the ground state, and prints out the corresponding values ofn ande.

levels(gam,num) :=
block([bott:-0.99,top:-5e-4,nn,en],

for nn:0 thru (num-1) do (
en : find_e(gam,bott,top,nn),
print(" ",nn," ",en),
bott : en))$

and after pasting this definition into XMaxima, we get

(%i12) levels(50,6);
0 -0.896672
1 -0.710907
2 -0.551659
3 -0.41725
4 -0.305917
5 -0.215801

(%o12) done
(%i13) time(%);
(%o13) [3.03]

with the last step indicating a time of about 3 seconds to execute the commandlevels(50,6) .

If we want to print outalso the value ofwkb(gam,e,n) at the root found,and the values of the turning points, we need
to do more work, as inlevels_info :

levels_info(gam,num) :=
block([bott:-0.99,top:-5e-4,nn,en,xmin],local(x1,x2),numer:true,

xmin : 2ˆ(1/6),
x1(e) := xmin * (sqrt(e+1)/e-1/e)ˆ(1/6),
x2(e) := xmin * (sqrt(e+1)+1)ˆ(1/6)/(-e)ˆ(1/6),
for nn:0 thru (num-1) do (

en : find_e(gam,bott,top,nn),
print(" ",nn," ",en," ",abs(wkb(gam,en,nn))," ",x1(en), " ",x2(en)),
bott : en))$

(%i15) levels_info(50,2);
0 -0.896672 1.38777878E-17 1.0715111 1.197405
1 -0.710907 1.38777878E-16 1.0447867 1.2764788

(%o15) done
(%i16) x1(-0.5);
(%o16) x1(-0.5)
(%i17) xmin;
(%o17) xmin

In the next to last step, we find that the functionx1(e) , defined inside the functionlevels_info , remains unknown at the global
level; this is due to the separatelocal(x1,x2) declaration used inside the definition oflevels_info .

4 SOLVING FOR ENERGY LEVELS USING MAXIMA’S FINDROOT AND QUAD QAGS FUNCTIONS 11

4.1 Energy Level Diagram Using Maxima’s plot2d

To make a plot of energy levels (in addition to then, energy printouts), we can use:

levels_plot(gam,num) :=
block([bott:-0.99,top:-5e-4,nn,en,level_list:[]],

for nn:0 thru (num-1) do (
en : find_e(gam,bott,top,nn),
print(" ",nn," ",en),
level_list : cons(en, level_list),
bott : en),

plot2d(reverse(level_list),[x,0,1],[y,-1,0],[style, [lines,3,1],
[lines,3,2],[lines,3,3],[lines,3,4]],
[xlabel,""],[ylabel,"energy"],[legend,false]))$

and after pasting into XMaxima,

(%i19) levels_plot(50,6);
0 -0.896672
1 -0.710907
2 -0.551659
3 -0.41725
4 -0.305917
5 -0.215801

(%o19) ""

which produces the energy level diagram

-1

-0.8

-0.6

-0.4

-0.2

 0

 0 0.2 0.4 0.6 0.8 1

e
n
e
rg

y

Figure 4: bottom six energy levels: gamma = 50

The eps file for inclusion in this tex file was produced by adding two extra options to the above interactive code and
changing[lines,3,n] to [lines,5,n] . The two extra options added were:

[gnuplot_out_file,"c:/k1/ex5.eps"],
[gnuplot_term,’eps]

4.2 A Maxima Method Using a Search for the Turning Points

Koonin’s code searches for the location of the turning points for a given energy (rather than use analytic expressions).
His code, as a consequence, gains in versatility, since one can use the code with other potentials (with suitable scalingso
that the dimensionless potential has a minimum value of−1, and the corrected value ofxmin is used) for which analytic
turning point expressions are nota priori known.

4 SOLVING FOR ENERGY LEVELS USING MAXIMA’S FINDROOT AND QUAD QAGS FUNCTIONS 12

Let’s first design code to find thexin turning point, given the dimensionless energye and a starting locationxstart
which is assumed to be greater thanxin .

find_xin(e,xstart) :=
block([x,fstart,xnew,fnew,dx:0.001,numer],local(fdi ff),numer:true,

fdiff(x) := e - 4 * (1/xˆ12 - 1/xˆ6),
fstart : fdiff(xstart),
xnew : xstart - dx,
fnew : fdiff(xnew),
do (if fnew * fstart < 0 then return(),

xnew : xnew - dx,
fnew : fdiff(xnew)),

find_root(’fdiff(x),x,xnew,xstart))$

and after pasting this definition into Maxima,

(%i2) find_xin(-0.5,1.122);
(%o2) 1.026742528828304

A similar style of code can findxout .

find_xout(e,xstart) :=
block([x,fstart,xnew,fnew,dx:0.001,numer],local(fdi ff),numer:true,

fdiff(x) := e - 4 * (1/xˆ12 - 1/xˆ6),
fstart : fdiff(xstart),
xnew : xstart + dx,
fnew : fdiff(xnew),
do (if fnew * fstart < 0 then return(),

xnew : xnew + dx,
fnew : fdiff(xnew)),

find_root(’fdiff(x),x,xstart,xnew))$

and after pasting this definition into Maxima,

(%i4) find_xout(-0.5,1.122);
(%o4) 1.377378965676005

We redesign and renamewkb(gam,e,n) aswkb1(gam,e,n) which callsfind_xin andfind_xout :

wkb1(gam,e,n) :=
block([xmin,xin,xout,x,v,qlist,numer],numer:true,

xmin : 2ˆ(1/6),
xin : find_xin(e,xmin),
xout : find_xout(e,xmin),
v : 4 * (1/xˆ12 - 1/xˆ6),
qlist: quad_qags(sqrt(e - v),x,xin,xout),

if qlist[4] # 0 then error(" quad_qags errcode = ",qlist[4]) ,
qlist[1] - (n+1/2) * %pi/gam)$

and after pasting this definition into Maxima,

(%i6) wkb1(50,-0.5,2);
(%o6) 0.0228478

We redesign and renamefind_e(gam,ebott,etop,n) asfind1_e(gam,ebott,etop,n) which callswkb1.

find1_e(gam,ebott,etop,n) := (find_root(’wkb1(gam,ee, n),ee,ebott,etop))$

5 SOLVING FOR ENERGY LEVELS USING R’S UNIROOT AND INTEGRATE FUNCTIONS 13

and after pasting in this definition, we get

(%i8) find1_e(50,-0.99,-5e-4,0);
(%o8) -0.896672

We next redesign and renamelevels(gam,num) aslevels1(gam,num) which callsfind1_e .

levels1(gam,num) :=
block([bott:-0.99,top:-5e-4,nn,en],

for nn:0 thru (num-1) do (
en : find1_e(gam,bott,top,nn),
print(" ",nn," ",en),
bott : en))$

and after pasting in this definition, we get

(%i10) levels1(50,6);
0 -0.896672
1 -0.710907
2 -0.551659
3 -0.41725
4 -0.305917
5 -0.215801

(%o10) done
(%i11) time(%);
(%o11) [5.83]

with the last step indicating a time of about 6 seconds for a method incorporating turning point searches, which is about
twice the time required for a method based on the analytic turning points use.

5 Solving for Energy Levels Using R’s uniroot and integrate Functions

We will use the R functionsuniroot andintegrate in order to find the values of the dimensionless energyε such that
(for a given value ofn) wkb(γ, ε,n) = 0 (see Eq.(3.6)), where

wkb(γ, ε,n) =

∫

x2(ε)

x1(ε)

√

ε− v(x)dx− (n+
1

2
)
π

γ
(5.1)

is represented bywkb(gam,e,n) in our code. The symbolgam representsγ. TheR function integrate is used to
integrate between the turning points in theR functionwkb(gam,e,n) .

wkb = function(gam,e,n) {
if (e <= -1.0) stop(" e must be greater than -1 ")
if (e >= 0.0) stop(" e must be less than zero ")
xmin = 2ˆ(1/6)
vfun = function(x) 4 * (1/xˆ12 - 1/xˆ6)
xin = xmin * (sqrt(e+1)/e-1/e)ˆ(1/6)
xout = xmin * (sqrt(e+1)+1)ˆ(1/6)/(-e)ˆ(1/6)
integrand = function(x) sqrt(e - vfun(x))
nint = integrate(integrand,xin,xout,abs.tol=1e-14,sub divisions=500L)$value
nint - (n + 1/2) * pi/gam}

After pasting in the above code, we get

> options(digits=8)
> root = uniroot(function(e) wkb(50,e,0),c(-0.99,-5e-4) ,tol=1e-14)$root;root
[1] -0.89667158
> wkb(50,root,0)
[1] 6.9388939e-18

5 SOLVING FOR ENERGY LEVELS USING R’S UNIROOT AND INTEGRATE FUNCTIONS 14

> root = uniroot(function(e) wkb(50,e,1),c(root,-5e-4), tol=1e-14)$root;root
[1] -0.71090663
> wkb(50,root,1)
[1] -9.7144515e-17

We assumedgam = 50 and assumed the ground state was greater than-0.99 and less than-5e-4 (negative but close
to zero), and found the dimensionless energye = -0.89667158 for then = 0 solution (ie., the ground state).

In the next step, we evaluatedwkb(50,e,0) at the dimensionless energy found (the root of the function), and found
that the result was numerically close to zero (remember we are using 16 digit arithmetic inR, the default).

In the next step we sought then = 1 case energy value, which is assumed to lie in the range
-0.896672 < e < -5e-4 .

It will be easier to shift the bottom starting energy used forthe root search if we design a function
find.e(gam,ebott,etop,n) .

find.e = function(gam,ebott,etop,n) uniroot(function(e) wkb(gam,e,n),
c(ebott,etop),tol=1e-14)$root

with the behavior

> find.e(50,-0.99,-5e-4,0)
[1] -0.89667158
> find.e(50,.Last.value,-5e-4,1)
[1] -0.71090663
> find.e(50,.Last.value,-5e-4,2)
[1] -0.5516587

We can then design a functionlevels(gam,num) which calculates the firstnum energy levels based on the chosen
value ofgam, beginning with the ground state, and prints out the corresponding values ofn ande.

levels = function(gam,num) {
bott = -0.99
top = -5e-4
for (nn in 0:(num-1)){

en = find.e(gam,bott,top,nn)
cat(" ",nn," ",en,"\n")
bott = en}}

with the behavior:

> system.time(levels(50,6))
0 -0.89667158
1 -0.71090663
2 -0.5516587
3 -0.41725034
4 -0.30591728
5 -0.2158009
user system elapsed
0.02 0.00 0.01

We have wrapped the functionlevels with theR functionsystem.time() .

5 SOLVING FOR ENERGY LEVELS USING R’S UNIROOT AND INTEGRATE FUNCTIONS 15

If we want to print out also the value ofwkb(gam,e,n) at the root found, and the values of the turning points, we need
to do more work, as inlevels.info :

levels.info = function(gam,num) {
bott = -0.99
top = -5e-4
xmin = 2ˆ(1/6)
x1 = function(e) xmin * (sqrt(e+1)/e-1/e)ˆ(1/6)
x2 = function(e) xmin * (sqrt(e+1)+1)ˆ(1/6)/(-e)ˆ(1/6)
for (nn in 0:(num-1)) {

en = find.e(gam,bott,top,nn)
cat(" ",nn," ",en," ",abs(wkb(gam,en,nn))," ",x1(en)," " ,x2(en),"\n")
bott = en}}

with the behavior:

> levels.info(50,2)
0 -0.89667158 6.9388939e-18 1.0715111 1.197405
1 -0.71090663 9.7144515e-17 1.0447867 1.2764788

> x1(-0.5)
Error: could not find function "x1"
> xmin
Error: object ’xmin’ not found

In the next to last step, we find that the functionx1(e) , defined inside the functionlevels.info , remains unknown
at the global level. Likewisexmin is not known at the global level.

5.1 Energy Level Diagram Using R

To make a plot of energy levels (in addition to then, energy printouts), we can use:

levels.plot = function(gam,num) {
bott = -0.99
top = -5e-4
plot(0:1, -1:0, type="n",xlab="",ylab="energy")
for (nn in 0:(num-1)){

en = find.e(gam,bott,top,nn)
cat(" ",nn," ",en,"\n")
abline(h = en,col = "blue",lwd=2)
bott = en}}

> levels.plot(50,6)
0 -0.89667158
1 -0.71090663
2 -0.5516587
3 -0.41725034
4 -0.30591728
5 -0.2158009

5 SOLVING FOR ENERGY LEVELS USING R’S UNIROOT AND INTEGRATE FUNCTIONS 16

which produces the plot

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

en
er

gy

Figure 5: bottom six energy levels: gamma = 50

5.2 A R Method Using a Search for the Turning Points

Koonin’s code searches for the location of the turning points for a given energy (rather than use analytic expressions).
His code, as a consequence, gains in versatility, since one can use the code with other potentials (with suitable scalingso
that the dimensionless potential has a minimum value of−1, and the corrected value ofxmin is used) for which analytic
turning point expressions are nota priori known.

Let’s first design code to find thexin turning point, given the dimensionless energye and a starting locationxstart
which is assumed to be greater thanxin .

find.xin = function(e,xstart) {
dx = 0.001
fdiff = function(x) e - 4 * (1/xˆ12 - 1/xˆ6)
fstart = fdiff(xstart)
xnew = xstart - dx
fnew = fdiff(xnew)
repeat {

if (fnew * fstart < 0) break
xnew = xnew - dx
fnew = fdiff(xnew)}

uniroot(fdiff,c(xnew,xstart),tol=1e-14)$root}

with the behavior

> find.xin(-0.5,1.122)
[1] 1.0267425

A similar style of code can findxout .

find.xout = function(e,xstart) {
dx = 0.001
fdiff = function(x) e - 4 * (1/xˆ12 - 1/xˆ6)
fstart = fdiff(xstart)
xnew = xstart + dx

5 SOLVING FOR ENERGY LEVELS USING R’S UNIROOT AND INTEGRATE FUNCTIONS 17

fnew = fdiff(xnew)
repeat {

if (fnew * fstart < 0) break
xnew = xnew + dx
fnew = fdiff(xnew)}

uniroot(fdiff,c(xstart,xnew),tol=1e-14)$root}

with the behavior:

> find.xout(-0.5,1.122)
[1] 1.377379

We redesign and renamewkb(gam,e,n) aswkb1(gam,e,n) which callsfind.xin andfind.xout :

wkb1 = function(gam,e,n) {
xmin = 2ˆ(1/6)
xin = find.xin(e,xmin)
xout = find.xout(e,xmin)
vfun = function(x) 4 * (1/xˆ12 - 1/xˆ6)
integrand = function(x) sqrt(e - vfun(x))
nint = integrate(integrand,xin,xout,abs.tol=1e-14,sub divisions=500L)$value
nint - (n + 1/2) * pi/gam}

with the behavior:

> wkb1(50,-0.5,2)
[1] 0.022847833

We redesign and renamefind.e(gam,ebott,etop,n) asfind1.e(gam,ebott,etop,n) which callswkb1.

find1.e = function(gam,ebott,etop,n) uniroot(function(e) wkb1(gam,e,n),
c(ebott,etop),tol=1e-14)$root

with the behavior

> find1.e(50,-0.99,-5e-4,0)
[1] -0.89667158

We next redesign and renamelevels(gamma,num) aslevels1(gamma,num) which callsfind1.e .

levels1 = function(gam,num) {
bott = -0.99
top = -5e-4
for (nn in 0:(num-1)){

en = find1.e(gam,bott,top,nn)
cat(" ",nn," ",en,"\n")
bott = en}}

with the behavior:

> system.time(levels1(50,6))
0 -0.89667158
1 -0.71090663
2 -0.5516587
3 -0.41725034
4 -0.30591728
5 -0.2158009
user system elapsed
0.44 0.00 0.44

having wrappedlevels1 in the R function system.time , to show the increase in time compared to the method which uses
analytic expressions for the turning points.

