Computational Physics with Maxima or R:
Ch. 1, Numerical Differentiation, Quadrature, and Roots

Edwin (Ted) Woollett
August 31, 2015

Contents
1.1 Introduction L e e e 3
1.2 Choice of R Interfaces and Elementsofthe RLanguage 7
1.2.1 The R Function curve for a function or expressionplat..., 14
1.3 Elements ofthe MaximalLanguage 0 e e e e e e e 18
1.3.1 The Maxima Functionplot2d 22
1.4 Numerical Derivatives e e 22
1.4.1 Numerical Derivative Functionsin R. o 23
1.4.2 Testing Simple Numerical Derivative Methods inR 27
1.4.3 Testing Simple Numerical Derivative MethodsinMaaim 29
1.5 Numerical Quadrature e e e 33
1.5.1 Rfunctionintegrate for one dimensionalintegrals..... L. 33
1.5.2 R function elliptic::myintegrate for integration@tomplex function 34
1.5.3 R function cubature::adaptintegrate for multi-disienal quadrature 34
1.5.4 Maxima quadrature functionsqugdgsandquadagi 37
1.5.5 Trapezoidal Rule foraUniform Gridin R o e 38
1.5.6 Trapezoidal Rule for a Uniform Grid in Maxima 40
1.5.7 Trapezoidal Rule fora Non-Uniform Gridin R 42
1.5.8 Trapezoidal Rule fora Non-Uniform GridinMaxima 43
1.5.9 Simpsons1/3RUIEINR e e e e 44
1.5.10 Simpson's1l/3RuleinMaxima i i e e e e e e e 46
1.5.11 Checking Integrals with the Wolfram Alpha Webpage....., a7
1.5.12 Dealing with an Integral with Infinite or Very Largenhits 48
1.5.13 Handling Integrable Singularities at Endpoints Lo 51
1.6 FIndingROOLS e e e e 53
1.6.1 RFUNCONUNIrOOt o 53
1.6.2 Rfunctionpolyroot e e e 54
1.6.3 RfunctionrootSolve::uniroot.all L 54
1.6.4 R Newton-Raphson: newton e 55
1.6.5 Rfunctionsecant e 56
1.6.6 Maxima functions findoot and bffind_root. L o 57
1.6.7 Maxima Newton-Raphson: NEWLON e e e e 59
1.6.8 Maxima Bigfloat Newton-Raphson: bfnewton oL 60
1.6.9 Maximafunctionsecant L e 61
1.6.10 Divide and Conquer Root Search e 62
1.7 mtextand Plot MarginSin R e e e e 63
1.8 Drawing Circleswith R e e e e 67
1.8.1 Homemade Circlesin R e e 67
1.8.2 CirclesUsingthe R Packageshape. 68
1.8.3 Circles Usingthe R Functionsymbols o 70
*The code examples usever. 3.0.1andMaxima ver. 5.28usingWindows XP. This is a live document which will be updated when needed.
Check http://www.csulb.edu/ ~woollett/ for the latest version of these notes. Send comments an@stigus for improvements to
woollett@charter.net

COPYING AND DISTRIBUTION POLICY

This document is the first chapter of a series of notes titled

Computational Physics with Maxima or R , and is made availabl e

via the author’s webpage http://www.csulb.edu/"woollett /

to encourage the use of the R and Maxima languages for computa tional
physics projects of modest size.

NON-PROFIT PRINTING AND DISTRIBUTION IS PERMITTED.

You may make copies of this document and distribute them
to others as long as you charge no more than the costs of printi ng.

Code files which accompany this chapter are cpnewton.mac, c plcode.mac
and cplcode.R. Use in R: source("c:/kl/cplcode.R"),

and in Maxima use: load("c:/k1l/cplcode.mac"), assuming

the files are in c:\k1\ folder.

Feedback from readers is the best way for this series of noteecome more helpful to users Rfand Maxima. All
comments and suggestions for improvements will be appgestiend carefully considered

1.1 Introduction

These notes focus on the areas of computational physicsl fiouthe textbookComputational Physicsby Steven E.
Koonin (see below). Many of the exercises, examples, an@growhich appear in this text are discussed in some detalil.
In these notes, small program codes will be included in tke t€he much larger example and project codes will be
found as separate text files with names such as exam1.R, exa1proj1.R, projl.mac etc., on the author's webpage
(see footnote on the table of contents page).

Examples of simple numerical methods are shown using BathdMaxima, in parallel sections. It is often useful to
have simple homemade code for an initial exploration sihtedasy to include debug printouts (when useful) to isolate
the gory details of what is at issue.

Understanding how to code simple numerical methods is aisexaellent way to learn the basic syntax of RRand
Maxima languages. Each of these software programs have their olgoneuand special attributes and advantages, and
one can make faster progress by having simultaneously alvexindow open and R window. In developing substan-
tial programs for the major examples and projects, use iroathe built-in core functions and package functions which
have the highest accuracy and efficiency to the extent sichvailable.

We use the powerful (and fre® language softwaren(tp://www.r-project.org/) which comes with the default
graphics interfac®Gui, and also use the (also free) integrated development emagot (IDE)
RStudio (http://www.rstudio.com/).

TheR packagesleSolve , rootSolve , bvpSolve , andReacTran are the primary (open source) R packages used
and their existence is the primary reason for choosing totdegqual space to the use of what has (in the past) been
primarily a framework for complicated statistical caldidas and models.

We also use, in parallel treatments of each topic, the frdeopen source Maxima computer algebra system (CAS) soft-
ware http://maxima.sourceforge.net/ . In particular, Maxima is used whenever symbolic integrdbrivatives,
limits, symbolic solutions of sets of algebraic or diffetiah equations, or symbolic simplifications of expressiams
needed in setting up the code of an example or project. Makimsdts own suite of numerical abilities and is especially
useful when one needs arbitrary precison calculations.

Physics

Disk Enclosed

Figure 1: Computational Physics, 1986, Basic Language

The landmark texComputational Physics by Steven E. Koonin, was published in 1986 by The Benjamimi@ings
Publishing Company, Inc, and used the Microsoft versiorhefBASIC language designed to run on IBM (and clone)
personal computers.

A version with Fortran code (with the coauthor Dawn C. Mett@divas published in 1990 by Perseus Books. The
following description of the Fortran edition appears onAmeazon website:

Computational Physics is designed to provide direct egpeg in the computer modeling of physical systems. Its scope
includes the essential numerical techniques needed tolfgsigs” on a computer. Each of these is developed heuris-
tically in the text, with the aid of simple mathematical stuations. However, the real value of the book is in the eight
Examples and Projects, where the reader is guided in agptiiese techniques to substantial problems in classical,
guantum, or statistical mechanics. These problems havediezsen to enrich the standard physics curriculum at the
advanced undergraduate or beginning graduate level. Tdieviti also be useful to physicists, engineers, and chesmist
interested in computer modeling and numerical technigditsough the user-friendly and fully documented programs
are written in FORTRAN, a casual familiarity with any otheagl-level language, such as BASIC, PASCAL, or C,
is sufficient. The codes in BASIC and FORTRAN are availablél@web at http://www.computationalphysics.info.
They are available in zip format, which can be expanded onXJMVindow, and Mac systems with the proper soft-
ware. The codes are suitable for use (with minor changeshpmachine with a FORTRAN-77 compatible compiler
or BASIC compiler. The FORTRAN graphics codes are availalslevell. However, as they were originally written to
run on the VAX, major modifications must be made to make themoruother machines.

Although both of these versions are now out of print, usedesare available via the web (for example at Amazon.com)
for as little as ten dollars for the Fortran version and sikadle for the Basic version. The reader of these notes witl ga
more understanding of the examples worked out here (usingrmaor the R language) by also reading either of the
Koonin texts. For the “Examples” and “Projects”, (and foe twverage reader) the Basic code will probably be easier to
follow than the Fortran code.

Westview Press, part of the Perseus Books Group, at thessddre
http://www.westviewpress.com/book.php?isbn=97802013 86233
offers the following prices (available in lightening primiode):

Computational Physics Fortran Version, by Steven E. Koonin
August 1998 Trade Paperback, 656 Pages, $77.00 U.S.,
$88.99 CAN, 51.99 U.K, 54.99 E.U., ISBN 9780201386233

When you click the buy icon on the Westview Press webpaqeay®@uoffered a list of online book sellers, such as Amazon, o
a list of local booksellers, such as Barnes and Noble.

The booksamillion.com website at
http://www.booksamillion.com/product/9780201386233# overview
offers the new paperback 877 :

ISBN-13: 9780201386233, ISBN-10: 0201386232, Westview Pr ess
July 1998, 656 pages

The fortran codes and the Basic codes are available as sepgréiles at
http://www.computationalphysics.info/

From the section “How to use this book” in the Basic version:

This book is organized into chapters, each containing agestion, an example, and a project. Each text section is
a brief discussion of one or several related numerical tecies, often illustrated with simple mathematical exaraple

The example and project in each chapter are applicatiorteeafitimerical techniques to particular physical problems.
Each includes a brief exposition of the physics, followedabgiscussion of how the numerical techniques are to be
applied.

The examples and projects differ only in that the studerntjieeted to use (and perhaps modify) the program which is
given for the former in Appendix B while the book providesdgice in writing programs to treat the latter through a
series of steps...

However, programs for the projects have been included ineAdjx C; these can serve as models for the student’s
own program or as a means of investigating the physics withaving to write a major program “from scratch”. A
number of suggested studies accompany each example aedtptbgse guide the student in exploiting the programs
and understanding the physical principles and numericahtigues involved.

The table of contents of KooninGomputational Physicsfollows:

Chapter 1: Basic Mathematical Operations
1.1 Numerical Differentiation
1.2 Numerical Quadrature
1.3 Finding Roots
1.4 Semiclassical quantization of molecular vibrations
Project I: Scattering by a central potential

Chapter 2: Ordinary Differential Equations
2.1 Simple Methods
2.2 Multistep and implicit methods
2.3 Runge-Kutta methods
2.4 Stability
2.5 Order and chaos in two-dimensional motion
Project Il: The structure of white dwarf stars
1.1 The equations of equilibrium
[I.2 The equation of state
[1.3 Scaling the equations
1.4 Solving the equations

Chapter 3: Boundary Value and Eigenvalue Problems
3.1 The Numerov algorithm
3.2 Direct integration of boundary value problems
3.3 Green’s function solution of boundary value problems
3.4 Eigenvalues of the wave equation
3.5 Stationary solutions of the one-dimensional Schroedin
Project Ill: Atomic Structure in the Hartree-Fock approxim
[ll.1 Basis of the Hartree-Fock approximation
1.2 The two-electron problem
[11.3 Many-electron systems
1.4 Solving the equations

Chapter 4: Special Functions and Gaussian Quadrature

4.1 Special functions

4.2 Gaussian quadrature

4.3 Born and eikonal approximations to quantum scattering

Project IV: Partial wave solution of quantum scattering
IV.1 Partial wave decomposition of the wavefunction
IV.2 Finding the phase shifts
IV.3 Solving the equations

Chapter 5: Matrix Operations
5.1 Matrix inversion
5.2 Eigenvalues of a tri-diagonal matrix
5.3 Reduction to tri-diagonal form
5.4 Determining nuclear charge densities
Project V: A schematic shell model
V.1 Definition of the model
V.2 The exact eigenstates
V.3 Approximate eigenstates
V.4 Solving the model

Chapter 6: Elliptic Partial Differential Equations
6.1 Discretization and the variational principle
6.2 An iterative method for boundary-value problems
6.3 More on discretization
6.4 Elliptic equations in two dimensions

ger equation
ation

Project VI: Steady-state hydrodynamics in two dimensions
VI.1 The equations and their discretization
VI.2 Boundary Conditions
VI.3 Solving the equations

Chapter 7: Parabolic Partial Differential Equations
7.1 Naive discretization and instabilities
7.2 Implicit schemes and the inversion of tri-diagonal matr ices
7.3 Diffusion and boundary value problems in two dimensions
7.4 lterative methods for eigenvalue problems
7.5 The time-dependent Schroedinger equation
Project VII: Self-organization in chemical reactions
VII.1 Description of the model
VII.2 Linear stability analysis
VII.3 Numerical solution of the model

Chapter 8: Monte Carlo Methods
8.1 The basic Monte Carlo strategy
8.2 Generating random variables with a specified distribut ion
8.3 The algorithm of Metropolis et al.
8.4 The Ising model in two dimensions
Project VIII: Quantum Monte Carlo for the H2 molecule
VIII.1 Statement of the problem
VIII.2 Variational Monte Carlo and the trial wavefunction
VIII.3 Monte Carlo evaluation of the exact energy
VIIl.4 Solving the problem

Distinguished

Figure 2: Steven E. Koonin

Steven Koonin has held positions in both business and gmarhsince leaving Cal Tech, and has recently returned to
academia. A New York University press release recently anoed the appointment of Koonin as the Director of the new

Center for Urban Science and Progress (CUSP). Here is alpguitite from that announcement:

Dr. Koonin was confirmed by the Senate in May, 2009 as Undegtay for Science at the U.S. Department of En-
ergy, serving in that position until November, 2011. Prioijdining the Obama Administration, he was BPs Chief
Scientist, where he was a strong advocate for researchéntwable energies and alternate fuel sources. He came to
BP in 2004 following almost 3 decades as Professor of Thigatd®hysics at the California Institute of Technology,
serving as the Institute’s Vice President and Provost feddist nine years. Koonin comes to CUSP most immediately
from a position at the Science and Technology Policy Institd the Institute for Defense Analyses in Washington, DC.

Koonin’s research interests have included nuclear aspsip$; theoretical nuclear, computational, and many-body
physics; and global environmental science. He has beetvewdn scientific computing throughout his career. He
has supervised more than 30 PhD students, produced mor2@baeer-reviewed research publications, and authored
or edited 3 books, including a pioneering textbook on Comatiomhal Physics in 1985. As Caltech’s Provost, Koonin
oversaw its research and educational programs, incluti@dpiring of one-third of the Institute’s faculty. At BP, he
conceived and established the Energy Bioscience Insttuté Berkeley and the University of lllinois, while at DOE,
he led the preparation of both its most recent Strategic &hahits first Quadrennial Technology Review for energy.
Koonin has served as an advisor for numerous academic, yoeait, and for-profit organizations.

Dr. Koonin is the recipient of numerous awards and honocd,ding the George Green Prize for Creative Scholarship
at Caltech, a National Science Foundation Graduate Fdiipwan Alfred P. Sloan Foundation Fellowship, and a
Senior U.S. Scientist Award (Humboldt Prize), and the Dapant of Energy’s Ernest Orlando Lawrence Award. He
is a Fellow of several professional societies, includirgAmerican Physical Society, the American Association ef th
Advancement of Sciences, and the American Academy of AdsSaences, and a member of the Council on Foreign
Relations and the U.S. National Academy of Sciences.

A good 3 minute YouTube video of Steven Koonin summarizing dritique of cold fusion at a science conference in
Baltimore in 1989 is available attp://www.youtube.com/watch?v=wR-AchRWbBo . The author enjoyed a similar
presentation by Koonin at the weekly Physics DepartmentoGoium at California State University at Long Beach in
that same year.

1.2 Choice of R Interfaces and Elements of the R Language

If you are new to thér language, you should first download and install the latese(&nd open source) Windows version
of Rfrom http://www.r-project.org/ , choosing the default answers for all questions asked gltini@ install pro-
cess. You should see tRdcon on your desktop. Clicking that icon will start up thealdf user interface, a Windows IDE
calledRGui, with a blinking cursor in thdR Console window. This interface will allow you to start getting farmait
with the R language.

You can customize the look of the Console window using theuiemEdit, GUIpreferences... ,

The author’s settings are 1. checked boxes: MDI, MDI Toglbaultiple windows, and True Type only, 2. Font set to
Courier New, Font size set to 12, Font style set to bold, 3. s6lenrows = 25, Console columns = 80, 4. background
color = wheatl, normal text color = black, user text color eeylpagerbg color = white.

Keyboard Shortcuts

SelectHelp, Console to get a window of keyboard shortcuts. One of the most usefuhé two key command
Ctr+Tab to toggle between the Console window and the graphics win¢idevice”). Another keyboard shortcut
to get back to the Console window (from a graphics window,eloample,) is(Alt+w, 1) , which makes use of the
Windows submenu.

To clear the screen and move the cursor to the top of the Gomsotow, use the keyboard shortalttl+l (lowercase

of letter L), or else uséedit, Clear console)

The up-arrow and down-arrow keys cycle through the “comntasibry”. The up-arrow key of the keyboard only brings
in one line at a time from the previous inputs, which is notvearient to bring into action a multiline input. It is also
very difficult to edit a multiline command inside tisui Console window. Hence the author recommends that multiline

input commands be set up in a text editor (containing a dailyrk diary”, for example) such as Notepad2 or Notepad++
which have strong parenthesis and bracket matching featanel be pasted into the Console (usig+v) to try out

the current code. You can set up multiple function defingiamd parameter assignments, copy the whole group to the
clipboard (usingCtrl+c), and then paste the whole group into the console at oncg Gsikv

Getting work done in the Console window is a little primitivEhe INS key toggles the overwrite mode on and off (ini-
tially off). When editing a line in the Console, you can use iHome End, left-arrow , andright-arrow keys to
move left and right. You can use either thackspace and/or thedelete keys to delete characters. Yoannot use
Shift+right-arrow to highlight a set of contiguous characters. Yannot useShift+End to highlight part or all of
a line. HowevercCtrl+Del will delete from the current character to the end of the curlee, andCtrl+U will delete
all text from the current line.

Clicking on the Console window does not move the cursotl+Home andCtrl+End do nothing. Page-Up and
Page-Down do nothing. To copy only some lines of input and output fonsfar back to your text based work file or
to a LaTeX document, you must drag the cursor over the linsgeatkto highlight, and then usarl+c to copy to the
clipboard.

You can copyall the current Console windows contents (i.e., since the &esbtCtrl+|) using(Edit, Select All) ,
and then eithe(edit, Copy) or Ctrl+C . To turn off the selection highlight, you can either pressBhckspace key
or use the mouse to click in the Console window.

Use repeated down-arrow’s to restore the cursor to thepirgr prompt. Pressing thiesc key will also restore the
interpreter prompt (and will also stop the interpretergenir action).

Entering, for example?curve will launch a full page browser view of documentation for g@&unctioncurve , a view
mode which is easier to read and copy from compared with theraonstricted help panel in the RStudio environment
(see below). Entering jusiurve without the leading question mark, and without gny will display theR code
which defines the function.

To quitR, useq() , (followed as usual b¥nter). You will be asked if you want to save the current state ofitloek and
settings, which requires pressing either the lettery.

Your current working directory is given byetwd() . Change your current working directory wisetwd("c:/k1") ,

for example, or else ug€ile, Change dir...) . The author sets his chosen working folder (directory) \seshartup
file. The most convenient place to put code commands you waalivays be loaded upon startupRis in the text file
Rprofile.site which has the path (on the author's computer)
C:\Program Files\R\R-3.0.1\etc\Rprofile.site , (more about this file later).
You can see what files are in your current working directorthwist.files , get file information withfile.info ,
and view file contents witfile.show
> getwd()
[1] "c/k1"
> list.files()
[1] "cpl.aux" "cpl.dvi" "cpl.log”
[4] "cpl.tex" "cpl.toc” "cpnewton.mac”
[7] "mycurve.eps" "mycurve.jpg" "mycurve.png"
[10] "mycurvel.eps” "mycurve2.eps" "new-timedate.lisp"
[13] "testl.eps" "test2.eps” "work2013-10-09.txt"

[16] "XMaxima-5-28.Ink"
> file.info("cpnewton.mac")
size isdir mode mtime ctime
cpnewton.mac 2082 FALSE 666 2013-10-07 11:25:59 2013-10-0 9 12:48:07
atime exe
cpnewton.mac 2013-10-10 12:03:59 no

> file.show("cpnewton.mac")

The last commandile.show) opened up a separate window called the R Information winddvere the contents of
the file were displayed.

Thecat function in theRGui Console does not automatically add a “line advance” in ative use (as dod@sStudio).
Instead you need to add a string" as the last element:

>a=2; b=4c¢c=6
> cat(a,b,c)

2 4 6> cat(a,b,c,"\n")
246

Depending on your aptitude for dealing with a busy environtngou might wish to download (frormttp://www.

rstudio.org/ the (free and open sourceptudio integrated development environment (IDE), which makeasier

to keep track of what objects are currently known in the wpak®, which packages are currently loaded, and has easily
seen windows for help documentation requested, plots naag@dow of a history of commands used in interactive use,
and a window displaying the files in the current folder. And $ubmenu brought up via the Session menu choice makes
it easy to set the “working directory” (working folder). Titeeis also a text window (called Source) for writing and eujti
code which has an easy method for pasting into the Consolgowin

The Console window of RStudio is the place to either type ipaste in (from either the Source window or from a text
editor such as the free and very usefldtepad2 (http://sourceforge.net/projects/notepad2/). Pressing
Enter atthe end of such Console input will calg® interpret and “run” the command(s).

You can enlarge the width of the Console window by draggintherright hand border of the Console window. However,

if you try to expand the width of the Console window too fag firesent behavior suddenly pushes the normal right win-
dow panes out of sight, and you must do some serious draggingthe right edge to recover the normal multiple pane

view; there is apparently no keyboard command which willoesthe default view and size of tiRStudio windows.

To return the cursor to the Console window, when in any oth®tuRio window, use the two-key commag+2
There are fast keyboard shortcuts for most things. To cleaConsole screen and place the cursor at the top of the Con-
sole window, us&trl+l (that is lower case lettér, not number). To quitR, useq() , (followed as usual b¥nter).

If you happen to choose (from the mun@&le, Close All) , the Source window will vanish. You can restore an
altered version using eithefFile, New, Rscript) , OrFile, New, Text File , OrFile, Open Thenyou
can return the cursor to the Source window ugindg+1 (numberl).

You should then go to thBStudio documentation pagettp://www.rstudio.com/ide/docs/ and work through

the nine sections of tutorial material under the headisgpng RStudio , with the following sections: Working in the
Console, Editing and Executing Code, Code Folding and &extiNavigating Code, Using Projects, Command History,
Working Directories and Workspaces, Customizing RStug@yboard Shortcuts. The sections on Code Folding, Projects
and Customizing are of very secondary interest to a new user.

A somewhat controversial subject is whether one shouldicesineself to the notatior- for “assignment” inR, or whether it is
kosher to use instead the equal sigim place of<- . Thusa <- 3.2 ormyf <- function(x,y) {x *sin(y)} are respec-
tively an assignment of the floating point numi3? to the symbok, and the assignment of a function definition to the symbol
myf , the latter used with the syntdix <- myf(2,1.2) , for example.

Either<- or= will result in correctly behaving code in practice. Purist& denigrate the use of the equal sigffior the assignment
operation. Physicists are used to choosing the easiesbrhetlgetting the job done. The author prefers the equal sigafsignment
because it requires one keyboard operation, rather thanama also because the resulting code can be more speedibilyis
scanned. Th&- notation slows the visual scan speed, because one needsuiogb& minus sign was not inadvertently inserted at a
position not intended. Thus the author uaes 3.2 andmyf = function(x,y) {x *sin(y)}

10

Miscellaneous Tips on R

Rtreats the symbols andN as distinct. (Case matters.)

The author prefers to expand tlensole window (of RStudio) both vertically and horizontally (the latter by drag-
ging the window edge, but not too large!). When you then makdog the plot window will become automatically
visible, but will be small. You can either drag the edge of pha window to the left, to see more clearly, and/or you
can click on the zoom icon near the top of the plot window, tnesting a much larger and dedicated window for the plot.

The author prefers to design code in a text editor sudN@spad2 (see above mention) partly because the editor uses
strong color contrast for matching parentheses and bscked it is easy to see if you have missed some closing paren-
theses or brackets. You can select one or lRstatements and paste them into @unsole as long as the end of each
line of code in clearly incomplete or clearly complete. lfirzel of code in the text editor needs completion on the next
line, split the line after a comma, for example so thatRheterpreter knows more must be coming.

The most convenient place to put code commands you want tayallve loaded upon startup Rfis in the text file
Rprofile.site which has the patl®:\Program Files\R\R-3.0.1\etc\Rprofile.site

At the moment, the authorRprofile.site file contains

%% is the mod function
is.even = function(x) x %% 2 ==
is.odd = function(x) x %% 2 != 0
symbolic derivatives, default is first derivative
uses built-in D function
DD = function(expr, name, order = 1) {
if(order < 1) stop(order must be >= 1")

iflorder == 1) D(expr, name)
else DD(D(expr, name), name, order - 1)}
example:

> DD(expression(sin(x)"2),"x")

2 * (cos(x) * sin(x))

ps = function(filename) {
postscript(file=filename ,paper="special”,
width=10,height=10,onefile=F,horizontal=F)}

setwd("c:/k1")

library(deSolve)

library(rootSolve)

The last two commands load the two packagesSolve anddeSolve . The symbok is the comment symbol iR; R
ignores the remainder of that line.

You can find whaR considers your “home” folder by interactively using two aoinds

> setwd("/")

> getwd()
[1] "C:/Documents and Settings/Edwin Woollett/My Documen ts"

and that is wher® looks for a possible second startup text file calledrofile , which you can use in place of (or
together with) the fil&Rprofile.site mentioned above.

You can get help in theStudio help panel on any knowR object using, for example

> ?getwd

11

and theRStudio help panel will display the documentation.

Numbers inR are normally considered floating point numbers. If you wardefine a true integer, use the letteafter
the integer, as we do here:

>a =2

> is.integer(a)
[1] FALSE

> b = 2L

> is.integer(b)
[1] TRUE

You can also generate true integers usingftbv@:to notation or theseq(from, to, by) notation.

> xv = 1:3

> is.integer(xv)
[1] TRUE

> yv = seq(l, 3)
> is.integer(yv)
[1] TRUE

R does not automatically show you what you have produced withssignment; this is often an advantage, but also
often you want to double-check your assignment operatiommioyediately looking at it. There are two ways to do this
on one line , first by surrounding the assignment statemetht @gening and closing parentheses, second by ending the
assignment with a semicolgnand typing the name of the object:

> (yv = sin(xv))

[1] 0.8414710 0.9092974 0.1411200

> yv = cos(xv); yv

[1] 0.5403023 -0.4161468 -0.9899925

The author prefers the semicolon method and doesn't likéate st the extra parentheses in the first method. Note, also,
that it is ok to place several assignment statements on the kae, and then displayed usiogt (done inRStudio , SO
the extra line advance strirfgn" does not have to be included as the last elemenatoj:

>a =22 b=34 c=45
> cat(a,b,c)
2.2 34 45

The functioncat() is especially useful for inserting debug printouts in yoode. When used interactively, as in:

> cat("a = "a," b =
a= 22 b= 34

"b," ¢ = ")
c= 45

within the RStudio Console window, an automatic line advance is issued whe astatement occurs. For pretty dis-
play of resultdnside a function definition, you would include at the end of eaah a line advance string as fin"
(read this as “escape, n”) in\n" , the latter resulting in a blank line in addition to the lirgvance.

However, in setting uplebug printouts, it pays to compress the output into a smaller space on theotmrso the author
deliberately leaves out the line advance string. Here isxample. InNotepad2the following meaningless function is
defined

mytest = function() {
xv = seq(0,1,by = 0.25)
yv = sin(xv)
cat(" xv = "xv," yv = "yv)
zv = exp(yv)

12

cat(" zv = "zv)

xv = (1:4)/4

cat(" xv = ", xv)

yv = sin(xv)

cat(" yv = ", yv ," \n\n")}

as a demonstration of what happens when you leave out thadivence string at the end of all but the last . The
above code was selected and copied to the Windows Clipbaadithen pasted into thHeStudio console, and then the
function was tried outR adds a+ sign to the beginning of each successive line, indicatikgdws the code fragment is
not yet complete (since the final closing bracket has not gethlfound).

> mytest = function() {

+ xv = seq(0,1,by = 0.25)

+ yv = sin(xv)

+ cat(" xv = "xv," yv = "yv)

+ zv = exp(yv)

+ cat(" zv = "zv)

+ xv = (1:4)/4

+ cat(" xv = ", xv)

+ yv = sin(xv)

+ cat(" yv = ", yv " \n\n")}

> mytest()

xv = 0025050751 yv = 0 0.247404 0.4794255 0.6816388 0.841 471 zv = 1 1.280696
1.615146 1.977115 2.319777 xv = 0.25 0.5 0.75 1 yv = 0.247404 0 4794255 0.6816388 0.841471

(If you try this in the defaulRGui interface, the output is on one very long line, so you musilktite screen rightward
to see everything, and the visible portion ends withta warn you there is more. But if you drag and copy the screen,
you get the whole output.)

With both interfaces, if you copy the screen and paste interaatim section of a LaTeX file, after running LaTeX,
thedvi file will show only part of the long line; you must line break mally in the LaTeX file.

R, by default, displays 7 digits for floating point numbers {@hnternally using 16 digit arithmetic). To make the

compressed debug output even more convenient, we can usptities(digits = m) command, and re-run the
function:
> options(digits = 3)
> mytest()
xv = 0025050751 yv= 00247 0.479 0.682 0.841 zv = 1 1.28 1.6 2 198 2.32 xv = 0.25

0.5 0.75 1 yv = 0.247 0.479 0.682 0.841

The functionls() displays the names of the named objects in your current \wades

> 1s()
[1] "a" "b" "c" "mytest" "xv"

6] "y

Notice thatzv is not known; variables assigned values inside a functieriaal to that function and are not known in
the global environment.

You can remove all currently known named objects from menusigg

> rm(list = 1Is())
> Is()
character(0)

13

We can uselata.frame to make a table with headings.

options(digits = 5)

xv = (1:10)/10; yv = sin(xv); zv = cos(xv)
xyz = data.frame(x = xv, sin = yv, cos = zv)
Xyz

X sin cos

0.1 0.099833 0.99500

0.2 0.198669 0.98007

0.3 0.295520 0.95534

0.4 0.389418 0.92106

0.5 0.479426 0.87758

0.6 0.564642 0.82534

0.7 0.644218 0.76484

0.8 0.717356 0.69671

0.9 0.783327 0.62161
0 1.0 0.841471 0.54030

V V. V V

P OO~NOO O WNPRE

The dollar sigr$ suffix is used to pick out parts of a data frame for later usimgusbject-name$part-name

> Xyz$x

[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> xyz$sin

[1] 0.099833 0.198669 0.295520 0.389418 0.479426 0.564642 0.644218 0.717356
[9] 0.783327 0.841471

R has no single precision data type. All real floating point bens are stored in double precision format. Hence the
coercive functiongs.numeric() , as.double() , andas.single() all do the same job.

A vector inRis not necessarily a physical vector, but is an ordered ctidle of objects of the same typav = 1:10
definesxv as a vector, and so does = seq(1,10) , and so doesv = c(1,2,3,4,5,6,7,8,9,10) . Thec()
function is one of the most usé&functions, and the ‘c’ stands for ‘concatenate’. Individelements of a vectorv are
accessed using a single bracket, asvig]

> xv = 1:3; yv = seq(1,3,by = 0.5); zv = ¢(1.2, 2.3, 4.5)
> cat(xv[2], yv[4], zv[1])
225 1.2

Note that theR functionsin turns vectors into vectors and single numbers into singtebars, and so does2 , etc.

> yv = seq(0,1, by = 0.25)

>y

[1] 0.00 0.25 0.50 0.75 1.00

> f1 = function(xv) xv"2

> fi(yv)

[1] 0.0000 0.0625 0.2500 0.5625 1.0000
> sin(yv)

[1] 0.0000000 0.2474040 0.4794255 0.6816388
[5] 0.8414710

> f1(3)

[1] 9

> sin(3)

[1] 0.14112

Some vector arithmetic examples (note you can divide by twowgc

> x =¢(2, 4, 6);, y =c(2, 2, 2
> X*y
[1] 4 8 12

14

> xly

1] 123

> X2y

[1] 2 8 18

> sin(x)ly

[1] 0.4546487 -0.3784012 -0.1397077
> 1/x

[1] 0.5000000 0.2500000 0.1666667

Usehead andtail to look at the first few and last few elements of a long vectodata frame. In this example we

usernorm(num, mean, stand-dev) . If you use the entrrnorm , a help panel explains that this function generates
random numbers from a “normal” (or “gaussian”) distributi@and that the names and default values for the args are:
rorm(n, mean = 0, sd = 1) . Seehttp://en.wikipedia.org/wiki/Normal_distribution for detailed
information.

> x = rnorm(50, 0, 1)

> head(x)

[1] -1.5915329 0.5068380 0.6856412 -0.7527810 -0.4271025 0.9496289

> tail(x)

[1] 0.53163641 0.01183301 -0.65729463 0.55093746 -1.0306 7796 -0.52047072

1.2.1 The R Function curve for a function or expression plot

The syntax forcurve is

curve(expr, from = NULL, to = NULL, n = 101, add
type = "I, xname = "X", xlab = xname, ylab
log = NULL, xlim = NULL, ...)

FALSE,
NULL,

In this definition,expr is the name of a function, or a call or an expression writtea @sction of x which will evaluate
to an object of the same length as x.

The commandurve(x"2,-3,3) produces an expected plot, but not:

> curve(x,-3,3)
Error in eval(expr, envir, enclos) : could not find function X"

Use of the “expression% alone in the first slot causésto look for a named function in the environment with the name
x, and not even

> curve(z,-3,3,xname = "z")
Error in eval(expr, envir, enclos) : could not find function "z"

overcomes this isolated problem withrve .

One can usebline(0,1,...) to add a straight line with y-interceptand slopel to deal with this case, as in (the
optional argype = "n" toplot creates a blank canvas with the specified horizontal anttakranges):

> plot(-3:3, -3:3, type = "n"xlab = ", ylab = ")

> abline(h=0,lwd=2)

> abline(v=0,lwd=2)

> abline(0, 1, lwd = 4, col = "blue")

15

but beware: implot(x,y,...) the vectorx andy must be thesame length.

Use of eithercurve(x™2 - 5, -3, 3) or curve(y’2 - 5,-3,3,xname = "y") will draw the same figure. The
value ofxname defaults to'x" .

You can increase the number of function samples taken foplbieby overriding the default value of, for exam-
ple with curve(x"2-5,-3,3,200) , Or by using named arguments, avoiding respecting the arddre arguments:
curve(x"2-5,-3,3,lwd=3,col = "blue",;n = 200)

Thelwd parameter defaults tevd = 1, so usingwd=3 makes the line three times as thick. The default line type for
curve isasolidlinelty = 1), and the default color isol = "black"

TheR functionsplot , matplot , points , abline , andlines can each deal with additional args involviftg , lwd ,
col , andtype .

To avoid the default labels on the horizontal (“x”) axis aihe tvertical (“y”) axis, you can includelab = ™ and
ylab = "™ or else furnish your own string, suchxdsb = "time (sec)"

The default behavior afurve (add = FALSE) starts a new figure, ignoring any past graptoosnands. If you want to
add additional elements to your initial plot, the “highé#vfunction (such asurve orplot) needs to be invoked with
the extra argagdd = TRUE In contrast, using any of the “low-level” functiopsints , orabline orlines simply adds

to your initial plot.

Here is an example of building up a figure with a grid, x and ysagad three curves, including a straight line:

curve(x3,-3,3,lwd=3,col="green" xlab="",ylab="")
grid(lty="dashed",col="black")
abline(h=0,lwd=2)

abline(v=0,lwd=2)
curve(x"2,-3,3,add=TRUE,lwd=3,col="blue")
abline(0,1,lwd = 3, col = "red")

V V VVVYV

which produces:

Figure 3: first curve example

Here is a second example of building up a figure with three okegrve :

16

> curve(x"2-5,-5,5,col="blue",lwd=3,xlab=""ylab="", ylim=c(-10,25))
> grid(Ilty="dashed",col="black")

> abline(v=0,lwd=2)

> abline(h=0,lwd=2)

> curve(y"3, -3, 3, add = TRUE, Ilwd=3, xname = "y")

> curve(y’5, -3, 3, add = TRUE, Ilwd=3, xname = "y",col="red") >

which produces

25
|

20
|

15
|

Figure 4: second curve example

Using curve with Piecewise Defined Functions

Here are two examples of usiogrve with piecewise defined functions.

> f=function(x) ifelse(x<=1,1+1/x,1/x)
> curve(f,0.5,3,lwd=3,col="blue",n=301)

which produces the plot:

Figure 5: Two Section Plot

17

and

f=function(x){
ifelse(x<=1,2+1/x,
ifelse(x<=2,1+1/x,1/x))}
curve(f,0.5,3,lwd=3,col="blue",n=301)

vV + + V

which produces

f(x)

0.5 1.0 15 2.0 25 3.0

Figure 6: Three Section Plot

References on R

A long list of contributed documents ddwhich are available on the web can be found at
http://cran.r-project.org/other-docs.html

and links to document collections, Journals, and Procgsdian be found at
http://www.r-project.org/other-docs.html

A very useful 103 page tutor in both a pdf and html version isnfib with your local installation oR. On the author’s
computer it is located at:\Program Files\R\R-3.0.1\doc\manual\R-intro.pdf

andC:\Program Files\R\R-3.0.1\doc\manual\R-intro.htm| , and is titled*An Introduction to R: Notes on

R: A Programming Environment for Data Analysis and Graphics”, by W.N. Venables, D.M. Smith, and the R Core
Team.

Whether or not you have some prior knowledgeMatiab , you will find a very well organized 52 page pdf comparison
of Matlab andR syntax, organized by the type of operation desired, at
http://www.math.umaine.edu/"hiebeler/comp/matlabR.h tml .

An 83 page pdf introduction tB by active scientific researchers including the co-authdSofving Differential Equa-

tions in R” is a pdf document titletlUsing R for Scientific Computing” by Karline Soetaert and Filip Meysman(2011),

which can be found at

http://vke.library.uu.nl/vkc/darwin/knowledgeportal [Lists/
Conferences/Attachments/28/Meysman_ScienceR.pdf

18

and an earlier 46 page version dated 2008 with the singl®@alidrline Soetaert:
http://cran.r-project.org/doc/contrib/Soetaert_Scie ntificcomputing.zip , Which, when unzipped,
contains ScientificComputing.pdf with document title “BIgiR for Scientific Computing”.

The 2009 46 page version can be found at
https://r-forge.r-project.org/scm/viewvc.php/pkg/ma relacTeaching/inst/
doc/lecture/?root=marelac&sortby=rev&pathrev=122

1.3 Elements of the Maxima Language

Users new to Maxima should work through some of the tutoriddieh can be found under the Documentation tab on the
Maxima CAS project page:
http://maxima.sourceforge.net/ Chapters 1 - 3 of the authoridaxima by Example would be sufficient.

The author always uses tkmaxima.exe interface, located in.\bin . A useful keyboard feature of Xmaxima is the
use of the two-key commandlt+p . Used once, or multiple times, you can easily repeat a pusviommand, but you
first have the opportunity to edit it before pressing Enter.

The usual keyboard commands allow easy movement within thaxXima window:Home(beginning of line) End (end
of line), PageUp, PageDown, UpArrow , DownArrow , Ctrl+Home (top of window),Ctrl+End (bottom of window).

See the discussion of how to arrange your work folder and tagup options in ch.1 of the author’s set of notes:
Maxima by Example . Google 'ted woollett’ and those notes will be at the first hithe author uses the startup file
to send the commardisplay2d:false to Maxima for routine use. This allows more information toibhéhe Xmax-
ima window at a time, and allows for easier selection and icwpgf portions of the work for transfer to a work text file
or the verbatim section of a tex file. The code fragments cbjpie verbatim sections of a tex file also then take up less
room when converted to a pdf file.

Case matters in Maxima.

(%il) a : 2;

(%01) 2

(%i2) A : 3;

(%02) 3

(%i3) [a, AJ;

(%03) [2,3]

(%i4) if a = A then print("equal”) else print("not equal”)$
not equal

Learn the crucial difference between usingpandapply with a Maxima list. Supposk is some core or homemade
function (here the definition df is unknown to Maxima):

(%i5) f;

(%05) f

(%i6) map(f, [1,2,3]);
(%06) [f(1),1(2),f(3)]
(%i7) apply(f,[1,2,3]);
(%07) (1,2,3)

(%i8) map('sin,[1.0, 2.0]);
(%08) [0.84147,0.9093]
(%i9) apply('mod,[6,2]);
(%09) 0

modis the Maxima modulus function. A useful exampleapply is with the"+" function:

(%i10) apply("+",[2,4,6,8]);
(%010) 20

19

which adds up the elements in the given list. If you have a mhlisg the “apply” method is faster than using the core
Maxima functionsum:

(%i11l) xv : makelist(i,i,1,10);
(%011) [1,2,3,4,5,6,7,8,9,10]
(%i12) apply("+",xv);

(%012) 55

(%i13) sum(xvli],i,1,length(xv));
(%013) 55

Many core Maxima functions (such fisat) automatically distribute over lists, so the useraipis not always required
to get the job done. The Lisp code which defines the core fomatetermines whether or not that function distributes
over lists. Let's check the functiasin :

(%i14) sin([1,2]);

(%014) [sin(1),sin(2)]

(%il15) properties(sin);

(%015) ["'mirror symmetry",deftaylor,integral,"distrib utes over bags",rule,
noun,gradef,transfun]

The Maxima functionproperties can be used with core functions and the elemdistributes over bags"
indicates thasin distributes over lists (provided a global paramaetistribute_over is set totrue (the default)).
See the Maxima help manual (in XMaxima, select the menu itdeip, Maxima Manual), and using ttedex mode,
type in the start oflistributes_over and select help by pressing Enter. The result starts out:

Option variable: distribute_over
Default value: true

distribute_over controls the mapping of functions over bag s
like lists, matrices, and equations. At this time not all

Maxima functions have this property. It is possible to

look up this property with the command properties.

The mapping of functions is switched off, when setting
distribute_over to the value false.

Examples:

The sin function maps over a list:

(%i1) sin([x,1,1.0]);

(%01) [sin(x), sin(1), .8414709848078965]
mod is a function with two arguments which maps over lists.

Mapping over nested lists is possible too:

(%i2) mod([x,11,2 *a],10);

(%02) [mod(x, 10), 1, 2 mod(a, 5)]
(%i3) mod([[x,y,z],11,2 *a],10);
(%03) [[mod(x, 10), mod(y, 10), mod(z, 10)], 1, 2 mod(a, 5)]

So let's check that global Maxima parameter:

(%i16) distribute_over;
(%016) true

(%i17) distribute_over:false$
(%i18) sin([1,2]);

(%018) sin([1,2])

(%i19) distribute_over:true$
(%i20) sin([1,2]);

(%020) [sin(1),sin(2)]

20

An example of a core Maxima function which does not distiéborer lists igrint

(%il) print([a,b,c]);
[a,b,c]

(%01) [a,b,c]

(%i2) map(print,[a,b,c])$
a

b

c

(%i3) properties(print);
(%03) [transfun]

Tests for equality involve:, tests for “not equal” involvet.

(%id) if 1 = 2/2 then print("equal”) else print("not equal")
equal

(%i5) is(equal(1, 2/2));

(%05) true

(%i6) if 3 # 4/2 then print("not equal") else print("equal”)
not equal

(%i7) is(equal(3, 4/2));

(%07) false

A straightforward method to construct a list is to use rifekelist
are some more simple examples:

function, which we have already used above. Here

(%i8) makelist(i/4,i,0,8);

(%08) [0,1/4,1/2,3/4,1,5/4,3/2,7/4,2]
(%i9) makelist(i/4,i,0,8,2);

(%09) [0,1/2,1,3/2,2]

(%i10) makelist(x"2,x,0,6);

(%010) [0,1,4,9,16,25,36]

(%i11l) makelist(x"2,x,0,9,3);
(%011) [0,9,36,81]

The functiongest , reverse ,cons andlength

are useful tools for working with Maxima lists:

(%i12) xv : makelist(i,i,1,10);
(%012) [1,2,3,4,5,6,7,8,9,10]
(%i13) rest(xv);

(%013) [2,3,4,5,6,7,8,9,10]
(%il4) rest(xv,2);

(%014) [3,4,5,6,7,8,9,10]
(%il5) rest(xv,-1);

(%015) [1,2,3,4,5,6,7,8,9]
(%il6) rest(xv,-2);

(%016) [1,2,3,4,5,6,7,8]
(%il7) reverse(xv);

(%017) [10,9,8,7,6,5,4,3,2,1]
(%i18) cons(0, xv);

(%018) [0,1,2,3,4,5,6,7,8,9,10]
(%i19) xv;

(%019) [1,2,3,4,5,6,7,8,9,10]
(%i20) first(xv);

(%020) 1

(%i21) last(xv);

(%021) 10

(%i22) xv[1];

(%022) 1

(%i23) xv[10];

(%023) 10

(%i24) length(xv);

(%024) 10

21

A homemade Maxima function to make a table of values for asikigown function idtable

ftable(func,x0,xf,dx):=
block([nL,fL,nfL,jj,iil,
nL : makelist(zz,zz,x0,xf,dx),
fL : map(func,nL),
nfL : makelist(" ",nL[jjl," ".fL[ilL.ji.length(nL)),
for ii thru length(nfL) do apply(print,nfL[ii]))$

After pasting this code into Xmaxima, one gets:

(%il) ftable(sin,0,0.5,0.1);
0 0
0.1 0.099833416646828
0.2 0.19866933079506
0.3 0.29552020666134
0.4 0.38941834230865
0.5 0.4794255386042
(%01) done

You can change the number of digits printed on the screenirftbenal arithmetic is still 16 digit arithmetic) by using
fpprintprec . You can also avoid the finalone output by ending your input with the doll& symbol instead of the
semicolon; .

(%i2) fpprintprec:7$
(%i3) ftable(sin,0,0.5,0.1)$
0 0
0.1 0.099833
0.2 0.19867
0.3 0.29552
0.4 0.38942
0.5 0.47943

You can restore the default large number of digits printetihéoscreen using

(%i4) fpprintprec:0$

The construction of new Maxima functions is best done in asEp text editor with strong parenthesis and bracket

matching behavior, such &®tepad2 (excellent and free). When copying and pasting a piece of autth Xmaxima,
such as

Dif(func,xval,[0oa]) =

block([h : 1le-8],
if length(oa) > 0 then h : oa[l],
(func(xval + h) - func(xval))/h)$

make sure your copy ends exactly with the dollar sign, and doéinclude extra white spaces after the dollar sign. The

author finds thaKmaxima will “hang” and come to a halt if extra white space occursratte dollar sign. In particular,
pressing Enter after the paste causes nothing to happem udieg (File, Interrupt) (equivalent toCtrl+g)
produces a Lisp error message, but the Maxima prompt doasagpear. One must udéle, Restart) to start up
a fresh version of Maxima to get back a prompt.

22

1.3.1 The Maxima Function plot2d

The first curve example done usiRgan be done with onglot2d command using Maxima. If we use the default color
cycle of Maxima, as in

plot2d([u“3,u™2,u],['u,-3,3],['y,-25,25],
[style,[lines,3]],
[gnuplot_preamble,"set grid;"])$

the default color scheme results in the first (cubic) functicawn in blue, the second (quadratic) function drawn in red
and the third (linear) function drawn in green.

To get the same color choices in our fiksexample, we need a more involvetbt2d command, which forces color
choices for each of the three functions in the list:

plot2d([u“3,u”2,u],['u,-3,3],['y,-25,25],
[style,[lines,3,3],[lines,3,1],[lines,3,2]],
[gnuplot_preamble,"set grid;"7)$

Theline syntax ig[lines, width, color] , with the default line width being, and the color choices being: 1:blue,
2:red, 3: green, 4: violet, 5: brown, 6:black, 7:blue,

To get the same color choices in our sec&example, we can use

plot2d([u“5,u”3,u"2-5],['u,-5,5],['y,-10,25],
[style,[lines,3,2],[lines,3,6],[lines,3,1]],
[gnuplot_preamble,"set grid;"])$

Much more information about Maximafslot2d function can be found in Chapter 2 bfaxima by Example on the
author’s webpage.
1.4 Numerical Derivatives

Seehttp://en.wikipedia.org/wiki/Numerical_derivative for a discussion of different types of numerical
derivative approximations.

In Computational Physics, ch 1, Sec.1, Koonin uses Tayliesexpansions to derive what he calls a “3 point” approxi-
mation to the first derivative of a functidnat some poink

P(x) = (fx+h) - f(x-h))(2 xh) -(h"2/6) *f"(x) + O(h"4)

The second and third terms on the right hand side (the emmis)eare zero if the third and higher derivatives of the given
function vanish at the positioxn, which would be the case if the function is an arbitrary selcdegree polynomial in the
interval [x-h, x+h] . (All the error terms in the above involve even powerdof If the function’s third derivative is
not zero, the error terms can in principle be made arbiyranhall by lettingh shrink to zero. However arithmetic iR

is done with only 16 digit accuracy, and this means there iimiéi 1o how small we can takh in practice, related to the
process of finding the difference of two almost equal floagingnt numbers and in the process losing significant digits of
precision (roundoff error).

We will call the following a “central difference” approxirtian to the numerical derivative df atx

P(x) = (f(x+h) - f(x-h))/(2 +h) + O(h"2)

23

For this central difference approximation, and in the absexi roundoff error, we expect the errors to decrease byhigug
a factor of 100 ith is decreased by a factor of 10.

We call the following a “forward difference” approximation

P(x) = (f(x+h) - f(x) Yh + O(h)

and call the following a “backward difference” approxineti

P(x) = (f(x) - f(x-h) Yh + O(h)

Koonin shows that the latter two approximations have eeonsO(h) and thus the errors are expected to decrease by
roughly a factor of 10 if we decrease the valuéhddy a factor of 10 (in the absence of roundoff error).

A difference formula for the 3 point symmetrsecondderivative is

f(x) = (f(x+h) -2 *f(x) + f(x-h) Yh"2 + O(h"2)

1.4.1 Numerical Derivative Functions in R
Numerical Derivative Functions in the Package rootSolve

The packageootSolve has the functiongradient andhessian which return matrices containing the first and second
derivatives of a function, using the simple difference falas, which have, in general, less accuracy than the furtio
provided by the packageumDeriv, to be discussed later.

By default, rootSolve::gradient androotSolve::hessian use the forward difference method, but by in-
cluding an option arg they can be required to use the centifielence method. After loading the packagetSolve
using thelibrary function, you can usgradient and?hessian to see documentation.

rootSolve::gradient

Part of thegradient documentation is:

gradient(f, x, centered = FALSE, pert = 1le-8, ..)
Arguments:
f: function returning one function value, or a vector of func tion values.
x: either one value or a vector containing the x-value(s) at w hich
the gradient matrix should be estimated.

centered: if TRUE, uses a centered difference approximatio n,

else a forward difference approximation.
pert: numerical perturbation factor; increase depending o n precision

of model solution.

. other arguments passed to function f

Note that the step size arg can be in any of the fopest = 1le-4 ,pert = 0.0001 ,orpert = 107(-4)

We testgradient with the first derivative ogin(x) atx = 1. Becauseradient returns a matrix as its value, we
extract the single matrix element returned using the bitemkstax[1,1] (row 1, column 1).

library(rootSolve)
?gradient
options(digits=16)
exact = cos(1); exact
[1] 0.5403023058681398

>
>
>
>

24

> numdl = gradient(sin, 1)[1,1]; numdl
[1] 0.5403023028982545

> (numdl - exact)/exact

[1] -5.496710257161753e-09

> options(digits=3)

> hv = ¢(6,8,10)

> for (i in 1:3) {

+ n = hv[i

+ num.d = gradient(sin, 1, pert = 107(-n))[1,1]

+ cat(" h = ",10°(-n)," error = ", (hum.d - exact)/exact,"\n")}
h = 1e-06 error = -7.79e-07
h = 1e-08 error = -5.5e-09
h = 1e-10 error = -1.08e-07

We see the effects of roundoff error if too small a step-sizesed (subtraction of almost equal numbers leading to loss
of digits of precision).

In the above test, we used the default forward differencecqapation. Let's try thecentered difference approximation
next.

> options(digits=16)

> numd3 = gradient(sin, 1, centered=TRUE)[1,1]; numd3
[1] 0.5403023084493697

> (numd3 - exact)/exact

[1] 4.777380863375732e-09

> options(digits=3)

> for (i in 1:3) {

+ n = hv[i]
+ num.d = gradient(sin, 1, centered=TRUE, pert = 107°(-n))[1 |
+ cat(" h = ",10°(-n)," error = ", (num.d - exact)/exact,"\n")}
h = 1e-06 error = 5.13e-11
h = 1e-08 error = 4.78e-09
h = 1e-10 error = -1.08e-07

We see that the step side-6 (smaller than the default), when used with the centered odetleads to much higher
accuracy.

Let's make a table, usindata.frame , of fractional errors which compares the forward with thateeed method for
various values oh. The vector oth values (the step size) and the fractional error calculatimake use oR's vector
arithmetic abilities.

> options(digits=3)
> hv = 4:10 ; hv
[1] 4 5 6 7 8 910
> numd = vector(mode="numeric",length=length(hv))
for (i in 1:length(hv)){
numd[i] = gradient(sin,1,pert = 107(-hv[i]))[1,1]}
numd.c = vector(mode="numeric",length=length(hv))
for (i in 1:length(hv)){
numd.c[i] = gradient(sin,1,pert = 10°(-hv[i]), centered =TRUE)[1,1]}
data.frame(h = 107(-hv), forward = (exact - numd)/exact ,
centered = (exact - numd.c)/exact)
h forward centered
le-04 7.79e-05 1.67e-09
le-05 7.79e-06 2.06e-11
le-06 7.79e-07 -5.13e-11
le-07 7.74e-08 3.60e-10
1le-08 5.50e-09 -4.78e-09
le-09 -9.72e-08 5.50e-09
le-10 1.08e-07 1.08e-07

+ V + VV + VvV

~NOoO b~ wWNERE

25

rootSolve::hessian

Part of therootSolve::hessian documentation is

hessian(f, x, centered = FALSE, pert = 1le-8, ..)
Arguments:
f: function returning one function value, or a vector of func tion values.
X: either one value or a vector containing the x-value(s) at

which the hessian matrix should be estimated.
centered: if TRUE, uses a centered difference approximatio n,

else a forward difference approximation.
pert: numerical perturbation factor; increase depending o n
precision of model solution.

. other arguments passed to function f.
Details:
Function hessian(f,x) returns a forward or centered differ ence

approximation of the gradient, which itself is also

estimated by differencing. Because of that, it is not very pr ecise.

We test this function by calculating the second derivativein(x) at the pointix = 1.

> ?hessian

> options(digits=16)

> exact = -sin(l); exact

[1] -0.8414709848078965

> numdl = hessian(sin, 1)[1,1]; numdl
[1] -0.5403023028982545

> (numdl - exact)/exact

[1] -0.3579073875950663

> numd2 = hessian(sin, 1,centered=TRUE)[1,1]; numd2
[1] -0.8252626693128207

> (numd2 - exact)/exact

[1] -0.01926188280725582

Let's concentrate on the centered method which so far sears aecurate.

> hv = 2:7; hv
11234567
> numd.c = vector(mode="numeric" length=length(hv))
for (i in 1:length(hv)){
numd.c[i] = hessian(sin, 1, pert = 107(-hv[i]), centered= TRUE)[1,1]}
options(digits=3)
data.frame(h = 107(-hv), centered = (exact - numd.c)/exac t)
h centered
le-02 1.64e-05
1le-03 -2.32e-06
le-04 -1.71e-05
le-05 1.36e-04
1le-06 -3.83e-03

vV V + V

O~ WN PP

So for this functiorsin , the most accurate second derivative (using the centerttbdjeproduced byootSolve::hessian
occurs for (approxpert=1e-3 . The results produced wumbDeriv::hessian are much more accurate.

Numerical Derivative Functions in the Package numDeriv

More accurate derivatives can be calculated using the gackanDeriv, which includes the functiograd which can be
used for calculation of the first derivative and the functi@ssian which can be used to calculate the second derivative.

Because both of the packagestSolveandnumbDeriv define a function with the name ‘hessian”, it is simplest trtstip a fresh
instance oRin which the packageootSolve has not been loaded (rather than trying to detach and investigating the validity
of the consequent results).

26

numDeriv::grad

Part of the documentation produced by ustggad after loading theaumDeriv package usingbrary is:

grad(func, x, method="Richardson", method.args=list(), oer)
Arguments:
func: a function with a scalar real result (see details).
X: a real scalar or vector argument to func, indicating the
point(s) at which the gradient is to be calculated.

method: one of "Richardson”, "simple", or "complex" indica ting
the method to use for the approximation.
method.args: arguments passed to method. Arguments not spe cified

remain with their default values as specified in details
additional arguments passed to func. WARNING: None of
these should have names matching other arguments of this fun ction.
Value: A real scalar or vector of the approximated gradient(S).

We usegrad to calculate the first derivative sin(x) at the pointx = 1. For our examplegrad returns a number (not
a matrix).

library(numDeriv)

?grad

options(digits=16)

> exact = cos(1l); exact

[1] 0.5403023058681398

> numdl = grad(sin, 1); numdl
[1] 0.5403023058635031

> (numdl - exact)/exact

[1] -8.581537349340139%e-12

> numd2 = grad(sin, 1,method
[1] 0.5403023058681398

> (numd2 - exact)/exact

[1] O

> numd3 = grad(sin, 1,method = "simple"); numd3
[1] 0.5402602314186211

> (numd3 - exact)/exact

[1] -7.787205248188559e-05

vV V V

"complex"); numd2

The default method i%Richardson" , which uses Richardson extrapolation (see?2gead help documentation for
details and references). Theomplex" method assumes the given function is analytic in a neigtdmattof the evalu-
ation pointx.

numDeriv::hessian

Part of the documentation ftyessian is

hessian(func, x, method="Richardson", method.args=list 0, --)

Arguments:

func: a function for which the first (vector) argument is use d as a parameter vector.
x: the parameter vector first argument to func.

method: one of "Richardson” or "complex" indicating the met hod to

use for the approximation.
method.args: arguments passed to method. See grad.

(Arguments not specified remain with their default values.)
: an additional arguments passed to func. WARNING: None o f
these should have names matching other arguments of this fun ction.
Value: An n by n matrix of the Hessian of the function calculat ed

at the point x.

27

We usenumDeriv::hessian to calculate the second derivativesifi(x) at the pointxk = 1. We need to extract the
single matrix element returned for our example ugihg] (row 1, column 1).

> ?hessian

> exact = -sin(l); exact

[1] -0.8414709848078965

> numdl = hessian(sin, 1)[1,1]; numdl
[1] -0.841470984807975

> (numdl - exact)/exact

[1] 9.328042114122101e-14

> numd2 = hessian(sin, 1, method = "complex")[1,1]; numd2
[1] -0.8414709848078918

> (numd2 - exact)/exact

[1] -5.541411156904218e-15

The"simple” method is not supported mumDeriv::hessian

1.4.2 Testing Simple Numerical Derivative Methods in R

To test the symmetric centered difference method of findim@@proximate numerical derivative, Koonin presents a
short interactive program in which the user provides a valustep sizeh and the central difference approximation to
the first derivative oin(x) is computed ak = 1, together with the error. The “exact” answerdgs(1) . The
default number of digits displayed Ris 7, which can be changed by the user wjgtions(digits = n) . (Use
options() to see all current options settings, but beware because ghermany options.)

> cos(1)

[1] 0.5403023

> options(digits=16)

> cos(1)

[1] 0.5403023058681398
> options(digits=7)

Here isR code which mimics his code:

tryh = function() {

x =1

exact = cos(x)

cat(" enter h <= 0 to stop \n")

repeat {
h = as.numeric(readline(" input h: "))
if (h <= 0) break
fprime = 0.5 =*(sin(x+h) - sin(x-h))/h
diff = exact - fprime
cat(" h = ",h,” error = "diff," \n\n")}}

After pasting this code into the Console window, we get

> tryh()

enter h <= 0 to stop

input h: 0.5

h = 05 error = 0.02223286
input h: le-6

h = 1e-06 error = -2.771694e-11
input h: le-8

h = 1e-08 error
input h: le-7

h = 1e-07 error
input h: -1

>

-2.58123e-09

1.943277e-10

28

We see that roundoff error occurs for< 1e-6 with this central difference method and with this function.

We have used thR functionrepeat() to define an “endless loop” and have usedhbeak function to get out of the
loop.

There are at least two ways to control the number of digitated in the output. The first (and easiest) is to use
options(digits = 3) , say.

> options(digits = 3)
> tryh()

enter h <= 0 to stop

input h: le-5

h = 1e-05 error = 1l.11e-11
input h: le-6

h = 1e-06 error = -2.77e-11
input h: -1

>

The second is to replace the last line in tryh() with the twed:

strl = sprintf(" h = %.2e error = %.2e", h, diff)
cat(paste(strl, "\n\n")) }}

in whichsprintf allows the use of a formatting string as in tfiéanguage.

In order to make a table comparing the errors in evaluatirditht derivative okin(x) at the pointx = 1, we define
the functionsD1c, D1f, andD1b which employ the central, forward, and backward differeficenulas, respectively.

D1c = function (func, x, h = 1e-8) {

(func(x + h) - func(x - h))/(2 *h) }
D1f = function(func,x,h = 1e-8) {

(func(x + h) - func(x))/h }
D1b = function(func,x,h = 1e-8) {

(func(x) - func(x - h))/h }

The “default” value ot, if the third slot is not used, is set to he-8 . With these functions pasted inR) for example,
we have

> exact = cos(1)

> exact - Dlc(sin,1)

[1] -2.58e-09

> exact - D1c(sin,1,1e-6)

[1] -2.77e-11

> exact - Dlc(sin,1, c(le-5, 1le-6))
[1] 1.11e-11 -2.77e-11

In the last entry, instead of a single valuehgfwve have used a vector bfvalues, in the forne(h1,h2) and obtained the
error for two cases using only one line.

Using this approach we now construct a table of errors (wéiddings), using the central, forward, and backward differ-
ence methods, in computing the first derivativesif{(x) atx = 1.

> hv = 10°(-(4:9)); hv
[1] 1e-04 1le-05 1le-06 1e-07 1e-08 1e-09
> merror = function(fun) exact - fun(sin, 1, hv)

29

> merror(D1c)
[1] 9.004295087322589e-10 1.114086600750852e-11 -2.771 693985437196e-11
[4] 1.943276650706594e-10 -2.581229896492232e-09 2.969 885226633551e-09
> data.frame(h=hv,D1c=merror(D1c),D1f=merror(D1f),D1 b=merror(D1b))
h Dlc D1f D1b
le-04 9.00e-10 4.21e-05 -4.21e-05
le-05 1.11e-11 4.21e-06 -4.21e-06
le-06 -2.77e-11 4.21e-07 -4.21e-07
le-07 1.94e-10 4.18e-08 -4.14e-08
le-08 -2.58e-09 2.97e-09 -8.13e-09
le-09 2.97e-09 -5.25e-08 5.85e-08

OO Uh WNBRE

We see that the error of the derivative approximations celp@onade arbitrarily small by continuing to decrease the siz
of h, due the the appearance of roundoff errors made in sulsigantio almost equal numbers from each other using 16
digit arithmetic.

TheRfunctiondiff is very efficient in taking numerical differences. The diffieceb - a = diff(c(a, b))

> diff(c(3.1, 4.2))
[1] 1.1

We can improveD1c, for example, by employing theiff() function, but the resulting function will not work in the
same way (as above) if the paramdteis set equal to a vector. Here we wiff to explore the roundoff error when
using the central difference formula with = 1e-14 .

> options(digits = 16)

> h = le-14

> fp = sin(1l + h); fp

[1] 0.8414709848079019
> fm = sin(1-h); fm

[1] 0.8414709848078911
> df = diff(c(fm,fp)); df
[1] 1.088018564132653e-14
> df = dff(2 +h); df

[1] 0.5440092820663267
> diff(c(df, cos(1)))

[1] -0.00370697619818694
> cos(1)

[1] 0.5403023058681398

For this small value oh the numerical derivative is returned with only two digitsaafcuracy.

1.4.3 Testing Simple Numerical Derivative Methods in Maxina

In Computational Physics, ch 1, Sec.1, Koonin has a shatantive program in which the user provides a valué of
and the central difference approximation to the first déisiesof sin(x) is computed ax = 1, together with the error.
The symbolic answer isos(1) , which is, to 16 digit accuracy,

(%il) float(cos(1));
(%01) 0.54030230586814

In this section on simple numerical derivatives in Maxima, will not be as careful with error calculations as we will be
in other sections. A more careful approach would be to defiriegact” value, good to 20 digits using bigfloat methods,
asin

(%i2) exact : block([fpprec:20], bfloat(cos(1)));
(%02) 5.403023058681397174b-1

30

and then compare a resutl , calculated with some other method using 16 digit arithmetith the “exact value” via

block([fpprec:20], bfloat(val - exact))

for “absolute error”, or

block([fpprec:20], bfloat((val - exact)/exact))

for “fractional error”.

If we translate th&k version oftryh() (above) into Maxima, we must end each command with a commayuet use
for assignment instead ef, we must replace curly brackets with parentheses, we masead orreadonly instead
of readline , we must usalo instead ofrepeat to get an endless loop, we must usturn instead ofbreak
to get out of the loop, we must uggint instead ofcat , theif syntax for Maxima requires then , we can add
numer:true to ensure trig functions are converted to floating point neralfor else wrap the output float), and,
finally, we should avoid the Maxima reserved waliff (used for symbolic differentiation in Maxima) in our code.

The difference between the Maxima functiaesd andreadonly is thatread evaluates the input amgadonly
does not evaluate the input.

tryh() =
block([x:1, exact,h,fprime,fp_diff],numer:true,
exact : cos(x),
print(" enter h <= 0 to stop "),
do (
h : read(" input h: "),
if h <= 0 then return(done),
fprime : 0.5 = (sin(x+h) - sin(x-h))/h,
fp_diff : exact - fprime,
print(" h = "h," error = "fp_diff)))$

After pasting this definition ofryh() into Maxima, we get

(%i3) fpprintprec:4$

(%i4) tryh();

enter h <= 0 to stop

input h:

1/20;

h = 0.05 error = 2.251E-4
input h:

1/40;

h = 0.025 error
input h:

le-3;

h = 0.001 error = 9.005E-8
input h:

_1’

(%04) done

5.628E-5

In order to make a table comparing the errors in evaluatiegfitist derivative ofsin(x) at the pointx = 1, we de-
fine the function®1c, D1f, andD1b which employ the central, forward, and backward differefocenulas, respectively.

In Rwe had the definition, incorporating a default valuédaf D1c was called with only the first two args supplied:

Dlc = function (func, x, h = 1le-8) {
(func(x + h) - func(x - h))/(2 *h) }

31

To construct a similar (in result) function in Maxima takel#ttée more work. First of all, list arithmetic in Maxima :

(%i5) 1 + [0.1, 0.01];
(%05) [1.1,1.01]
(%i6) 1/[2,3];

(%06) [1/2,1/3]

is similar to list arithmetic irR.

> 1 + ¢(0.1,0.01)

[1] 1.10 1.01

> 1/c(2,3)

[1] 0.5000000 0.3333333

However, to incorporate the default value forusing Maxima, we need to use a special syntax,
D1c(func,xval,Joa]) := etc, etc. , which we explain here.

In this Maxima function definition, inside the codea (other args) will appear as a list, and the kst (inside the
function) will be the zero length ligl if no third arg is supplied, will be a list containing one nuenfhl] if a number
is supplied for the third arg, and will be a list of a listlofvalues if a list is supplied for the third arg. Here is a litist
function to explore this behavior:

(%i7) test(func,xval,oa]) := (print(" oa = ",0a))$
(%i8) test(sin,1)$

oa =]
(%i9) test(sin,1,1e-4)$
oa = [1.0E-4]

(%i10) test(sin,1,[1e-2,1e-4])$
oa = [[0.01,1.0E-4]]

The simplest version of Maxima code results from the assiomfat the function used in the first slétigc) distributes
over lists in the same way the core functiin does. We assume, in particular, that homemade functiombwisie D1c
distribute over lists, in the same way as in these four exasapl

(%i11) ff(x) = x2%

(%i12) ff([1,2,3]);

(%012) [1,4,9]

(%i13) gg(x) = x2 *sin(x)$
(%i14) g99([1,2,3]);

(%014) [sin(1),4 *sin(2),9 *sin(3)]
(%i15) Kkk(x) := sin(x)/x$

(%i16) kk([1,2,3]);

(%016) [sin(1),sin(2)/2,sin(3)/3]
(%il17) jj(x) = x"2/cos(x)$

(%i18) jj([1,2,3]);

(%018) [1/cos(1),4/cos(2),9/cos(3)]

We can then avoid the need to usapto get the function to act on each member of a list, and useolleving simple
code (which will do the job in all three cases):

Dl1c(func,xval,[oa]) :=
block([h : 1e-8],numer:true,
if length(oa) > 0 then h : oa[l],
(func(xval + h) - func(xval - h))/(2 *h))$

We see the default value bfdefined in the local variable list at the start of thleck expression. We could just as well
have used the syntatock([h], h:1e-8, etc. to define the default value of in the code.

32

For a function which doesot distribute over a list, one could use the code (which useddedma functionlistp):

Dl1c_b(func,xval,[oa]) :=
block([h : 1e-8],numer:true,
if length(oa) > 0 then h : oa[l],
if listp(h) then
(map(func,xval + h) - map(func,xval - h))/(2 * h)
else (func(xval + h) - func(xval - h))/(2 *h))$

Here is practice usingic:

(%il) D1c(func,xval,[oa]) =

block([h : 1le-8],numer:true,
if length(oa) > 0 then h : oa[1],
(func(xval + h) - func(xval - h))/(2 *h))$

(%i2) fpprintprec:8$

(%i3) exact : float(cos(1));

(%03) 0.540302

(%i4) exact - D1c(sin,1);

(%04) -2.5812299E-9

(%i5) exact - Dlc(sin,1,1e-4);

(%05) 9.00429509E-10

(%i6) exact - Dlc(sin,1,[1le-4,1e-5]);

(%06) [9.00429509E-10,1.1140977E-11]

With the same assumptions, the forward and backward appeatiins to the first derivative are defined as:

Dif(func,xval,[0oa]) =

block([h : 1le-8],numer:true,
if length(oa) > 0 then h : oa[l],
(func(xval + h) - func(xval))/h)$

Di1b(func,xval,[oa]) =

block([h : 1e-8],numer:true,
if length(oa) > 0 then h : oa[l],
(func(xval) - func(xval - h))/h)$

We then can construct a table of errors vs. the siZe after(!) pasting in the definitions dd1c, D1f, andD1b.

(%i7) hv : makelist(107(-n),n,4,9)$

(%i8) fpprintprec:4$

(%i9) float(hv);

(%09) [1.0E-4,1.0E-5,1.0E-6,1.0E-7,1.0E-8,1.0E-9]
(%i10) merror(fun) := exact - fun(sin,1,hv)$
(%i11) merror(D1c);

(%011) [9.0043E-10,1.1141E-11,-2.7717E-11,1.9433E-10 ,-2.5812E-9,2.9699E-9]
(%i12) fpprintprec:2$
(%i13) (print" h """ D1ic " DiIf "" Dlb "),

for i thru length(hv) do
print(float(hv[i]), merror(D1c)[i], merror(D1f)[i],
merror(D1b)[i]))$

h Dic D1f Dib
1.0E-4 9.0E-10 4.21E-5 -4.21E-5
1.0E-5 1.11E-11 4.21E-6 -4.21E-6
1.0E-6 -2.77E-11 4.21E-7 -4.21E-7
1.0E-7 1.94E-10 4.18E-8 -4.14E-8
1.0E-8 -2.58E-9 2.97E-9 -8.13E-9
1.0E-9 2.97E-9 -5.25E-8 5.85E-8

We see again that the error of the derivative approximati@mnot be made arbitrarily small by continuing to decrease
the size of, due the the appearance of roundoff errors made in sulstgastio almost equal numbers from each other
using 16 digit arithmetic.

33

1.5 Numerical Quadrature

In Computational Physics, Ch.1, Sec.2, Koonin discussesdpezoidal rule for a uniform grid, two versiorig, 3/8)
of Simpson’s rule for a uniform grid, and Bode’s rule.

When we usdr or Maxima to solve complicated physics problems, we willat®the most accurate and efficient means
available. If the software available does not have what&lad or what works, homemade functions will be resorted to.
The homemade examples for quadrature (trapezoidal andsSimigrules) presented here will not necessarily be used in
our physics explorations, but understanding how they waitkimiroduce you to theR and Maxima syntax for getting
things done. We will check the accuracy of these very simpiagature rules using the quadrature functions available i
R and Maxima.

1.5.1 R function integrate for one dimensional integrals

TheRlanguage software has the numerical integration fundtitegrate with the syntax

integrate(fun, a, b, ...

Use of?integrate brings up complete syntax and return named values infoomakor example, the returned named
values info is:

Value
A list of class "integrate" with components

1. value

the final estimate of the integral.

2. abs.error

estimate of the modulus of the absolute error.

3. subdivisions

the number of subintervals produced in the subdivision proc ess.
the default is 100L

4. message

"OK" or a character string giving the error message.

5. call

the matched call.

One can use abbreviations for the names of these returnaelsvafiere are examples of quadrature over a finite interval.

> integrate(sin,0,1)

0.4596977 with absolute error < 5.1e-15

> fun = function(u) u *sin(u)"2

> integrate(fun, 0, 1)

0.199694 with absolute error < 2.2e-15

> integrate(function(x) sqrt(x) *log(1/x),0,1)

0.4444444 with absolute error < 1.3e-07

> integrate(function(x) sqrt(x) *log(1/x),0,1,rel.tol = 1e-10)
0.4444444 with absolute error < 4.9e-16

> jval = integrate(function(x) sqrt(x) *log(1/x),0,1,rel.tol = 1e-10)
> cat(ival$value, ival$abs.error, ival$subdivisions, iv al$message)
0.4444444 4.934325e-16 8 OK

> cat(ival$val, ival$abs.e, ival$sub, ival$mes)

0.4444444 4.934325e-16 8 OK

> cat(ival$v, ival$a, ival$s, ival$m)

0.4444444 4.934325e-16 8 OK

Here is an example of tR functionintegrate used for an unbounded interval quadrature.

> jval = integrate(function(x) x"2 xexp(-4 *x),0, Inf, rel.tol = 1le-8)

34

> cat(ival$value, ival$abs.error)
0.03125 2.959161e-11

> cat(ival$yv, ival$a)

0.03125 2.959161e-11

Here is an example in which the number of subdivisions nesbs increased from the default valuel@fOL .

> integrate(function(x) sin(x)/(1+x72),0 , Inf)
Error in integrate(function(x) sin(x)/(1 + x"2), 0, Inf) :
maximum number of subdivisions reached
> integrate(function(x) sin(x)/(1+x°2),0 ,Inf,subdivis ions=300L)
0.6467757 with absolute error < 9.1e-05

1.5.2 R function elliptic::myintegrate for integration of a complex function

Rs functionintegrate will only accept a real function.

> integrate(function(x) 1i *sin(x),0,1)
Error in integrate(function(x) (0+1i) * sin(x), 0, 1) :
evaluation of function gave a result of wrong type

The packagelliptic contains the functionsiyintegrate , integrate.contour , andintegrate.segments
The latter two functions allow numerical integration in tmmplex plane.

Here is a simple example of usimgyintegrate . We know thake'* = cos(x) + isin(x), S0

fol el*dx = fol cos(x)dx + i f(;l sin(x) dx.

R does not recognize thein the expressiomn = sin(1) , but does recognizéi * sin(1)

> cos(l) + i *sin(1)
Error: object 'i' not found
> cos(l) + 1i =sin(1)
[1] 0.5403023+0.841471i

After installing the packagelliptic ,

> integrate(function(x) cos(x),0,1)$val +

+ 1i »integrate(function(x) sin(x),0,1)$val
[1] 0.841471+0.4596977i

> library(elliptic)

> myintegrate(function(x) exp(li *X),0,1)

[1] 0.841471+0.4596977i

1.5.3 R function cubature::adaptintegrate for multi-dimensional quadrature

This function only accepts integration over a finite domaimj does not allow for variable upper limits on inner intégra
See http://ab-initio.mit.edu/wiki/index.php/Cubature for some useful background to tlwibature
package, including the quote:

This algorithm is best suited for a moderate number of dino@ss(say,< 7), and is superseded for high-
dimensional integrals by other methods (e.g. Monte Cant@rgs or sparse grids).

35

To useadaptintegrate for double or higher multi-dimension integrals, you firsiedeto download the package
cubature . If you are usingRStudio , go to the packages panel and click on 'Install Packages...

> install.packages("cubature")

trying URL ’http://cran.rstudio.com/bin/windows/contr ib/3.0/cubature_1.1-2.zip’
Content type ’'application/zip’ length 47448 bytes (46 Kb)
opened URL

downloaded 46 Kb
package cubature successfully unpacked and MD5 sums checke d

The downloaded binary packages are in
C:\Documents and Settings\Edwin Woollett\Local Settings \Temp\RtmpGA2HLF\downloaded_packages

You then need to usiédrary to load the package into your current work session. You can ttise?name to get the
documentation and description of required and optionalraents, and (named) return value(s).

> library(cubature)
> ?adaptintegrate

Part of the documentation is:

adaptintegrate {cubature}
Adaptive multivariate integration over hypercubes

Description:
The function performs adaptive multidimensional integrat ion
(cubature) of (possibly) vector-valued integrands over hy percubes.

Usage:
adaptintegrate(f, lowerLimit, upperLimit, ...,
tol = 1e-05, fDim = 1, maxEval = 0,
absError=0, doChecking=FALSE)

Arguments:

f
The function (integrand) to be integrated

lowerLimit

The lower limit of integration, a vector for hypercubes
upperLimit

The upper limit of integration, a vector for hypercubes

All other arguments passed to the function f

tol

The maximum tolerance, default le-5.

fDim

The dimension of the integrand, default 1, bears no

relation to the dimension of the hypercube

maxEval

The maximum number of function evaluations needed,
default 0 implying no limit

absError

The maximum absolute error tolerated

doChecking

A flag to be a bit anal about checking inputs to
C routines. A FALSE value results in approximately
9 percent speed gain in our experiments. Your
mileage will of course vary. Default value is FALSE.

36

Value
The returned value is a list of four items:

1. integral

the value of the integral

2. error

the estimated relative error

3. functionEvaluations

the number of times the function was evaluated
4. returnCode

the actual integer return code of the C routine

A return code o0 means no problems were encountered. The lowerLimit arg iisgdesnumber for a one dimensional
integral, and is a vector (for examplg(-1, 4) for a two dimensional integral), likewise for the upperLirarg. See
the examples below.

We first use a one dimensional test integral chosen from thardentation examples, first getting the exact value of the
integral using Maxima

(%i7) integrate(sin(4 *X) *x*((X *(X*(x*x-4) + 1) - 1)), X, -2, 2);
(%07) (703 =sin(8)+536 *cos(8))/512+(447 *sin(8)+1528 *cos(8))/512
(%i8) float(%);

(%08) 1.635644362960763

and then usingdaptintegrate in R

> intld = function(x) sin(4 *X) *xX*((X *(X* (X *x-4) + 1) - 1))
> intval = adaptintegrate(intld, -2, 2, tol=1e-7)

> cat(intval$i, intval$e)

1.635644 4.024021e-09

> cat(intval$f, intval$r)

105 0

As a two dimensional test integral we use Maxima to find theexalue of the integrafo1 (f23 y cos(x +y) dx) dy.

(%i5) integrate(integrate(y * cos(X+Y),x,2,3),y,0,1);
(%05) sin(4)-cos(4)-2 * sin(3)+cos(3)+sin(2)

(%i6) float(%);

(%06) -0.46609396033881

An anonymous function method of usiaglaptintegrate is, withc(2,0) being the lower limits 2 for the lower
limit of the first integral done over the real variable O for the lower limit of the second integral done over the real
variabley) andc(3,1) being the upper limits:

> adaptintegrate(function(z) z[2] *cos(z[1] + z[2]), ¢(2,0), c(3,1))
$integral

[1] -0.466094

$error

[1] 1.66805e-06

$functionEvaluations

[1] 17

$returnCode

[1] O

37

Or, abbreviating 'integral’

> adaptintegrate(function(z) z[2] *cos(z[1] + z[2]), c¢(2,0), c(3,1))$int
[1] -0.466094

To use a named function we can define

fun = function(z) {
x1 = z[1]
x2 = z|[2]
x2*cos(x1l + x2)}

whose use produces;

> adaptintegrate(fun, c¢(2,0), c¢(3,1))$int
[1] -0.466094

1.5.4 Maxima quadrature functions quad.gags and quadgagi

Maxima has various methods for quadrature (see Ch. 8 andv@agima by Example on the author’s webpage).

The Maxima functiongjuad_qgags (for a finite interval) andjuad_qgagi (for unbounded intervals) require integrands
which evaluate to real floating point numbers. We discusis tise with complex integrands below.

Here is an example of usimguad_qgags for finite interval quadrature, taken from the Maxima help manual entry for
guad_qgags , followed by use of Maxima’'sntegrate function which tries to find an exact symbolic value (instead
of an approximate numerical value).

(%il) quad_qags (X"(1/2) *log(1/x), x, 0, 1, 'epsrel=1d-10);
(%01) [0.44444444444444,4.9343245538895848E-16,315,0]
(%i2) integrate(x"(1/2) *log(1/x), x, 0, 1);

(%02) 4/9

(%i3) float(%);

(%03) 0.44444444444444

The first element of the list returned loypiad_gags is the value of the numerical integral (printed with the nembf
digits related to the current setting fpfprintprec), the second element being an estimate of the size of thdéusso
error of the result, the third elemeBi5 being the number of function evaluations, and the last efeifiebeing the
integer error code, with indicating no problems.

Here is an example of using Maximajsiad_qgagi for anunbounded interval quadrature.

(%i4) quad_qgagi (X2 *exp(-4 *x), x, 0, inf, 'epsrel=1d-8);
(%04) [0.03125,2.9591610253764947E-11,105,0]

(%i5) integrate (X2 *exp(-4 *x), x, 0, inf);

(%05) 1/32

(%i6) float(%);

(%06) 0.03125

An example of alouble integral f13 <f2 XY dx> dy done first with Maxima’sntegrate , then withquad_qgags :

0 x+y
(%i7) integrate(integrate(x *y/(x+y),x,0,2),y,1,3);
Is y+2 positive, negative, or zero?
p;
Is y positive, negative, or zero?
p;
(%07) -(35 =log(5)-27 *log(3)-30)/3+3 *log(3)-2

38

(%i8) float(%);

(%08) 2.406571818952815

(%i9) quad_qgags(quad_gags(x *y/(x+y),x,0,2)[1],y,1,3);
(%09) [2.406571818952812,2.671831443815456E-14,21,0]
(%i10) %[1];

(%010) 2.406571818952812

An example of adouble integral with a variable inner upper Iimitfl3 (fg'/z % dx) dy, done first with Maxima’'s
integrate , then withquad_qags :

(%ill) integrate(integrate(x *y/(x+y),x,0,y/2),y,1,3);

Is y positive, negative, or zero?

p;

(%011) -9 =*log(9/2)+9 *log(3)+(2 =*109(3/2)-1)/6+9/2

(%i12) float(%);

(%012) 0.81930239639591

(%i13) quad_gags(quad_qgags(x *y/(x+y),x,0,y/2)[1],y,1,3);
(%013) [0.81930239639591,9.0960838460930482E-15,21,0]
(%i14) %[1];

(%014) 0.81930239639591

An example of usingiuad_qgags for the integration of a complex function. In principle, azgmplex functiorf can be
written asf = fr + %i =*fi . We use the Maxima functionmgalpart andimagpart and the integration is done
“by hand” by separately integrating the real and imaginamsts and then combining them at the end.

(%il5) realpart(exp(%i *X));
(%015) cos(x)
(%i16) imagpart(exp(%i *X));
(%016) sin(x)

(%il7) i_real : quad_gags(realpart(exp(%i *X)),X,0,1)[1];
(%017) 0.8414709848079
(%i18) i_imag : quad_qags(imagpart(exp(%oi *X)),X,0,1)[1];

(%018) 0.45969769413186
(%i19) i_real + %i *i_imag;
(%019) 0.45969769413186 * %i+0.8414709848079

1.5.5 Trapezoidal Rule for a Uniform Grid in R
Seehttp://en.wikipedia.org/wiki/Trapezoidal_rule for a discussion of forms of the trapezoidal rule.
For integration over the finite intervd, b] , with N subintervals each of size and thush = (b - a)/N , the

trapezoidal rule is

/bf(x)dx:g(f(a)+2f(a+h)+2f(a+2h)+-~-+2f(b—h)+f(b)) (1.1)

We will provide R code for the simple trapezoidal rule value of a one dimeradimrtegral of a function or property sam-
pled at equal intervals (“uniform grid”).

Note that theR functionsin turn vectors into vectors and single numbers into singlelrans) and so does?2 , etc.

> yv = seq(0,1, by = 0.25); yv

[1] 0.00 0.25 0.50 0.75 1.00

> yv2

[1] 0.0000 0.0625 0.2500 0.5625 1.0000
> f1 = function(xv) xv"2

39

> fi(yv)
[1] 0.0000 0.0625 0.2500 0.5625 1.0000

> sin(yv)

[1] 0.0000000 0.2474040 0.4794255 0.6816388
[5] 0.8414710

> f1(3)

[1] 9

> sin(3)

[1] 0.14112

With that background, here is a trapezoidal rule functioanaaniform grid. In this codexv is a R-vector of equally
spaced positions where the function is to be sampledyearid aR-vector of function values at those positions.

trap = function(xv,yv){
n = length(xv)
(xv[2]-xv[1]) *((yv[i]+yvin])/2 + sum(yv[2:(n-1)]))}

Simple examples of use, first integratisin(@) over the intervall0, 1]. using only 5 data points (wit@ an angle
expressed in radians). We first define Reectorxv, then paste the definition afap into theRStudio Console
window, and then try out the example interactively:

> xv = seq(0,1,0.25); xv
[1] 0.00 0.25 0.50 0.75 1.00

\

trap = function(xv,yv){
n = length(xv)
(xv[2]-xv[1]) *((yv[]+yv[n])/2 + sum(yv[2:(n-1)]))}

+ +

> trap(xv, sin(xv))

[1] 0.4573009

using R’s built-in quadrature function integrate:
> integrate(sin,0,1)

0.4596977 with absolute error < 5.1e-15

> Last.value$value
[1] 0.4596977

and then integrating the same function franto O instead:

> xv = seq(from = 1, to = 0, by = -0.25); xv
[1] 1.00 0.75 0.50 0.25 0.00

> trap(xv, sin(xv))
[1] -0.4573009

> integrate(sin,1,0)$value
[1] -0.4596977

An alternative design lets the code do the work of constngctihe x-coordinate and y-coordinate lists. Let's call fRis
versiontrap2 . The arguments are the name of the function, the integrattenval start and end, and the desired number
of subintervald\. The calling syntax will berap2(fun, a, b, N)

trap2 = function(func, a, b, N) { # N is number of panels, N+1 is length of xv
h (b - a)/N
Xv = seq(a, b, by = h)
yv = func(xv)
hx ((yv[1]+yv[N+1])/2 + sum(yv[2:N]))}

40

with the behavior

> trap2(sin,0,1,4)
[1] 0.4573009
> trap2(sin,1,0,4)
[1] -0.4573009

1.5.6 Trapezoidal Rule for a Uniform Grid in Maxima

The Maxima analog of aR vector is a Maxima “list”, denoted by square brackets, as in

xv : [1,2,3,4,5,6]

Both Maxima and R usgv[3] to pick out the third element of a vector (third element of axiviaa list). TheMaxima
functionsrest andapply can be used to effect the sum of part of a Maxima list of numbers

(%i1) apply("+",[1,2,3]);
(%01) 6

(%i2) rest([1,2,3]);
(%02) [2,3]

(%i3) rest([1,2,3]-1);
(%03) [1,2]

(%i4) xv : [1,2,3,4,5,6];
(%04) [1,2,3,4,5,6]
(%i5) apply("+", rest(rest(xv,-1)));
(%05) 14

(%i6) rest(rest(xv,-1));
(%06) [2,3,4,5]

(%i7) xv[3];

(%07) 3

We can use thenaxima functionsmakelist andmapto construct a x-coordinate list and then the corresponging
coordinate list. We can use tineaxima parametefpprintprec to control the number of digits printed to the screen

(this does not affect the 16 digit precision of the internithanetic).

(%i8) map(sin,[1,2]);

(%08) [sin(1),sin(2)]

(%i9) float(%);

(%09) [0.8414709848079,0.90929742682568]
(%i10) makelist(0.25 *i, i, 0, 4);

(%010) [0,0.25,0.5,0.75,1.0]

(%ill) xv : %;

(%011) [0,0.25,0.5,0.75,1.0]

(%i12) map(sin, xv);

(%012) [0,0.24740395925452,0.4794255386042,0.6816387 6002333,0.8414709848079]
(%i13) fpprintprec : 8$

(%i14) map(sin, xv);

(%014) [0,0.247404,0.479426,0.681639,0.841471]

We can use thenaxima functionquad_qgags to do a numerical check dnap .

(%i15) quad_qgags(sin(x),x,0,1);
(%015) [0.459698,5.10366964E-15,21,0]

with the first element of the return list being the value of tlbenerical integral (printed with the number of digits rett

to the current setting dpprintprec), the second element being an estimate of the size of théuddsaror of the
result, the third element (21) being the number of functieal@ations, and the last element (0) being the integer error
code, withO indicating no problems.

41

You can pick out just the first element of this returned Maxliistausing

(%i16) quad_gags(sin(x),x,0,1)[1];
(%016) 0.459698

(%i17) %;

(%017) 0.459698

Note the percent sigtorecovers the previous line’s output, whether a number @tatia symbol.

An “exact value” of the integral is found in Maxima usiingegrate

(%i18) integrate(sin(x),x,0,1);
(%018) 1-cos(l)

(%i19) float(%);

(%019) 0.45969769413186

which has 14 accurate digits. A 19 digit “exact value” of theegral is

(%i20) block([fpprec:20], bfloat(1 - cos(1)));
(%020) 4.596976941318602826b-1

Here ismaxima code for the uniform grid trapezoidal rule (we have wrapgdesl result withfloat to convert to a
floating point number):

trap(xv,yv) :=
block([n :length(xv)],
float((xv[2] - xv[1]) *((yv[1] + yvn])/2 +

apply("+" rest(rest(yv,-1))))))$

Once we have constructed the Maxima list to be used for thte(fimsnal) argumeniv , we can either usmapin the
function call or else pre-define a corresponding coorditisttéo be used for the second (formal) argumentrap .

We first paste into Maxima (the author uses ¥maxima interface almost exclusively) the definition whp . (Note
the crucial delayed assignment symbel used to define a Maxima function.) There is one local varidleldared and
defined inside the local variables brackel , whose value remains unknown in the global environment.eGuoc have
pasted the definition into XMaxima (usir@trl+v), press the keyboard down-arrow key to get to the bottom ef th
input, and then pre€snter .

(%il) trap(xv,yv) :=
block([n :length(xv)],
float((xv[2] - xv[1]) *((yv[1] + yv[n])i2 +
apply("+",rest(rest(yv,-1))))))$
(%i2) fpprintprec:8$
(%i3) xL : makelist(i/4,i,0,4);
(%03) [0,1/4,1/2,3/4,1]
(%i4) yL : sin(xL);
(%04) [0,sin(1/4),sin(1/2),sin(3/4),sin(1)]
(%i5) trap(xL, yL);
(%05) 0.457301

An alternative Maxima version of the trapezoidal rule, wtile syntaxtrap2(fun, a, b, n) , with n the requested
number of subintervals (panels), is

trap2(func,a,b,n) =
block(fh : (b - a)/n,xL,yL],
xL : makelist(a + i *h,i,0,n),
yL : map(func, xL),
float(th = ((yL[1] + yL[n+1])/2 +
apply('+" rest(rest(yL,-1))))))$

42

The Maxima functiorfloat converts numbers to floating point numbers.

(%i6) trap2(func,a,b,n) :=
block(lh : (b - a)/nxLyL],
xL : makelist(a + i *h,i,0,n),
yL : map(func, xL),
float(h »((yL[1] + yL[n+1])/2 +
apply("+",rest(rest(yL,-1))))))$
(%i7) trap2(sin, 0, 1, 4);
(%07) 0.457301
(%i8) trap2(lambda([x], sin(x)),0,1,4);
(%08) 0.457301
(%i9) trap2(lambda([x], x *sin(x)"2),0,1,4);
(%09) 0.208184
(%i10) quad_gags(x *sin(x)"2,x,0,1);
(%010) [0.199694,2.21704874E-15,21,0]

The first example of usingap2 uses the name of a function which Maxima knows about (eitlearea Maxima func-
tion, or one defined by a loaded package, or one defined by yiuariame prior to callingrap2). The second and
third examples (using the anonymous lambda function) amengles of how you could use your own (unnamed) function.

Integratingsin(x) instead fromx = 1 to x = 0 should reverse the sign, and this is easy to check with versio
trap2

(%i11l) quad_gags(sin(x),x,1,0);

(%011) [-0.459698,5.10366964E-15,21,0]
(%i12) trap2(sin,1,0,4);

(%012) -0.457301

We have to do more work to chetiap

(%i13) xL : reverse(makelist(i/4,i,0,4));
(%013) [1,3/4,1/2,1/4,0]

(%i14) yL : map(sin, xL);

(%014) [sin(1),sin(3/4),sin(1/2),sin(1/4),0]
(%il5) trap(xL, yL);

(%015) -0.457301

1.5.7 Trapezoidal Rule for a Non-Uniform Grid in R

Jarek Tuszynski, in th& packagecaTools , has a version of the trapezoidal rule which can handle walgspaced

data. (We have replaced has.double with as.numeric , since all real floats are treated as doubl®jrand have

omitted his final wrapeturn() function which is not needed; the last result in a functiowligt is returned (provided
the interior of the function code does not contaireturn() call which is activated by a decision).

Jarek’s code uses the matrix multiply symB6I%which is used to multiply matrices together, multiply a \wdimes a
matrix, or to multiply two vectors together to form an “inn@oduct” of two R-vectorsR does not distinuish row vectors
from column vectors; all vectors are equal. The functiorevy andncol returnNULLfor a vector, while the functions
NROVENdNCOLtreat aR vector as a one-column matrix.

> yv = seq(1,3,by = 0.5); yv
[1] 1.0 1.5 2.0 25 3.0

> nrow(yv)

NULL

> ncol(yv)

NULL

> NCOL(yv)

[1] 1

> NROW(yv)

[1] 5

43

The inner product of two vectors is then

> xv = ¢(1,2,3); yv = ¢(2,2,2)
> xv %% yv

(1]
[1] 12
> as.numeric(xv % *% yv)
[1] 12

Without the coercivas.numeric , the inner product results in a one element matrix.

With that background, the non-uniform grid code is then:

trapz = function(xv,yv) {
idx = 2:length(xv)
as.numeric((xv[idx] - xv[idx - 1]) % *0% (yv[idx - 1] + yv[idx])/2)}

For a uniform grid, this reduces to the same algorithm usddajm . We can use small random numbers to deform a
uniform grid into a non-uniform grid, using thister function (which adds a small amount of noise to a vector).

> xv = seq(0,1, by = 0.25); xv
[1] 0.00 0.25 0.50 0.75 1.00
> xXv = jitter(xv)

> XV

[1] -0.03366742 0.23070275 0.50177947 0.70747696 1.01899 303

> trapz = function(xv,yv) {

+ idx = 2:length(xv)

+ as.numeric((xv[idx] - xv[idx - 1]) % *9% (yv[idx - 1] + yv[idx])/2)}

> trapz(xv, sin(xv))
[1] 0.4721434

Because each call to the random number generator resultdiffegent result, your results fgitter(xv) will not
necessarily be the same as in the above.

1.5.8 Trapezoidal Rule for a Non-Uniform Grid in Maxima

The inner product of two maxima lists is produced by sepagatie lists by .

%i1) [2, 2, 2] . [1, 2, 3];
(%01) 12

Again we use Maxima’'snakelist function to produce Maxima code for the non-uniform gridsien of the trapezoidal
rule.

trapz(xv,yv) :=

block([n:length(xv)],
dxx : makelist(xv[i] - xv[i-1], i, 2, n),
yy : makelist(yv[i-1] + yv[i], i, 2, n),
float(dxx . yy/2))$

After pasting this code into Maxima, we first test this codmg® uniform grid as a check.

(%i2) xL : makelist(i/4,i,0,4);

(%02) [0,1/4,1/2,3/4,1]

(%i3) yL : sin(xL);

(%03) [0,sin(1/4),sin(1/2),sin(3/4),sin(1)]
(%i4) fpprintprec:8$

(%i5) trapz(xL, yL);

(%05) 0.457301

(%i6) trapz(xL, sin(xL));

(%06) 0.457301

44

We now deform the uniform grid using a homemiitter function in Maxima:

jitter(xv,[0]) :=
block([ampl,fac:1],
if not listp(xv) then return("xv must be a list"),
if length(o) > 0 then fac : o[1],
if length(o) > 1 then ampl : 0[2]
else ampl : fac *(apply(max,xv) - apply(min,xv))/50,
xv + ampl * makelist(random(2.0) -1, i, 1, length(xv)))$

The syntax igitter(alist [factor, amplitude]) in which factor and amplitude are both optional argu-
ments with default values. The default value of factat.iSo override the default value of factor, use
jitter(alist,myfactor) . To override the default value of amplitude, you must havalaerin the factor slot also.
Here are some simple examples:

(%i7) jitter([1,2,3]);

(%07) [0.997476,2.0216678,3.0163642]
(%i8) jitter([1,2,3],2);

(%08) [1.0025236,2.0397766,2.9712082]
(%i9) jitter([1,2,3],1,1/50);

(%09) [0.998108,1.9851285,3.0069044]
(%i10) jitter(2);

(%010) "xv must be a list"

We now usgitter to deform the previously used uniform grid and again tuapz

(%ill) xL;
(%011) [0,1/4,1/2,3/4,1]
(%i12) xL : jitter(xL);

(%012) [-0.0193452,0.261299,0.490535,0.736513,1.0169 432]
(%i13) yL : map (sin, xL);
(%013) [-0.019344,0.258336,0.471098,0.671709,0.85050 4]

(%il4) trapz(xL, yL);
(%014) 0.471132

1.5.9 Simpson's 1/3Rulein R

Seehttp://en.wikipedia.org/wiki/Simpson%27s_rule for a discussion of Simpson’s rule.

For integration over the finite intervdh, b] , with N the even number of subintervals, each of sibeand thus
h = (b - a/N ,Simpson’sl/3ruleis

b
h
/ £(x) dx = (F(a) + 4f(a+h) + 2f(a+2h) +4f(a+3h) + -+ 4f(b—h) +£(b)) (1.2
Note that we assume a “uniform grid”, and the interval of gnétion is divided into an even number of subintervals, so
the length of the position vecteaw should be odd. A “vectorizedR code with similarities tdrap above is (withN the
even number of subintervals)

simp = function(xv,yv) {
N = length(xv) - 1
if (N %% 2 = 0) {
return(" length(xv) should be an odd integer ")}
h = xv[2] - xV[1]
if (N ==2)s = yv[l]+4 *yv[2]+yv[3] else {
s = yv[1] + yv[N+1] + 4 *sum(yv[seq(2,N,by=2)]) +
2x sum(yv[seq(3,N-1,by=2)])}
s*h/3}

45

After pasting this code into the Console, we get

> xv = seq(0,1,by = 0.25); xv

[1] 0.00 0.25 0.50 0.75 1.00

> simp(xv, sin(xv))

[1] 0.4597077

> integrate(sin,0,1)

0.4596977 with absolute error < 5.1e-15

We also check the case of integration franto O:

> xv = seq(1,0,by = -0.25); xv

[1] 1.00 0.75 0.50 0.25 0.00

> simp(xv, sin(xv))

[1] -0.4597077

> integrate(sin,1,0)

-0.4596977 with absolute error < 5.1e-15

and check the cad¢ = 2

> xv = ¢(0, 0.5, 1); xv
[1] 0.0 0.5 1.0

> simp(xv, sin(xv))

[1] 0.4598622

and finally check the error return if the length»af is not odd:

> xv = seq(0,1.25, by = 0.25); xv

[1] 0.00 0.25 0.50 0.75 1.00 1.25

> simp(xv, sin(xv))

[1] " length(xv) should be an odd integer "

A secondR language version of Simpson’s rule with the syntaxp2(fun, x1, x2, num_panel) requires the
creation of the “position vectorXv inside the function. We then have two ways of usgay . One method uses the

by argument, and the other uses thagth.out argument (which can be shortenedaagth). Here is interactive
experimentation irfR:

a 0.5 b =15

N = 4; h = (b-a)/N; h

[1] 0.25

> seq(a,b,by=h)

[1] 0.50 0.75 1.00 1.25 1.50
> seq(a,b,length = 5)

[1] 0.50 0.75 1.00 1.25 1.50

vV Vv

Here isR code forsimp2 :

simp2 = function(func, a, b, N) {
if (N %% 2 != 0) {
return(" N should be an even integer ")}
h = (b - a)/N
Xv = seq(a, b, by=h)
yv = func(xv)
it (N ==2)s = yv[l]+4 *yv[2]+yVv[3] else {
s = yv[l] + yv[N+1] + 4 *sum(yv[seq(2,N,by=2)]) +
2x sum(yv[seq(3,N-1,by=2)])}
s* h/3}

with the behavior:

46

> simp2(sin,0,1,4)

[1] 0.4597077

> simp2(sin,1,0,4)

[1] -0.4597077

> simp2(sin,0,1,5)

[1] " N should be an even integer "

1.5.10 Simpson’s 1/3 Rule in Maxima

A straightforward translation of thie version ofsimp into the Maxima language is:

simp(xv, yv) =
block([n, s],
n : length(xv) - 1, / * number of panels */
if mod(n,2) # O then return(" length(xv) should be an odd inte ger "),

h @ xv[2] - xv[1],
if n =2 then s : yv[l] + 4 *yv[2] + yv[3]
else s : yv[l] + yv[n+1] +

4% apply("+",makelist(yv[i],i,2,n,2)) +

2+ apply("+", makelist(yvl[i],i,3,n-1,2)),
float(s *h/3))$

Integratingsin first over[0,1] as before, with 4 panels, and then frdnback to0:

(%i1) xL : makelist(i/4,i,0,4);

(%01) [0,1/4,1/2,3/4,1]

(%i2) yL : map(sin, xL);

(%02) [0,sin(1/4),sin(1/2),sin(3/4),sin(1)]
(%i3) fpprintprec:8%

(%i4) simp(xL,yL);

(%04) 0.459708

(%i5) xL : reverse(xL);

(%05) [1,3/4,1/2,1/4,0]

(%i6) yL : map(’sin, xL);

(%06) [sin(1),sin(3/4),sin(1/2),sin(1/4),0]
(%i7) simp(xL,yL);

(%07) -0.459708

and finally a test of the error return feature:

(%i8) xL : makelist(i/4,i,0,5);
(%08) [0,1/4,1/2,3/4,1,5/4]
(%i9) length(xL);

(%09) 6
(%i10) yL : map('sin, xL);
(%010) [0,sin(1/4),sin(1/2),sin(3/4),sin(1),sin(5/4)]

(%i11) simp(xL,yL);
(%011) " length(xv) should be an odd integer "

And here is a second Maxima version of Simpson’s rule withsih@axsimp2(fun, x1, x2, num_panel)

simp2(func,a,b,n) =
block([h,xL, yL, s],

if mod(n,2) # O then return(" n should be even number of panels ",
h : (b - a)n,
xL : makelist(a + i *h,i,0,n),

yL : map(func, xL),

47

if n =2 then s : yL[1] + 4 *yL[2] + yL[3]
else s : yL[1] + yL[n+1] +

4 apply("+",makelist(yL[i],i,2,n,2)) +

2+ apply("+", makelist(yL[i],i,3,n-1,2)),
float(s *h/3))$

with the behavior:

(%i12) simp2(sin,0,1,4);

(%012) 0.459708

(%i13) simp2(sin,1,0,4);

(%013) -0.459708

(%i14) simp2(sin,0,1,5);

(%014) " n should be even number of panels"

1.5.11 Checking Integrals with the Wolfram Alpha Webpage

The Wolfram Alpha web pagénttp://www.wolframalpha.com , allows free one-line commands (integrals, deriva-
tives, plots, etc.,) which may require translating Maxirgatax into Mathematica syntax.

A web page with some translation from Maxima to Mathematica i

http://www.math.harvard.edu/computing/maxima/

A larger comparison of Maxima, Maple, and Mathematica syigat

http://beige.ucs.indiana.edu/P573/node35.html

Maxima syntax for 1d symbolic integration over a specifigérival is

(%i13) integrate(cos(x),x,0,1);
(%013) sin(1)

(%i14) float(%);

(%014) 0.8414709848079

The corresponding Mathematica request would be (note tiye lotackets):

Integrate[Cos[x], {x, 0, 1}]

for a symbolic answer, and

Nintegrate[Cos[x], {x, 0, 1}]

produces a numerical result corresponding to Maxima'’s

float(integrate(cos(x),x,0,1))

An integration over an unbounded interval, done in Maxim#n\{fior example)

float(integrate(x™2 * exp(-X),X,0,inf))

is done using Mathematica with

NiIntegrate[x"2 *Exp[-x], {x, 0, Infinity}]

Mathematica also has the functibhwhich computes the numerical valuee{pr with the syntax:

48

N[expr]

or

expr /IN

Two examples of numerical two dimensional integration intihéaatica syntax are:

Nintegrate[1/Sqrt[x + vy], {x,0,1}{y,0,1}]
NiIntegrate[Sin[x *y 1,{x,0,1}, {y,0,1}]

1.5.12 Dealing with an Integral with Infinite or Very Large Li mits

To compute an integral over a semi-infinite interje@loc], change variablesx = a +t/(1 — t).

/:Of(x)dx:/olf<a+1it> (1_1t)2dt

Example 1: [[°x2e > dx = [, AT eXD (1_—_1t) dt

We compute the left hand side, first with Maxima

(1.3)

(%i3) integrate(x"2 * exp(-x),x,1,inf);
(%03) gamma_incomplete(3,1)

(%i4) float(%);

(%04) 1.839397205857212

and then witlR

> integrate(function(x) x"2 *exp(-x),1, Inf)
1.839397 with absolute error < 3.1e-05

We then check the right hand side, first with Maxima

(%i6) quad_qgags(exp(-(1/(1-1)))/(1-t)"4,t,0,1);
(%06) [1.839397205857212,1.0649276645161734E-12,189, 0]

and then witlR

> integrate(function(t) exp(-(1/(1-t)))/(1-t)"4,0,1)
1.839397 with absolute error < 6.3e-05

Example 2:[* x?e *dx = [((21‘:1)}12 exp <—(fil)) dt

The left hand side, via Maxima

(%i7) integrate(x"2 * exp(-x),x,-1,inf);
(%07) %e

(%i8) float(%);

(%08) 2.718281828459045

49

and withR

> integrate(function(x) x"2 * exp(-x),-1,Inf)
2.718282 with absolute error < 0.00016

and the right hand side with Maxima

(%i9) quad_qags((2 *t - 1)2 =*exp(-(2 *t-1)/(1-1))/(1-1)"4,1,0,1);
(%09) [2.718281828459046,1.4810265488268963E-11,189, 0]

and then witlR

> integrate(function(t) (2 *t - 12 xexp(-(2 *t-1)/(1-t))/(1-1)°4,0,1)
2.718282 with absolute error < 4.5e-07

To compute an integral over the unbounded intefvak, oo], change variablest = t/(1 — t2).

o0 1 t 1+ t2
/ f(x)dx:/_1f<1_t2> S dt (1.4)

)dt

We check the left-hand side, first with Maxima

(%i10) integrate(x"2 * exp(-abs(x)),x,-inf,inf);
(%010) 4

and then witiR

> integrate(function(x) x"2 * exp(-abs(x)),-Inf,Inf)
4 with absolute error < 0.00014

We next check the right-hand side, first with Maxima

(%ill) quad_qgags(t"2 *(1+t72) *exp(-abs(t/(1-1°2)))/(1-t°2)°4, t, -1, 1);
(%011) [4.0,2.9692915364436538E-12,483,0]

and then witlR

> integrate(function(t) t"2 *(1+4t72) *exp(-abs(t/(1-1°2)))/(1-t°2)°4, -1, 1)
4 with absolute error < 0.00016

There is a discussion of these two transformation formulashe webpage
http://ab-initio.mit.edu/wiki/index.php/Cubature in the context of theC implementation of the cubature
code foradaptintegral

Note the Jacobian factors multiplyifg- - -) in both integrals, and also that the limits of thantegrals are different in
the two cases.

In multiple dimensions, one simply performs this changeasfables on each dimension separately, as desired, multi-
plying the integrand by the corresponding Jacobian factoe&ch dimension being transformed.

The Jacobian factors diverge as the endpoints are appmbaktosvever, iff (x) goes to zero at least as fastisc?,
then the limit of the integrand (including the Jacobian darts finite at the endpoints. If youi(x) vanishes more
slowly than1/x2 but still faster thari /x, then the integrand blows up at the endpoints but the intégsiill finite

(it is an integrable singularity), so the code will work fedugh it may take many function evaluations to converge). If
yourf(x) vanishes only a$/x, then it is not absolutely convergent and much more carejisired even to define what
you are trying to compute. (In any case, the h-adaptive guads/cubature rules currently employed in cubature.c do
not evaluate the integrand at the endpoints, so you neednpiément special handling fot| = 1)

50

To compute an integral over a semi-infinite interjabo, b], change variablest = b + t/(1 + t) to get

b 0
/—oof(X)dX:/—lf<b+1—t’_t> (1it)2 dt (1.5)

Example L [x*e*dx = [°) qigr exp <1_—+1t) dt

We compute the left hand side, first with Maxima

(%il4) integrate(x"2 * exp(x),x,-inf,-1);
(%014) gamma_incomplete(3,1)

(%il15) float(%);

(%015) 1.839397205857212

and next withR

> integrate(function(x) x"2 * exp(x),-Inf,-1)
1.839397 with absolute error < 3.1e-05

We then compute the right-hand side, first with Maxima

(%i16) quad_qags(exp(-1/(1+t))/(1+t)°4, t, -1, 0);
(%016) [1.839397205857212,1.0649276645161734E-12,189 ,0]

and then witlR

> integrate(function(t) exp(-1/(1+t))/(1+t)"4, -1, 0)
1.839397 with absolute error < 6.3e-05

Example 2: [1 x?e*dx = [% ((lfftt)r exp (11tht) dt

We check the left-hand side with Maxima

(%il7) integrate(x"2 * exp(x),X,-inf,1);
(%017) %e

(%i18) float(%);

(%018) 2.718281828459045

and withR

> integrate(function(x) x"2 * exp(x),-Inf,1)
2.718282 with absolute error < 0.00016

We check the right-hand side with Maxima

(%i19) quad_gags((1+2 *1)"2 *exp((1+2 =t)/(1+1))/(1+t)°4,t,-1,0);
(%019) [2.718281828459046,1.4810265488268963E-11,189 ,0]

and then witiR

> integrate(function(t) (1+2 *1)°2 *exp((1+2 *t)/(1+t))/(1+1)°4,-1,0)
2.718282 with absolute error < 4.5e-07

A more general transformation formula, which can be used wither unbounded integral limits or simply very large
limits (on the scale length of the integrand) is the iden(iigovided the produci b > 0):

b 1/a 1 1
/a f(x)dx—/l/b t_2f<€> dt (1.6)

This identity can be used witkither b — oo with a positive,or with a — —oo andb negative provided (x) decreases
toward infinity faster than /x2.

51

For example, one can split the integrfJ” f(x)dx = [, f(x)dx + [°f(x)dx, choosing the breakpoirt to be
large enough that the asymptotic limit of the integrand imdepproached, and then transform #eeond term into
Ye L g(1) dt
fo t2 (t) .
Example taking: = 20:
Jo cos(x)e ™ dx = f020 cos(x)e X dx + [, cos(x) e *dx

and we use the above transformation on the second term to g&tiegral over a finite domain:

fzotc)) cos(x)e *dx = f(;l/ZO cos(1/t) :;(p(—l/t) dt.

Using Maxima for the original integral with unbounded limit

(%il) integrate(cos(x) * exp(-x),x,0,inf);
(%01) 1/2

we then usd&kto show that the finite domain transformed term is negligiated only the first term including contributions
from x < 20 needs to be retained.

> integrate(function(t) cos(1/t) * exp(-1/t)/t°2,0,0.05)
-5.203003e-10 with absolute error < 1.5e-14
> integrate(function(x) cos(x) * exp(-x),0,20)

0.5 with absolute error < 4.6e-05

This split-up method can be used to evaluate an integraktptécision desired by simply choosindarge enough that
the neglected piece is small enough compared to the donteantover[0, c]

1.5.13 Handling Integrable Singularities at Endpoints

Itis easy to find the integrafly” % = Jo & (2x) dx = 2 /= despite the singularity of the integrandxat= 0. This

is an example of an “integrable singularity”. Likewise Mié

(%i2) integrate(1/sqrt(x),x,0,%pi);

(%02) 2 *sqrt(%pi)

(%i3) float(%);

(%03) 3.544907701811032

(%i4) quad_qgags(1/sqrt(x),x,0,%pi);

(%04) [3.544907701811034,8.8817841970012523E-15,231, 0]

andR have no difficulties.

> options(digits=16)
> integrate(function(x) 1/sqrt(x),0,pi)$val
[1] 3.544907701811033

Multiplying the above integrand by the well behaved funetios(x) should not increase the numerical effort, first with
R

> integrate(function(x) cos(x)/sqrt(x),0,pi)$val
[1] 1.325734626520552

and then with Maxima

(%i5) quad_qags(cos(x)/sqrt(x),x,0,%pi);
(%05) [1.325734626520542,2.9753977059954195E-13,315, 0]

52

Maxima can return an analytic result in termsesf which represents the Error Function, defined in Sec. 7.1.1 of
Abramowitz and Stegurtiandbook of Mathematical Functions

erfl(z) = — / (1.7)

But converting Maxima’s analytic result to a floating pointnmber requires discussion. We know the numerical result
must be a real number.

(%i6) ival : integrate(cos(x)/sqrt(x),x,0,%pi);
(%06) -sqrt(%pi) *((sqrt(2) * %0i-sqrt(2)) * erf(sqrt(%pi) *(sqrt(2) *%i+sqrt(2))/2)
+(sqrt(2) *%i+sqrt(2)) *erf(sqrt(%pi) *(sqrt(2) *%i-sqrt(2))/2))/4
(%i7) float(ival);
(%07) -0.44311346272638 *((1.414213562373095 * %i-1.414213562373095)
* erf(0.88622692545276
*(1.414213562373095 * %i+1.414213562373095))
+(1.414213562373095 * %i+1.414213562373095)
*erf(0.88622692545276
*(1.414213562373095 * %i-1.414213562373095)))
(%i8) expand(%);
(%08) 1.9678190753608281E-16 * %i+1.325734626520541
(%i9) realpart(%);
(%09) 1.325734626520541

The small imaginary part is due to the approximate numegegaluation of the Error Function. Experience has shown
that reducing a complicated expression involv#g(which stands fok/—1) to a possibly complex number is simplified
by defining the homemade function (“cfloat”. complex float)

cfloat(ee):= expand(float(rectform(ee)))$

(%i10) cfloat(ee):= expand(float(rectform(ee)))$

(%i11) cfloat(ival);

(%011) 2.6089841481297814E-16 * %i+1.325734626520542
(%i12) realpart(%);

(%012) 1.325734626520542

The Maxima functiorrectform returns an expression of the foan+ b* %i, in whicha andb are real.

(%i13) rectform(exp(%oi *X));
(%013) %i *sin(x)+cos(x)
(%i14) rectform(cos(%i *X));

(%014) cosh(x)

If our numerical quadrature software had been unable towléalthe integral f b Cosf(x) dx we could have trieéhtegra-

tion by parts, usmgc"\s/(_x) = &(2/x cos(x)) — 2 v/x & cos(x) Thenfb COS;‘ x = 2vb cos(b) +
2 fo x sin(x) dx, and the remaining integral is not singular.

Quoting Joel Ferzigemumerical Methods for Engineering Application, p. 47,

In many singular integrals it is possible to factor the iméggl into the product of two components: one that contains
the singularity but is easily integrated analytically, angecond that is not singular and can be differentiated. ¢h su
a case integration by parts will often convert the integnéd ione that is not singular ...sometimes it is desirable to
repeat the integration by parts to obtain a still smoothiegiral.

Ferziger then suggests a second strategy calteglilarity subtraction:

A related but slightly different method is to factor the igital into the sum of two parts: one that contains the singylar
but is integrable analytically, and a second that is nongardut requires numerical quadrature.

53

Here is a general example:

P fx) b f(x) — £(0) b dx
dx—/ ————~dx+f(0 — (1.8)
0o VX 0 VX (0) 0o VX
cos(x b dx b cos(x
Applied to our example, this becom§§ dx s~ f

Becausg(1 — x2) = (1 —x)(14+x)—2(1—x)asx — 1, the method of singularity subtraction can be used to re-

1
\/ <x/1 x2 \/2(1—x)> dx+f0 «/ —x)’

easy to integrate, and the integrand of the first term is smast — 1.

place the mtegraf0 , iIn which the second term is

However, both Maxima anR have no difficulties with this last example, first Maxima:

(%i15) quad_gags(1/sqrt(1-x"2),x,0,1);

(%015) [1.570796326794881,5.4368065605103766E-11,315 ,0]
(%i16) integrate(1/sqrt(1-x"2),x,0,1);

(%016) %pi/2

and thenR:

> integrate(function(x) 1/sqrt(1-x"2),0,1)
1.570796326786759 with absolute error < 1.7e-06

1.6 Finding Roots

The root of a functionf (x) is the value ofx for which f(x) = 0. In Computational Physics Ch.1, Sec.3, Koonin
discusses the elementary one variable root finding methoalsrkas the bisection method, the Newton-Raphson method,
and the secant method. S&ep://en.wikipedia.org/wiki/

Bisection_method | http://en.wikipedia.org/wiki/Secant_method , andhttp://en.wikipedia.org/
wiki/Newton-Raphson

1.6.1 R Function uniroot

The coreR functionuniroot , has the syntaxniroot(func, interval, Documentation is at
http://127.0.0.1:11976/library/stats/html/uniroot.h tml .

If f is the given functionuniroot searches for a value af such thaff(x) is a sufficiently close to zero and returns
the first suchx. uniroot assumes the given function is continuous in the given iateamd that the given function has
at least one root in the interval supplied. That intervakiarshed starting from the lower end of the interval.

If the given function does not have opposite signs at the ehtig given intervaluniroot returns an error message.

> uniroot(function(x) (x - 1)°2,c(0,2))
Error in uniroot(function(x) (x - 1)2, ¢(0, 2)) :
f() values at end points not of opposite sign

We useuniroot to search for the single root of the equatioh— 5 = 0 in the interval[1, 5]. We can make a simple
plot of the function f(x) = X2 - 5 as follows:

fun = function(x) x2 - 5
curve(fun,-5,5,lwd = 2)
abline(h = 0, Ity = 3)
abline(v = 0, Ity = 3)

V V.V V

54

Thelwd parameter setting doubles the line width. Eidine statements add a horizontal lineyat= 0 to the figure
created bycurve and then a vertical line at = O to add “axes”. Thdty setting is a line type setting.

uniroot returns a list with four elements: the approximate root fioca$root , the value of the given function at
the root location found (should be close to zefrodot , the number of iterations requireiter , and the precision
estimatebestim.prec

> ?uniroot

> exact = sqrt(5); exact

[1] 2.23606797749979

> uniroot(fun, c(1, 5))
$root

[1] 2.236067654886587
$f.root

[1] -1.442770001247595e-06
Siter

[7

$estim.prec

[1] 6.103515625088818e-05
> numrl = uniroot(fun, c(1, 5))$root; numrl
[1] 2.236067654886587

> (numrl - exact)/exact

[1] -1.442770105870001e-07

The default value ofol is roughlyle-4 ; actually it is given by.Machine$double.eps™0.25

> .Machine$double.eps™0.25

[1] 0.0001220703125

> numr2 = uniroot(fun, c(1, 5),tol=1e-8)$root; numr2
[1] 2.236067977499836

> (numr2 - exact)/exact

[1] 2.065468415501731e-14

1.6.2 R function polyroot

The base code d® also includegolyroot , designed to find zeros of a real or complex polynomial.

1.6.3 R function rootSolve::uniroot.all

The rootSolve package functioruniroot.all is a simple extension afniroot which extracts many (presumably
all) roots in the interval. Here is an example taken from Seafl.rhotSolve.pdfby Karline Soetaert.

To find the root of functiorf(x) = cos3(2x) in the interval[0, 8] and plot the curve, we write:

> fun = function (x) cos(2 *X)"3
> curve(fun, 0, 8, lwd = 2)

> abline(h = 0, Ity = 3)

> uni = uniroot(fun, c(0, 8))$root; uni

[1] 3.927016369513807
> points(uni, 0, pch = 16, cex = 2)

Although the graph (figure 1) clearly demonstrates the emcst of many roots in the intervéd, 8], the R function
uniroot extracts only one. Here we load the packeg@Solve and useauniroot.all , which finds five roots in the
given interval. We then place markers in the plot at all thests.

> library(rootSolve)

> all.roots = uniroot.all(fun, c(0, 8)); all.roots

[1] 0.7853994191100704 2.3561753389863349 3.9270077504 814251 5.4977787040656763
[5] 7.0685536633583075

> points(all.roots, y = rep(0, length(all.roots)), pch = 16 , cex = 2)

55

Quoting Soetaert

...uniroot.all does that by first subdividing the interval into small sexsi@and, for all sections where the function
value changes sign, invokingiroot to locate the root.

Note that this is not a full-proof method: in case subdivig®mnot fine enough some roots will be missed. Also, in case
the curve does not cross the X-axis, but just “touches” & rtiot will not be retrieved; (but neither will it be locateg b
uniroot).

1.6.4 R Newton-Raphson: newton

The Newton-Raphson root finding algorithm is

=V _——_—

Kk K F(V)
+1 PV (1.9

To implement this iteration, the symbolic derivative in tthenominator is replaced by a centered numerical derivative
s. The initial guesx0 needs to be “close enough” to the root for the Newton-Raplksgorithm to be successful. The
criterion for returning the iteraten is that the absolute value of the given function evaluatedhdbe less thaeps . We
also want to avoid dividing by zero in a graceful way.

newton = function(f,x0,eps = le-5h = le-4,small = le-14) {
xn = x0
repeat {
if (abs(f(xn)) < eps) return(xn)
s = (f(xn+h) - f(xn-h))/(2 *h)

if (abs(s) <= small) {
cat(" derivative at",xn,"is zero \n")
break}

Xn = xn - f(xn)/s}}

As an example, we search for the rootsii(x) nearx = 3, which ispi , decreasing the value of eps (which has a
default value built into the code).

> newton(sin,3)

[1] 3.141592653298889

> rl = newton(sin,3,eps=1e-8); rl
[1] 3.141592653298889

> pi

[1] 3.141592653589793

> (r1 - pi)

[1] -2.909041896259623e-10

> (rl - pi)/pi

[1] -9.259767949022792e-11

> r2 = newton(sin,3,eps=1e-12); r2
[1] 3.141592653589793

> (12 - pi)

[1] O

We next usanewton to find the positive root of the functiox® — 5, which isv/5.

> exact = sqrt(5); exact

[1] 2.23606797749979

> nr = newton(function(x) x"2-5,1); nr

[1] 2.236068895643369

> (nr - exact)

[1] 9.181435789429315e-07

> nr = newton(function(x) x"2-5,1,eps = 1e-8); nr
[1] 2.236067977499978

56

> (nr - exact)

[1] 1.882938249764265e-13

> nr = newton(function(x) x"2-5,1,eps
[1] 2.236067977499978

> (nr - exact)

[1] 1.882938249764265e-13

> nr = newton(function(x) x"2-5,1,eps
[1] 2.236067977499974

> (nr - exact)

[1] 1.84297022087776e-13

le-12); nr

le-12,h=1e-8); nr

1.6.5 R function secant

The secant root finding algorithm is

Kk k-1
k+1 _ _k k v -V
vy f(“) £ (vE) — f (v 1)

The secant method requires two initial guesggsandxl to get started.

(1.10)

secant = function(f,x0,x1,eps = 1e-5, small = 1le-14) {
repeat {
if (abs(f(x1)) < eps) return(xl)
s = f(x1) - f(x0)
if (abs(s) <= small) {
cat(" derivative near",(x0+x1)/2,"is zero \n")

break}
x2 = x1 - f(x1) =1 - x0)/s
x0 = x1
x1 = x2}}

We usesecant to search for the root afin(x) nearx = 3.

> secant(sin,2,3)

[1] 3.141592682798589

> sr = secant(sin,2,3,eps=1e-8); sr
[1] 3.141592653589793

> (sr - pi)

[1] o

We next usesecant to find the positive root of the functior? — 5, which is/5.

> exact = sqrt(5); exact

[1] 2.23606797749979

> secant(function(x) x"2-5,1,2)

[1] 2.236068111455108

> sr = secant(function(x) x"2-5,1,2,eps=1e-8);sr
[1] 2.236067977496407

> (sr - exact)

[1] -3.382627511427927e-12

> sr = secant(function(x) x"2-5,1,2,eps=1e-12);sr
[1] 2.23606797749979

> (sr - exact)

[1] O

57

1.6.6 Maxima functions find_-root and bf_find _root

For roots of general functions of one variable, Maxima fiad_root , bf_find_root , andnewton . The au-
thor has also written a bigfloat version of newton, caliédewton (see later). For roots of polynomials, Maxima has
realroots , allroots , andbfallroots

The Maxima functiorfind_root has a behavior which is similar to tifunctionuniroot . The documentation for
the Maxima functiondind_root and the bigfloat versiohf find_root is (with editing):

find_root (expr, var, a, b, [abserr, relerr])
find_root (f, a, b, [abserr, relerr])

bf find_root (expr, var, a, b, [abserr, relerr])
bf find_root (f, a, b, [abserr, relerr])

If the formfind_root(expr,var,...) is used, the symbolused fear should be the same symbol as is useelipr . For ex-
amplefind_root(y2 - 5, y, 0,5) .find_root finds a root of the expressi@xpr or the functiorf over the closed in-
tervalla, b] . Theexpressioaxpr may be an equation, in which ca#®d_root seeksarootdhs(expr) - rhs(expr)
find_root returns an errorif(a) has the same sign &b)

Given that Maxima can evaluagxpr orf over[a, b] andthatexpr orf is continuousfind root is guaranteed to find the
root, or one of the roots if there is more than one.

find_root initially applies binary search. If the function in questiappears to be smooth enoufihd_root applies linear
interpolation instead.

bf find_root is a bigfloat version ofind_root . The function is computed using bigfloat arithmetic and &b re-
sult is returned. Otherwisdf find_root is identical tofind_root , and the following description is equally applicable to
bf find_root

The accuracy ofind_root is governed by the keywordsbserr andrelerr , which are optional keyword arguments to
find_root . These keyword arguments take the fdkeyword = value . These keyword arguments are: dhserr : De-
sired absolute error of function value at root. The defaalt® is the value of the global paramefiad_root_abs

(%il) find_root_abs;
(%01) 0.0

2.relerr : Desired relative error of root. The default value is theueadf the global parameténd_root_rel

(%i2) find_root_rel;
(%02) 0.0

find_root stops when the function in question evaluates to somethgag than or equal tabserr , or if successive ap-
proximantsvar_0 , var_1 differ by no more tharrelerr * max(abs(var_0), abs(var_1)) . The default values of
find_root_abs andfind_root_rel are both zero.

find_root expects the function in question to have a different sigrhaténdpoints of the search interval. When the func-
tion evaluates to a number at both endpoints and these narhiage the same sign, the behaviorfiofl_root is governed
by find_root_error . Whenfind_root_error istrue , find_root prints an error message. Otherwfsed_root
returns the value dind_root_error . The default value ofind_root_error istrue .

(%i3) find_root_error;
(%03) true

If expr orf evaluates to something other than a number at any step inetirelsalgorithmfind_root returns a partially-
evaluatedind_root expression.

The order ofa andb is ignored; the region in which a root is soughfrisn(a, b), max(a, b)]

In the following examples, we accept the defdultl_root

58

accuracy parameter values. A simple test of accuracy is to

search for the positive root of the functiffx) = x? — 5, located at, = /5.

(%i4) exact : block([fpprec:20], bfloat(sqrt(5)));
(%04) 2.2360679774997896964h0

(%i5) rl : find_root(x"2 - 5,x,0,5);

(%05) 2.23606797749979

(%i6) block([fpprec:20], bfloat(rl - exact));
(%06) 1.0864383394662557869b-16

Different syntax choices are illustrated by the first helphoe examples

(%i7) f(x) = sin(x) - x/2;

(%07) f(x):=sin(x)-x/2

(%i8) find_root (sin(x) - x/2, x, 0.1, %pi);
(%08) 1.895494267033981

(%i9) find_root (sin(x) = x/2, x, 0.1, %pi);
(%09) 1.895494267033981

(%i10) find_root (f(x), x, 0.1, %pi);
(%010) 1.895494267033981

(%i1l) find_root (f, 0.1, %pi);

(%011) 1.895494267033981

A second help manual example is the root of the funcfipn) = e* — 10 which isx, = In(10).

(%i12) f(x) =
(%i13) f(0);
(%013) -9
(%i14) f(100);
(%014) %e"100-10

(%il15) float(%);

(%015) 2.6881171418161356E+43
(%i16) f(log(10));

(%016) 0

exp(x) -10$

In the first example below, Maxima does not know a valueyfaand returns an unevaluated expression (a “noun form” in
Maxima-speak). In the second example below, the “varialleXpr is x, and the value of the parametgiis supplied

val

using the pseudo-postfix notatiomxpr, param

(%il7) find_root (exp(x) = vy, x, 0, 100);

(%017) find_root(%e"™x = y,x,0.0,100.0)

(%i18) exact : block([fpprec:20], bfloat(log(10)));
(%018) 2.302585092994045684b0

(%i19) r2 : find_root (exp(x) =y, x, 0, 100), y = 10;
(%019) 2.302585092994046

(%i20) block([fpprec:20], bfloat(r2 - exact));

(%020) 2.170776037223320909b-16

Here is another example of postfix setting of parameters:

(%i21) x =*cos(y) *exp(z),x=2,y=3,z=4;
(%021) 2 *%e"4*cos(3)

To solve the last example with 20 digit precision, one needset theglobal value offpprec
, bf_find_root

usebf_find_root . The functionsbfloat

to the value20, and then

, andbfallroots (but not float) compute using

the number of digits of precision specified by the currenteadffpprec . The default value of the global parameter

fpprec is16

59

(%i22) fpprec:20$

(%i23) r3 : bf_find_root (exp(x) = vy, x, 0, 100), y = 10;
(%023) 2.302585092994045684b0

(%i24) exact : block([fpprec:30], bfloat(log(10)));

(%024) 2.30258509299404568401799145469b0

(%i28) block([fpprec:30], bfloat(r3 - exact));

(%028) 4.79487947065671528744844106953b-21

One can usépprec as a local variable (in block expression) for temporary uselofloat , bf_find_root ,and
bfallroots ,asin

(%i29) fpprec:16;

(%029) 16

(%i30) block([fpprec:32], bfloat(%opi));

(%030) 3.1415926535897932384626433832795b0
(%i31) fpprec;

(%031) 16

1.6.7 Maxima Newton-Raphson: newton
If Maxima can symbolically compute the derivative of a givexpression (function of a single variable) whose root is
sought, then the Newton-Raphson method can find the roa ififtial guess is close enough.

The Maxima help manual refers to contributed code .isource/numeric/newtonl.mac which has the syn-
tax newton(expr, var, guess, eps) which returns the current iteration @ér , sayv, if the absolute value of
expr , when evaluated at, is less than the small positive numlegs .

Since the Newton-Raphson iteration rule is

ktl _ gk ff,((vvi)) (1.11)

a “divide-by-zero” error will occur if the first derivatives izero at the current value of the iteration variable.

v

(%il) load("newtonl.mac");

(%01) "C:/PROGRA"1/MA81DB™1.0/share/maxima/5.28.0-2/ share/numeric/newtonl.mac"
(%i2) newton(x"2 - 5,x,1,1e-4);

(%02) 2.236068895643363

(%i3) newton(x"2 - 5,x,0,1e-4);

expt: undefined: 0 to a negative exponent.

#0: newton(exp=x"2-5,var=x,x0=0,eps=1.0E-4)(newton1. mac line 8)

-- an error. To debug this try: debugmode(true);

A replacemennewton function with the same syntax is in the fié@newton.macon the author's webpage with this
chapter and the contents include an exprerimental bigflaion too.

/* cpnewton.mac Oct. 2013 */
newton(exp,var,x0,eps):=
block([xn,s,numer,dv],numer:true,
s:diff(exp,var),
xn:x0,
do (if abs(subst(xn,var,exp)) < eps then return(xn),
dv:subst(xn,var,s),
if equal(dv,0) then (
print (" derivative at",xn,"is zero"),
return("newton failed")),
xn:xn-subst(xn,var,exp)/ dv))$

60

bfnewton(expr,var,guess,digits):=
block([fpprec, y,eps0,prec,s,xn, bb:2],
fpprec : digits + bb,
eps0 : bfloat(10°(-rp)),
prec : 107 (fpprec/-2.0b0),
s:diff(expr,var),
xn:bfloat(guess),
do (y:subst(xn,var,s),
if abs(y) < prec then (
print(" derivative at",xn,"is zero"),
return(" bfnewton failed")),
Xn : xn - subst(xn,var,expr)ly,
xn : rectform(expand(xn)),
if abs(subst(xn,var,expr)) < eps0 then return(xn)))$

A simple example using the version méwton in cpnewton.mac

(%il) load("cpnewton.mac");
(%01) "c:/kl/cpnewton.mac"
(%i2) newton(sin(x),x,1.8,1e-5);
(%02) 6.283185301417648

This version ofnewton has a graceful exit when the first derivative is zero.

(%i3) newton(x"2 - 5,x,1,1e-4);
(%03) 2.236068895643363
(%i4) newton(x"2 - 5,x,0,1e-4);

derivative at 0 is zero
(%04) "newton failed"

1.6.8 Maxima Bigfloat Newton-Raphson: bfnewton

The syntax obfnewton is bfnewton(expr, var, guess, digits) , Inwhichdigits is the requested pre-
cision of the returned root. The value fpprec is set (locally) to a value higher thatigits . There is no need to

change the global setting tdprec . This is an experimental version of Newton-Raphson.

Here we useébfnewton , already loaded in with the filenynewton.mac , to find the positive root of the function

X2 - 5 to 20 digit accuracy.

(%i5) fpprec;

(%05) 16

(%i6) exact : block([fpprec:30],bfloat(sqrt(5)));
(%06) 2.23606797749978969640917366873b0
(%i7) r20 : bfnewton(x"2 - 5,x,1,20);

(%07) 2.236067977499789696409b0

(%i8) block([fpprec:30],r20 - exact);

(%08) 5.37424113456297828625626672756b-24
(%i9) block([fpprec:30], subst(r20,x,x"2 -5));
(%09) 2.40343387953389185011791134874b-23

In the last two inputs, using a local settingfpprec andbfloat inside ablock expression, we compared the root

found, r20 , with the “exact value’exact , and evaluated the function at the position of the root found

Here we check the zero derivative error case;

(%i10) bfnewton(x"2 - 5,x,0,20);
derivative at 0.0b0 is zero
(%010) " bfnewton failed"

61

1.6.9 Maxima function secant

The secant root finding algorithm is

k k-1

K+l _ k_f<k vV 1.12

M M M) f(vE) — f (vk 1) (1.12)

The secant method requires two initial guesgBsand x1 to get started. The syntax secant(f,x0,x1) or
secant(f,x0,x1,eps) , iIn which f is either a known function or elselambda form as shown in the second

example below.

secant(func, w0, vvi,[oa]) =
block([eps0:1e-5,x0,x1 ,x2,ss,jj:0 ,jjmax :3000],
if length(oa) > 0 then epsO : oa[l],
x0 : float(vv0),
x1 : float(vvl),
do (jj - jj + 1,
if jj > jjmax then (
print(" exceeded jjmax limit "),
return(x1)),
if abs(func(xl)) < epsO then return(x1),
ss : func(xl) - func(x0),
if equal(ss,0) then (
print(" denominator near",(x0+x1)/2,"is zero "),
return(xl1)),
x2 @ x1 - func(xl) *(x1 - x0)/ss,
x0 : x1,
x1 : x2))$

Here is use of a Maxima version sécant finding the value opi by finding the root okin(x) nearx = 3.

(%il) exact : block([fpprec:20],bfloat(%pi));
(%01) 3.1415926535897932385h0

(%i2) sr : secant(sin,2,3);

(%02) 3.141592682798589

(%i3) block([fpprec:20],bfloat(sr - exact));
(%03) 2.9208796148091648731b-8

(%i4) sr : secant(sin,2,3,1e-8);

(%04) 3.141592653589793

(%i5) block([fpprec:20],bfloat(sr - exact));
(%05) -1.2246063538223772582b-16

and a search faqrt(5)

(%i6) exact : block([fpprec:20],bfloat(sqrt(5)));
(%06) 2.2360679774997896964h0

(%i7) sr : secant(lambda([x],x"2 - 5),1,2);
(%07) 2.236068111455108

(%i8) block([fpprec:20],bfloat(sr - exact));
(%08) 1.3395531850186344737b-7

(%i9) sr : secant(lambda([x],x2 - 5),1,2,1e-8);
(%09) 2.236067977496407

(%i10) block([fpprec:20],bfloat(sr - exact));
(%010) -3.3825188675939803218b-12

(%ill) sr : secant(lambda([x],x2 - 5),1,2,1e-12);
(%011) 2.23606797749979

(%i12) block([fpprec:20],bfloat(sr - exact));
(%012) 1.0864383394662557869b-16

62

1.6.10 Divide and Conquer Root Search

In Computational Physics, Sec. 1.3, Koonin presents a fisenmethod” of finding the root of a function when the ap-
proximate location of the root is known. (This method carfimat a root in which the function dips down to touch the
axis somewhere but doesn'’t cross the axis.)

You guess a trial value of guaranteed to be less than the root, “increase this triabvay small positive steps, backing
up and halving the step size every time the function chaniges’ $Vhen the value of the step siz is less than some
small number, the search returns with the fiatlue found.

Here is aRfunctionrtsearch which implements this method.

rtsearch = function(func,x,dx,xacc) {
fold = func(x)
repeat {
if (abs(dx) <= xacc) break
X = X + dx
if (fold =*func(x) < 0) {
X = X - dx
dx = dx/2}}
x}

After pasting in this definition oftsearch into theR Console, we use it to do a brute force search for the posibee r
of the functionfnf (x) = x? — 5.

fnf = function(x) x2 -5
> rtsearch(fnf,1,0.5,1e-6)
[1] 2.236067

A Maxima version ofrtsearch is

rtsearch(func,xx,dxx,xacc) :=

block([fold,x:xx,dx:dxx],
fold : func(x),
do (
if abs(dx) <= xacc then return(),
X X + dx,
if fold *func(x) < 0 then (
X X - dx,
dx : dx/2)),
X)$

and after pasting this definition into XMaxima, we get

(%i2) fnf(x) := x2 - 5%
(%i3) rtsearch(fnf,1,0.5,1e-6);
(%03) 2.236066818237305

1.7 mtext and Plot Margins in R

Using?mtext in Rbrings up (after some editing):

63

mtext {graphics} R Documentation
Write Text into the Margins of a Plot

Description: Text is written in one of the four margins of the
region or one of the outer margins of the device region.

Usage:
mtext(text, side = 3, line = 0, outer = FALSE, at = NA,
adj = NA, padj = NA, cex = NA, col = NA, font = NA,

Arguments:

1. text: a character or expression vector specifying the tex
Other objects are coerced by as.graphicsAnnot.

2. side: on which side of the plot (1=bottom, 2=left, 3=top, 4
3. line: on which MARgin line, starting at 0 counting outward
4. outer: use outer margins if available.
5. at: give location of each string in user coordinates. If th

corresponding to a particular text item is not a finite value

the location will be determined by adj.
6. adj: adjustment for each string in reading direction. For
right or top alignment.

If adj is not a finite value (the default), the value of par("l
determines the adjustment. For strings plotted parallel to
the default is to centre the string.

7. padj: adjustment for each string perpendicular to the rea

(which is controlled by adj). For strings parallel to the axe

If padj is not a finite value (the default), the value of par("
the adjustment. For strings plotted perpendicular to the ax
centre the string.

8. cex: character expansion factor. NULL and NA are equivale
absolute measure, not scaled by par("cex") or by setting par

or par("mfcol"). Can be a vector.

9. col: color to use. Can be a vector. NA values (the default) m

10. font: font for text. Can be a vector. NA values (the defaul

11 .. Further graphical parameters (see par), including fa
(The latter defaults to the figure region unless outer = TRUE

the device region. It can only be increased.)
Details
The user coordinates in the outer margins always range from z

affected by the user coordinates in the figure region(s) R di
implementations of S.

to the axes, adj = 0 means left or bottom alignment, and adj =

padj = 0 means right or top alignment, and padj = 1 means left or

current figure

)

t to be written.

=right).

e component of at
(the default),

strings parallel
1m eans

aS")
the axis

ding direction
S,

bottom alignment.

las") determines
is the default is to

nt to 1.0. This is an
("mfrow")
ean use par("col").
t) mean use par("font").

mily, las and xpd.
, otherwise

ero to one, and are not
ffers here from other

64

All of the named arguments can be vectors, and recycling will take place to plot as
many strings as the longest of the vector arguments.

Note that a vector adj has a different meaning from text. adj = 0.5 will centre the
string, but for outer = TRUE on the device region rather than t he plot region.
Parameter las will determine the orientation of the string(s). For strings plotted
perpendicular to the axis the default justification is to pl ace the end
of the string nearest the axis on the specified line. (Note th at this
differs from S, which uses srt if at is supplied and las if it is not.

Parameter srt is ignored in R.)

Note that if the text is to be plotted perpendicular to the axi s, adj determines
the justification of the string and the position along the ax is unless at is specified.
Graphics parameter "ylbias" (see par) determines how the te xt baseline is placed

relative to the nominal line.
Side Effects

The given text is written onto the current plot.

See Also: title, text, plot, par; plotmath for details on mat hematical annotation.

You can see the current settingroér usingpar()$mar . You can see the current settinganha usingpar()$oma
can change settings using

. You

par(mar = c(bottom,left,top,right)
par(oma = c(bottom,left,top,right)

The following figurel.R script uses zero outer margin area ¢(efault).

Inthetext command, the optionex=3 asks for triple the normal text size.

In the mtext command,side=1 andadj=1 asks for right justified text in the bottom margin of the figuse of
adj=0.5 would place the text in the bottom center margin), aag=2 asks for double the default text size. The option
line=3 tothemtext commmand asks that the text be positioned starting at thxediries below the plot region.

figurel.R

plot(0:10, 0:10, type="n", xlab="X", ylab="Y")

text(5,5,"PlotArea”, col="red", cex=3)

box("plot”, col="red", lwd=2)

mtext("Figure”, side=1, line=3, adj=1, cex=2, col="blue")
box("figure", col="blue",lwd=2)

Loading and executing this script Rishows that the blue box drawn around the figure does not shawtbp R Console

plot, butdoes show up in the LaTeX/dvi display digurel.eps

> source("figurel.R")

as shown on the next page.

65

Here is the resulting plot:

10
|

> PlotArea

T T T T T T
0 2 4 6 8 10

X Figure

Figure 7: Default No Outer Margin Area

The LaTeX code for this plot was

\smallskip
\begin{figure} [h]
\centerline{\includegraphics[scale=.5]{figurel.eps} }
\caption{Default No Outer Margin Area}
\end{figure}

and makes use of tlgraphicx LaTeX package.

Quoting Earl F. Glynn (Stowers Institute of Medical Resbamn the webpage
http://research.stowers-institute.org/efg/R/Graphic s/Basics/mar-oma/
(with some light editing)

In Figure 1 the “plot area” is inside the red box, and the petanof the figure is shown in a blue box ...The area
between the red box and the blue box is known as the “marge®,and is controlled by tHe mar parameter. You
can view the value afnar at any time from th&k command linepar()$mar producegl] 5.1 4.1 4.1 2.1

You can set thenar parameter to other values using ther function, as inpar(mar=c(4, 4, 2, 0.5)) . Note
that even though the margin is measured in “lines”, the \@heed not be integers.

There is no “outer margin area” in this simple example, whéctypical of manyR plots.

In the next example, an “outer margin area” is added, andagessare placed in that area usmtext . The script file
figure2.R is

figure2.R
add outer margin area

oldpar = par(oma=c(0,0,0,0))

par(oma = ¢(2,2,2,2))

plot(0:10, 0:10, type="n", xlab="X", ylab="Y")
text(5,5,"PlotArea”, col="red", cex=3)
box("plot", col="red")

66

mtext("Figure”, side=1, line=3, adj=1, cex=2, col="blue")

Margins = " mar = c¢(5.1, 4.1, 4.1, 2.1) "

mtext(Margins, side=3, line=2, adj=0, cex=1.5, col="blue "

“figure” box and "inner" margin box same for single figure plot

box("figure",lty="dashed", col="blue",lwd=2)

box("inner", Ity="dotted", col="green",lwd=2)

mtext("Outer Margin Area",side=1, line=0.4, adj=1.0, cex =1.5, col="black", outer=TRUE)
box("outer", Ity="solid", col="green",lwd=2)

OuterMargins = " oma = c(2, 2, 2, 2) "

mtext(OuterMargins, side=3, line=0.4, adj=0.0, cex=1.5, col="black", outer=TRUE)
par(oldpar)

which produces the figure

oma=c(2,2,2,2)

mar = ¢(5.1, 4.1, 4.1, 2.1)

10
|

T T T T T T
0 2 4 6 8 10

> PlotArea

X Figure

Outer Margin Area

Figure 8: Adding Outer Margin Area

Glynn suggests the replacement of

mtext("Figure”, side=1, line=3, adj=1, cex=2, col="blue")

by

mtext("Figure", South <- 1, line=3, adj=1, cex=2, col="blu e")

and the replacement of

mtext(Margins, side=3, line=2, adj=0, cex=1.5, col="blue "

by

mtext(Margins, North <- 3, line=2, adj=0, cex=1.5, col="bl ue")

which, indeed gives the same result, because the seconaltdsafatomtext is the value of the optioside (which
defaults to 3, implying the top).

This is a case in which oneust use<- instead of=, becausd interprets a function argument of the form

keyword = value differently from the fornname <- value . Inthe former caseR finds a keyword it is ready to
use and the equal sign is taken to mean: set the keyword teghsg. In the latter case, tlime is assigned the value,
the namebecomes a number, and since it appears in the second slaitekt , it is taken to be the desired value of the

keywordside .

It is certainly true that, when reading codgputh <- 1 is more readily translated mentally to “that is going on the

bottom of the figure”.

1.8 Drawing Circles with R
1.8.1 Homemade Circles in R

Here is aR script usingasp = 1 insideplot

circle2.R
homemade circles
tvals = seq(0,2 *pi+0.2,0.1)

X = cos(tvals)

y = sin(tvals)

x2 = x/3

y2 = y/3

note asp=1 y/x setting inside plot
plot(x,y,type = "I"lwd=3,asp = 1)
points(x2,y2,type = "I",lwd=3,col="blue")

abline(h=0,v=0) # axes
abline(a=0,b=1,col=2,lwd=3) #red 45 degree line
perpendiculars from 45 deg line

intersections with the circle
segments(cos(pi/4),0,cos(pi/4),sin(pi/4))
segments(0,sin(pi/4),cos(pi/4),sin(pi/4))
segments(-cos(pi/4),0,-cos(pi/4),-sin(pi/4))
segments(0,-sin(pi/4),-cos(pi/4),-sin(pi/4))

invoked usingsource :

> source("c:/kl/circle2.R")
> par()$asp
NULL

(see next page for this figure)

68

Note thatasp returns to its default settilgULL after usingsource with the graphics fileircle2.R

Running this script produces:

1.0

0.5

-

-

-1.0 -0.5 0.0 0.5 1.0

Figure 9: homemade circles

1.8.2 Circles Using the R Package shape

Theshapepackage by Karline Soetaert includes functions to creatnguty starting plot wittasp = 1 as the default,
and to draw ellipses, circles, cylinders, arrows, and rednectanges with and without color.

Use

library(shape)
help(package = "shape")
vignette("shape")

to respectively load thehape package, see html documentation of the available functiemd peruse a pdf giving some
examples of some of the functions together with the grapsalts.

We will restrict ourselves temptyplot andplotcircle

emptyplot has the syntax and defaults:

emptyplot(xlim = ¢(0, 1), ylim = xlim, asp = 1, frame.plot = FA LSE,
col = NULL, ..)

which sets up a plot region without axes or frame, with no gamknd color, and with the plotting region extending from
x=0,y=0 tox=1,y=1 . Thus, usingemptyplot() without supplying any arguments would accept all theseudefa
settings.

plotcircle has the syntax and defaults:

69

plotcircle(r=1,mid=c(0,0),from=-pi,to = pi,type="1", | wd = 2,
Icol="black", col = NULL, arrow = FALSE,
arr.length = 0.4, arr.width = arr.length *0.5,
arr.type = "curved", arr.pos = 1, arr.code = 2,
arr.adj = 0.5, arr.col = "black",...)

with a default radius of one unit, a default center of theleitocated ax=0,y=0 , a full circle is drawn as a line with

a slightly thicker style in a black color, with no fill (cologdded, and with no arrow added. Note especially litwit
determines the line color, amdl determines the fill color. Thus the two commands:

> emptyplot()
> plotcircle()

will produce an empty black quarter circle showing onlyxhe 0, y > 0 quadrant.

The script

circle3.R

uses package shape
library(shape)
emptyplot()
plotcircle(mid=c(0.5,0.5),r
plotcircle(mid=c(0.5,0.5),r
plotcircle(mid=c(0.5,0.5),r
plotcircle(mid=c(0.5,0.5),r

0.1,col = "green",lwd=3)
0.2,Icol = "blue")

0.25)

0.35,Icol = "red",lwd=3)

launched with

> source("c:/k1/circle3.R")
> par()$asp
NULL

produces:

Figure 10: shape package circles

Note thatasp reverts to its default setting after the script is run.

1.8.3 Circles Using the R Function symbols

TheRfunctionsymbols from the packaggraphicsis, by default, always available to use, and has the syntax

70

symbols(x, y = NULL, circles, squares, rectangles, stars,
thermometers, boxplots, inches = TRUE, add = FALSE,
fg = par("col”), bg = NA,
xlab NULL, ylab NULL, main = NULL,
xlim = NULL, ylim = NULL, ..)

TheR scriptcircle4.R

circle4.R
circles using function symbols

plot(-1:1,-1:1,type="n",asp=1,xlab="",ylab="",bty=" n",
xaxt="n", yaxt="n")

symbols(0,0,circles=1,add=TRUE,lwd=3,inches=FALSE)

symbols(c(0,0,0),c(0,0,0),circles=c(0.75,0.5,0.25), fg = c("green","blue","red"),
bg=c("white","white","red"),lwd = 3, add = TRUE, inches = F ALSE)

run with

> source("c:/kl/circle4.R")
> par()$asp
NULL

produces the plot

Figure 11: Circles Using symbols(...)

Note thatasp reverts to its default value after running the script.

