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In Stat02-Binomial.wxmx  we discuss the discrete Binomial (n, p) probability distribution and its 
application, using Maxima tools and methods. This is the second worksheet in my Statistics 
with Maxima section.

Edwin L. (Ted) Woollett
https://home.csulb.edu/~woollett/
April 9, 2024
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      2011,  McGraw Hill,

Ch. 8 Fred Senese [FS], Symbolic Mathematics for Chemists: A Guide for Chemists, 2019,
      Wiley,

Louis Lyons, Statistics for Nuclear and Particle Physics, 1986, Cambridge Univ. Press,

Luca Lista,  'Statistical Methods for Data Analysis in Particle Physics', 
                          Lecture Notes in Physics 909, 2016,  Springer-Verlag,

Frederick James, 'Statistical Methods in Experimental Physics', 2nd ed., 
                            2006, World Scientific.

References specific to the Binomial distribution:

https://www.statology.org/binomial-distribution-real-life-examples/
https://www.statology.org/binomial-distribution-calculator/

https://online.stat.psu.edu/stat414/lesson/10



Stat02-Binomial-fit.wxmx 3 / 44

(%o1) 
C:/maxima−5.43.2/share/maxima/5.43.2/share/descriptive/descriptive.mac

(%o2) C:/maxima−5.43.2/share/maxima/5.43.2/share/distrib/distrib.mac

load (descriptive);
load (distrib); 
fpprintprec : 6$
ratprint : false$
logexpand : all$

(%i5)

Homemade functions fll, head, tail, Lsum are useful for looking at long lists.

fll ( aL) := [ first (aL), last (aL), length (aL) ]$
declare (fll, evfun)$
head(L) := if listp (L) then rest (L, - (length (L) - 3) ) else 
      error("Input to 'head' must be a list of expressions ")$
declare(head,evfun)$
tail (L) := if listp (L) then rest (L, length (L) - 3 )  else 
       error("Input to 'tail' must be a list of expressions ")$
declare(tail,evfun)$
Lsum (aList) := apply ("+", aList)$
declare (Lsum, evfun)$

(%i13)

Discrete Distributions Defined  3 
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From www.investopdedia.com:

"A discrete probability distribution counts occurrences that have countable or finite outcomes.

Discrete distributions contrast with continuous distributions, where outcomes can fall anywhere
on a continuum.

Common examples of discrete distribution include the binomial, Poisson, and Bernoulli 
distributions.

These distributions often involve statistical analyses of "counts" or "how many times" an event 
occurs.

In finance, discrete distributions are used in options pricing and forecasting market shocks or 
recessions."
---------------------------------------------------------------------------------------------
From http://www.stat.yale.edu/Courses/1997-98/101/ranvar.htm:

"If a random variable can take only a finite number of distinct values, then it must be discrete.
Examples of discrete random variables include the number of children in a family, the Friday 
night attendance at a cinema, the number of patients in a doctor's surgery, the number of 
defective light bulbs in a box of ten."

What Is a Discrete Random Variable?  4 

Quoting Luca Lista (Sec. 1.1):
"Many processes in nature have uncertain outcomes. This means that their result cannot be 
predicted before the process occurs. A random process is a process that can be reproduced, 
to some extent, within some given boundary and initial conditions, but whose outcome is 
uncertain. This situation may be due to insufficient information about the process intrinsic 
dynamics which prevents to predict its outcome, or lack of sufficient accuracy in reproducing 
the initial conditions in order to ensure its exact reproducibility. Some processes like 
quantum mechanics phenomena have intrinsic randomness. This will lead to possibly different 
outcomes if the experiment is repeated several times, even if each time the initial conditions 
are exactly reproduced, within the possibility of control of the experimenter. Probability is a 
measurement of how favored one of the possible outcomes of such a random process is 
compared with any of the other possible outcomes."

A coin toss is "random" because we are ignorant of the 'initial conditions'. Repeated trials tell 
us something about how those initial conditions vary between trials

For the purposes of calculating things for experimental physics, we need physical probability. 
In particular we need 'frequentist probability':  
   "Probability is the frequency with which a particular outcome occurs in repeated trials."
    P = (number of occasions on which that outcome occurs)/(total number of measurements).
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Quoting L. Lyons, Sec. 2.1:
"In many situations we deal with experiments in which the essential circumstances are kept
constant, and yet repititions of the experiment produce different results. Thus the result of an
individual measurement or trial may be unpredictable, and yet the possible results of a series 
of such measurements have a well defined distribution."

What about events that can't be repeated? They don't have probabilities.

Quoting [RS] Sec. 3.3:

"A random variable is a variable whose values are associated with some probability of being 
observed. A discrete (as opposed to continuous)  random variable is one that can assume only 
finite and distinct values.  The set of all possible values of a random variable and its associated 
probabilities is called a probability distribution. The sum of all probabilites equals 1."

Quoting 
https://saylordotorg.github.io/text_introductory-statistics/s08-discrete-random-variables.html,

"The probability distribution of a discrete random variable X is a listing of each possible value x 
taken by X along with the probability P(x) that X takes that value in one trial of the experiment.

The mean μ of a discrete random variable X is a number that indicates the average value of X
over numerous trials of the experiment. It is computed using the formula μ=Σx P(x).

The variance σ^2 and standard deviation σ of a discrete random variable X are numbers that 
indicate the variability of X over numerous trials of the experiment. They may be computed using 
the formula σ^2 = (Σx^2 P(x) ) − μ^2, taking the square root to obtain σ."

Mean and Variance of Discrete Data Set  5 

Consider a data set that contains M unique discrete values x_k, and assume the value x_k 
occurs with frequency f_k. Let N equal the sum of the frequencies.
    N = sum (f_k, k, 1, M).
The mean 
    <x> = sum (f_k*x_k, k, 1, M) / N.
The variance
       Var(x) = sum ( f_k* (x_k - <x>)^2, k, 1, M )/ N.
The standard deviation is the square root of the variance.

Fundamental Probability Laws  6 
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We follow Matthews and Walker, Mathematical Methods of Physics, 2nd. Ed (1970) Ch. 14

"Let P(A) be the probability of something (called A) occurring when an experiment is performed.
0 <= P(A) <= 1. If A is certain to happen, then P(A) = 1. If A will certainly not happen, 
then P(A)=0."

"To illustrate some  more complicated possibilities consider an experiment with n equally
likely outcomes, involving two events, A and B. Let
   n1 = number of outcomes in which A occurs, but not B
   n2 = number of outcomes in which B occurs, but not A
   n3 = number of outcomes in which both A and B occur
   n4 = number of outcomes in which neither A nor B occurs.
Since we have exhausted all possibilities,
    n1 + n2 + n3 + n4 = n .
The probabilities of A and of B are
  P(A) = (n1 + n3)/n,      P(B) = (n2 + n3)/n.

We can define more complicated probabilities.

The probability of either A or B (or both) occurring is
   P (A + B) =  (n1 + n2 + n3)/n.

The probability of both A and B occurring is called the joint probability of A and B:
   P (A, B) = n3/n.

Finally, we may define "conditional probabilites"; the probability that A occurs, given that B occurs,
is              P(A | B) = n3/(n2 + n3).               

Similarly,  P(B | A) = n3 / (n1 + n3).

Two important rules may be extracted from this simple example, and in fact are easily seen to
be true in general:
     P (A + B) = P(A) + P(B) - P(A, B),                                                                   (1)
    since (n1+n3)/n + (n2+n3)/n - n3/n = (n1 + n2 + n3)/n.

Likewise we have the law, the probability of either A or B or C or any two, or all three occurring is
    P (A + B + C) = P(A) + P(B) + P(C) - P(A, B, C).

If events A, B, C are mutually exclusive events, then the joint probability P (A,B,C) = 0, 
and we are left with   P (A + B + C) = P(A) + P(B) + P(C).

    P (A, B) = P(B) P(A | B) = P(A) P(B | A),                                                          (2)
   since n3/n = [(n2+n3)/n] * [ n3/(n2+n3)] = [(n1+n3)/n] * [n3/(n1+n3)]."
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Consider the probability of drawing an ace from a deck of 52 cards. Since a deck contains
4 aces, P(1 ace) = 4/52 = 1/13. If event A is drawing an ace from deck 1 (of 2 decks) and
event B is drawing an ace from deck 2,  the probability that when one card is drawn from each of
two decks, at least one will be an ace is P(A + B) = P(A) + P(B) - P(A,B) = 1/13+1/13 - (1/13)^2
 = (2*13 - 1)/13^2 = 25/169. In calculating P(A, B) = P(A)*P(B) we used the assumption that
the result of drawing a card from deck 1 has no influence on the result when drawing a card
from deck 2 - the two drawings are "independent".

Recall the probability of both A and B occurring is called the joint probability of A and B, P(A,B).
In general, if events A and B are statistically independent, P(A, B)  = P(A)*P(B).     (3)

If events A and B are mutually exclusive (which means P(A, B) = 0) then  P(A + B) = P(A) + P(B)
as one can see from (1) above.

An example of   P (A, B) = P(B) P(A | B) = P(A) P(B | A) is the probability of drawing two hearts,
when two cards are drawn successively from the same deck of cards without replacement:
You have 13 hearts in a 52 card deck to start, so multiply the probabilities of each draw:
P(2 hearts) = P(draw 1 heart, draw2 heart) = P(1 heart)*P(1heart | 1heart) = (13/52)*(12/51) = 1/17.

To find the probability of drawing a heart on the first draw and a club on the second draw from the
same deck of cards, you follow a similar process. The probability of drawing a heart on the first 
draw is 13/52, and the probability of drawing a club on the second draw is 13/51 since there are 
13 clubs remaining in the deck after removing one heart. The probability of drawing a heart 
and then a club from the same deck is (13/52) x (13/51) = 169/2652.

(%o14) 
13

204

(13/52)*(13/51);(%i14)

Permutations and Combinations   7 

Permutations  7.1 

Quoting:   https://en.wikipedia.org/wiki/Permutation
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"In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members 
into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. 
The word "permutation" also refers to the act or process of changing the linear order of an 
ordered set."

"For example, there are six permutations (orderings) of the set {1, 2, 3}: written as tuples, 
they are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). 
Anagrams of a word whose letters are all different are also permutations: the letters are already 
ordered in the original word, and the anagram reorders them. The study of permutations of finite 
sets is an important topic in combinatorics and group theory."

"The number of permutations of n distinct objects is n factorial, usually written as n!, which means 
the product of all positive integers less than or equal to n."

"The number of arrangements or 'permutations', of n objects is n!, since the first position can
be occupied by any one of the n objects, the second by any one of the (n - 1) remaining
objects, and so on."

"In elementary combinatorics, the k-permutations, or partial permutations, are the ordered 
arrangements of k distinct elements selected from a set. When k is equal to the size of the set, 
these are the permutations in the previous sense."

"In older literature and elementary textbooks, a k-permutation of n means an ordered 
arrangement (list) of a k-element subset of an n-set. The number of such k-permutations 
(k-arrangements) of n is denoted variously..." . We will use P (n,  k) for that number.

  P (n,k) = product of k factors = n*(n-1)*(n-2)....( n - (k - 1) ) 
                                                 = n*(n-1)*(n-2)....( n - k + 1) ) = n! / (n-k)!        

since the first element of the sequence (permutation) can be chosen from any of n elements of
the n-set, and then the second element of the sequence can be chosen from any of the n-1
remaining elements of the n-set, etc.

For example consider the example of a 3-set S = {1, 2, 3}, and form all 2-permutations:
(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2).
The first element of each 2-permutation can be chosen in n = 3 ways, the second element
in n-1 = 2 ways. So the total number of 2-permutations is n*(n-1) = 3*2 = 6. With k = 2,
n - k + 1 = 3 - 2 + 1 =  2. So we can write (using (n - k)! = (3 - 2)! = 1! = 1)
      P(3, 2) = n*(n-1)....(n - k + 1) = 3*2 = 6 = n!/(n-k)! = 3! / 1! = (1*2*3)/ 1 = 6.

Combinations  7.2 

Quoting:   https://en.wikipedia.org/wiki/Combination
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"In mathematics, a combination is a selection of items from a set that has distinct members, 
such that the order of selection does not matter (unlike permutations). For example, given 
three fruits, say an apple, an orange and a pear, there are three combinations of two that can 
be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange. 
More formally, a k-combination of a set S is a subset of k distinct elements of S. [This means
none of the members of a k-combination can be identical - 'no repititions'] So, 
two combinations are identical if and only if each combination has the same members. 
[The arrangement of the members in each set does not matter.] If the set has n elements, 
the number of k-combinations, denoted by C(n,k), is equal to the binomial coefficient."

Given the set of 3 objects {1, 2, 3}, the number of 2-combinations of this set are:
       (1,2), (1, 3), (2, 3), so C (3, 2) = 3.

binomial (n, k)  7.2.1 

The Maxima function binomial (n, k) can be used here:

(%o15) 3

binomial (3, 2);(%i15)

(%o16) 3

3! / (2! * (3 - 2)! );(%i16)

In general each k-combination can be changed by changing the arrangement (order) of the 
k distinct elements, and there are k! ways of ordering those k elements. Hence the 
number P(n,k) of k-permutations of n distinct elements equals the number of (unordered) 
k-combinations of n elements times the number of ways of ordering the k elements:
           P(n, k) = C(n, k) * k!.

Solving for C(n, k) we get:
          C(n, k) = P(n, k) / k!, or

           C(n, k) =  n! / (n-k)! / k!  ==  n! / ( k! * (n - k)! ) = binomial (n, k)

The Binomial (n, p) Distribution  8 

Pb (k; n, p)  8.1 
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The binomial distribution is used to find the probability of k 'successes' Pb (k; n, p)
 in n trials of the same experiment when (1) there are only two possible and 
mutually exclusive outcomes, (2) the n trials are independent, and (3) the probability of 
of 'success', p, remains constant in each trial.  Then

                 Pb (k; n, p) = ( n! / (k! * (n - k)! ) * p^k * (1 - p)^(n - k).

where n! (read 'n factorial') = n*(n-1)*(n-2) .....*3*2*1, and 0! = 1 by definition.
This assumes 0 < p < 1, n is a positive integer, and k = 1, 2, 3, ..., n.

The [theoretical] mean of the binomial distribution is 
             μ = n*p.
The [theoretical] variance of the binomial distribution is n*p*(1 - p) = μ * (1 - p).
The [theoretical] standard deviation is σ = sqrt (n*p*(1 - p) ) = sqrt (μ * (1 - p) ).

If p < 0.5 the distribution is skewed to the right. If p > 0.5 the distribution is skewed to the left.
If p = 0.5 the distribution is symmetrical.

Origin of Pb (k; n,p) Formula  8.1.1 
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Adapting the explanation in
  https://en.wikipedia.org/wiki/Binomial_distribution,

The formula for Pb (k; n,p)  can be understood as follows:  

  p^k * (1-p)^(n-k)  is the probability of obtaining the sequence of Bernoulli trials in which the first 
k trials are “successes“ and the remaining (last) (n - k) trials result in “failure“. Since the trials 
are independent with probabilities remaining constant between them, any arrangement of 
n trials with k successes (and  (n - k) failures ) has the same probability of being achieved 
(regardless of positions of successes within the arrangement). 

How many distinguishable arrangements of n objects if n = n1 + n2, where n1 = k of the objects are
identical (type 'success') and the other n2 = (n - k) objects (type 'failure') are also identical 
(but different from the n1 type)? The total number of permutations of n objects is n! but each
*distinguishable* permutation appears n1! * n2! times, so the number of *distinguishable*
permutations is n!/(n1!*n2!) = n! / ( k! * (n-k)! ) = binomial (n, k).

Here is a simple example: suppose n = 3, n! = 6, n = n1 + n2, n1 = 1 success, n1! = 1, 
n2 = 2, n2! = 2 failures, number of "distinguishable" permutations is n!/(n1!*n2!) = 6/ (1*2) = 3.
Distinguishable permutations: {SFF, FSF, FFS}.

Since the n trials are independent with probabilities remaining constant between them, any 
arrangement of n trials with n1 =  k successes (and n2 =  (n - k) failures ) has the same 
probability of being achieved (regardless of positions of successes within the arrangement). 
That probability is p^k * (1 - p)^(n-k).

Recall from our section on basicd probability laws, we had the example:
If events A, B, C are mutually exclusive events, then the joint probability P (A,B,C) = 0, 
and we are left with   P (A + B + C) = P(A) + P(B) + P(C).

Let N = number of distinguishable permutations = n! / ( k! * (n-k)! ) in the above example,
and let {d1, d2, ...., dN} denote the distinguishable arrangements of the k successes each
mutually exclusive events whose joint probability is equal to zero.
Then
  P (d1 + d2 + d3 + ...+ dN) = P(d1) + P(d2) + P(d3) + .... + P(dN).
In our case each term is equal to p^k * (1 - p)^(n-k), which is added n! / ( k! * (n-k)! ) times
to produce Pb (k; n, p) = binomial (n, k) * p^k * (1 - p)^(n-k).

 

pdf_binomial (k, n, p), n>0, 0<p<1, k = 0,1,2,....,n  8.2 
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What we have called Pb (k; n, p) is returned by the Maxima function pdf_binomial (k, n, p),
 with 0 < p < 1  and with n a positive integer and with k = 0, 1, 2, ...., n.
("pdf" standing for probability distribution function.)

Assume p = 0.5 is the probability of success in each identical conditions trial. What is the 
probability of k = 0 success if we only have 1 such trial?  2 such trials? etc?
Answer: 0.5, 0.25, 0.125 etc.
Because p = 0.5, 1-p = 1 - 0.5 = 0.5 = p, and 
Pb (k; n, 0.5) = 
( n! / (x! * (n - x)! ) * p^x * (1 - p)^(n - x) = (n!/(0!*n!)*(p^0)* (1-p)^n = (1-p)^n = p^n.

(%o17) 
n

k
( )1−p n − k pk

pdf_binomial (k, n, p);(%i17)

binomial(n,k)*(1-p)^(n-k)*p^k$

grind (%)$(%i18)

(%o19) 0.5n n

k

pdf_binomial (k, n, 0.5);(%i19)

0.5^n*binomial(n,k)$

grind(%)$(%i20)

(%o21) 1.0 0.5n

pdf_binomial (0, n, 0.5);(%i21)

The probability of zero success in one trial is 0.50 = p,

(%o22) 0.5

pdf_binomial (0, 1, 0.5);(%i22)

The probability of zero successes in two trials is 0.25 since p^2 =  (0.5)^2 = 0.25.

(%o23) 0.25

pdf_binomial (0 , 2, 0.5);(%i23)

The probability of zero successes in ten trials is 0.0009765.

(%o24) 9.76563 10−4

0.5^10;(%i24)
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Convert a probability (which must be in the interval [0, 1]) to % chance by multiplying by 100.

(%o25) 0.0976563

100*%;(%i25)

Watch out for the confusing notation - In Maxima the symbol % refers to the previous output, 
and has nothing to do with percent chance.

We get the same probability using pdf_binomial (0, 10, 0.5).

(%o26) 9.76563 10−4

pdf_binomial (0, 10, 0.5);(%i26)

What about the probability of getting zero successes in 100 trials (with p = 0.5 for each trial).

(%o27) 7.88861 10−31

pdf_binomial (0, 100, 0.5);(%i27)

[RS: Example 9]: Two Tosses of a Balanced Coin  8.3 

Sidebar:
See the Oct. 11, 2023 article at:  https://phys.org/news/2023-10-flipped-coins-fair-thought.html
with the title:  'Flipped coins found not to be as fair as thought', by Bob Yirka , Phys.org,
about practical conditions required for a 'fair' coin toss.

Quoting [RS]:
"The possible outcomes in two [successive] tosses [two trials] of a balanced coin are
                     TT, TH, HT, and HH. Thus
    P(0 H) = 1/4,  P(1 H) = 1/2,  and P(2 H) = 1/4.
[Note the sum of the probabilities is 1]
The number of heads is therefore a discrete random variable, and the set of all possible
outcomes [in two trials] is a 'discrete probability distribution'". 

Since "the binomial distribution is used to 'find the probability of k number of occurrences or 
successes of an event P(k), in n trials of the same experiment when (1) there are only two 
possible and mutually  exclusive outcomes, (2) the n = 2 trials are independent, and (3) the 
probability of occurrence or  success, p = 0.5  remains constant in each trial', the distribution 
of successes is described by a Binomial (2, 0.5) distribution.

Applying the Maxima function pdf_binomial (k, n, p) with p = 0.5, n = 2, k = 0, 1, 2,

(mypoints) [ [ 0 ,0.25 ] , [ 1 ,0.5 ] , [ 2 ,0.25 ] ]

mypoints : makelist ([ k,  pdf_binomial (k, 2, 0.5 ) ], k, 0, 2 );(%i28)
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(%t29) 

wxdraw2d ( xrange = [-1, 3], yrange = [0, 0.6], points_joined = impulses,
    xlabel = "Number of Heads", ylabel = "Probability", 
    title = "Distribution of Heads in Two Tosses of a Balanced Coin",   
    background_color = light_gray, grid = true,
    line_width = 4, color = red, points (mypoints) )$

(%i29)

mean_binomial (n, p)  8.3.1 

What is the 'mean number of heads' in two trials for which p = 1/2?

The mean result (the average result) is advertised to be n*p = 2*(1/2) = 1, also given using
sum (x*P(x), x, xmin, xmax) = 0*P(0) + 1*P(1) + 2*P(2) = 0 + 1*(1/2) + 2*(1/4) = 1/2 + 1/2 = 1.

Using our basic definitions, we have a data set with M = 3 distinct values: x_1 = 0, x_2 = 1,
and x_3 = 2 (heads), which occurs with frequencies f_1 = 1, f_2 = 2, f_3 = 1, and the sum of the
frequencies sum (f_k, k, 1, M) = N = 4. Then the mean is given by our basic definition:
mean = <x> = sum (f_k*x_k, k, 1, M) / N. = ( 1*0 + 2*1 + 1*2 )/ 4 = 4/4 = 1.

Using Maxima's mean_binomial (n, p) function:

(%o30) 1.0

mean_binomial (2, 0.5);(%i30)

var_binomial (n, p)  8.3.2 

The theoretical standard deviation is advertised to be σ = sqrt (n*p*(1 - p) ), and the
variance is σ^2 = n*p*(1 - p)  = μ * (1 - p) = 1*(1/2) = 1/2.
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The Maxima function: var_binomial (n, p) returns the variance of a Binomial (n, p)  random 
variable, with 0 < p < 1  and n a positive integer. 

(%o31) 0.5

var_binomial (2, 0.5);(%i31)

Using our basic definition  Var(x) = sum ( f_k* (x_k - <x>)^2, k, 1, M )/ N, we get
 (1*(0 - 1)^2 + 2*(1 - 1)^2 + 1*(2 - 1)^2) / 4 = 2/4 = 1/2.

std_binomial (n, p)  8.3.3 

The standard deviation is the square root of the variance, so should be sqrt(1/2).

(%o32) 
1

2

sqrt (1/2);(%i32)

(%o33) 0.707107

%, numer;(%i33)

The theoretical standard deviation is σ = sqrt (n*p*(1 - p) ) = sqrt (μ * (1 - p) )
  = sqrt ( 1 * (1 - 1/2) ) = sqrt (1/2).

The Maxima function std_binomial (n, p) returns the standard deviation σ of a Binomial (n, p) 
random variable, with 0 < p < 1  and  n a positive integer. 

(%o34) 0.707107

std_binomial (2, 0.5);(%i34)

cdf_binomial (k, n, p)  8.3.4 

The 'cumulative distribution function' (cdf): cdf_geometric (k, p) returns the sum of the values P(k)
for a Geometric (p) random variable, with 0 < p < 1,  beginning at k=0 and ending at k.
P (k <= n) = cdf_geometric (n, p)

The 'cumulative distribution function' [cdf]   cdf_binomial (k, n, p) 
returns the sum of the values P(k) for a Binomial (n, p) random variable, with 0 < p < 1  and 
n a positive integer, beginning at k = 0 and ending at k.  If k is n, the returned answer should 
be 1, since the sum of the probabilities of all possible events is 1.
P (k <= k1) = cdf_geometric (k1, n, p)
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0  0.25  
1  0.75  
2  1  

for j:0 thru 2 do print (j, cdf_binomial (j, 2, 0.5) )$(%i35)

Here is a summary of the uses of pdf_binomial and cdf_binomial:

P (k = k1) = pdf_binomial (k1, n, p),  (probability of finding exact value k1),
P (k < k1) = cdf_binomial (k1 - 1, n, p),  (probability of finding a value less than k1),
P (k <= k1) = cdf_binomial (k1, n, p),   (probability of finding a value less than or equal to k1),
P (k > k1) = 1 -  cdf_binomial (k1, n, p),  (probability of finding a value greater than k1),
        based on: P (k <= k1) + P (k > k1) = 1, 
P (k >= k1) = 1 - cdf_binomial (k1 - 1, n, p,  (probability of finding a value greater than or 
         equal to k1),    based on:  P (k < k1) + P (k >= k1) = 1.      
 

Example 1 of Use of cdf_binomial (k, n, p)  8.3.5 

This is Example 10.6 from https://online.stat.psu.edu/stat414/lesson/10/10.3

By some estimates, twenty-percent (20%) of Americans have no health insurance. 
Randomly sample n = 15 Americans. 

A.) Let k denote the number in the sample with no health insurance. What is the probability 
      that exactly 3 of the 15 sampled have no health insurance?

Solution:
Since 15 is small relative to the population of N = 300,000,000 Americans, and all of the other 
criteria pass muster (two possible outcomes, independent trials, ....), the random variable k can 
be assumed to follow a binomial distribution with n = 15 and  p = 0.2. 
Using the probability mass function for a binomial random variable, the calculation is then 
relatively straightforward:
     P (k = 3) = binomial (15, 3)* (0.2)^3 * (0.8)^12 = 0.25.

(%o36) 0.250139
(%o37) 0.250139

binomial (15, 3)* (0.2)^3 * (0.8)^12;
pdf_binomial (3, 15, 0.2);

(%i37)

That is, there is a 25% chance, in sampling 15 random Americans, that we would find 
exactly 3 that had no health insurance.
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B.) What is the probability that at most one of those sampled has no health insurance?

Solution:
"At most one" means either 0 or 1 of those sampled have no health insurance. That is, we 
need to find:
    P (k <= 1) = P (0) + P (1), which is given by cdf_binomial (1, n, p),

(%o38) 0.167126

cdf_binomial (1, 15, 0.2);(%i38)

That is, we have a 16.7% chance, in sampling 15 random Americans, that we would find at 
 most one that had no health insurance.

C.) What is the probability that more than seven have no health insurance?

Solution:
Yikes! "More than seven" in the sample means finding one of the values 8, 9, 10, 11, 12, 13, 14, 15.
P (k <= 7) + P (k > 7) = 1 implies P (k > 7) =  1 - P (k <= 7) = 1 - cdf_binomial (7, 15, 0.2).

(%o39) 0.00423975

 1 - cdf_binomial (7, 15, 0.2);(%i39)

.... the probability that more than 7 in a random sample of 15 would have no health 
insurance is 0.0042 (the chance of finding that more than 7 in the random sample have no
health insurance is about 0.4%).

D.)   What is the probability that at least one of the 15 sampled has no health insurance?

P (k < 1) + P ( k >= 1) = 1 implies that P (k >= 1) = 1 - P (k < 1) = 1 - cdf_binomial (0, 15, 0.2)

(%o40) 0.964816
(%o41) 0.964816

1 - cdf_binomial (0, 15, 0.2);
1 - pdf_binomial (0, 15, 0.2);

(%i41)

That is, the probability that at least one person in a random sample of 15 would have no 
health insurance is 0.9648. (The chance of finding at least one person in a random sample of
15 with no health insurance is 96.5%.)

E.) What is the probability that fewer than 5 have no health insurance?

This asks for the probability P (k < 5), ie., the number found is either zero, one, two, three, or four,
which we can find using cdf_binomial (4, 15, 0.2),  [P (k < 5) = P (k <= 4) ]:
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(%o42) 0.835766

cdf_binomial (4, 15, 0.2);(%i42)

.... the probability that fewer than 5 people in a random sample of 15 would have no 
health insurance is 0.8358.

Example 2 of Use of cdf_binomial (k, n, p)  8.3.6 

This is Ex. 10.7 in https://online.stat.psu.edu/stat414/lesson/10/10.3

Many utility companies promote energy conservation by offering discount rates to consumers 
who keep their energy usage below certain established subsidy standards. A recent EPA report 
notes that 70% of the island residents of Puerto Rico have reduced their electricity usage 
sufficiently to qualify for discounted rates. If ten residential subscribers are randomly selected 
from San Juan, Puerto Rico, what is the probability that at least four qualify for the favorable rates?

The sample size is n = 10, the probability of a random island resident being qualified for the
discount is p = 0.7.  If k = the number in the sample of ten who qualify for the discount, this
question asks for P (k >= 4). Since P (k < 4) + P (k >= 4) = 1, P (k >= 4) = 1 - P (k < 4) 
= 1 - cdf_binomial (3, 10, 0.7).

(%o43) 0.989408

1  - cdf_binomial (3, 10, 0.7);(%i43)

.... the probability that at least four people in a random sample of ten would qualify for 
favorable rates is 0.9894.  (~ 99% chance)

quantile_binomial (q, n, p)   8.3.7 

The Maxima function quantile_binomial (q,n,p) returns the q-quantile of a Binomial(n,p) 
random variable, with 0 <= p <= 1 and n a positive integer.This is the inverse 
of cdf_binomial. Argument q must be an element of [0,1] and q should be a value returned by
cdf_binomial.

0  0.25  1  
1  0.75  1  
2  1  2  

for j:0 thru 2 do (
    qq : cdf_binomial (j, 2, 0.5),
    print (j, qq, quantile_binomial (qq, 2, 0.5) )) $

(%i44)

Number of Successes in 100 Flips of a Balanced Coin  8.4 
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We continue to assume the probability of success in any one trial is p = 0.5 (50% probability).

mean_binomial (n, p) produces the mean and std_binomial (n,p) calculates one standard
deviation.

(%o45) 50.0

mean_binomial (100, 0.5);(%i45)

The average (ie., the mean) number of heads out of 100 independent flips of a balanced coin
is predicted to be 50.  Here is std_binomial (100, 0.5) which measures the spread about the
mean number of heads (50):

(%o46) 5.0

std_binomial (100, 0.5);(%i46)

Let's calculate the probability of observing exactly k = 50 successes in n =  100 trials, if the 
probability of success  on each single trial is p = 0.5.

(%o47) 0.0795892

pdf_binomial (50, 100, 0.5);(%i47)

Thus about 8% chance for getting exactly 50 successes in 100 trials.

Next we calculate the probability of observing k = 0 heads in 100 flips of a balanced coin.

(%o48) 7.88861 10−31

pdf_binomial (0, 100, 0.5);(%i48)

(%o49)/R/ 
1

1267650600228229401496703205376

rat(%);(%i49)

(%o50) 1.26765 1030

float(denom(%));(%i50)



Stat02-Binomial-fit.wxmx 20 / 44

The probability of getting zero heads in the course of 100 flips of a balanced coin is one part
in about 10 raised to the 30 power.

 See:    https://en.wikipedia.org/wiki/Orders_of_magnitude_(numbers)
10^30 is about one fifth of the estimated number of bacterial cells on planet earth,
an incredibly large number.

10^(-30) = (1,000)^(-10) =  one quintillionth.

To get the probability that we get somewhere in the range of 45 successes to 55 successes in 
100 trials, (mean +/- std) we need to sum over these probabilities from x = 45 to x = 55. 

(%o51) 0.728747

sum (pdf_binomial (j, 100, 0.5), j, 45, 55);(%i51)

So about 73% chance of getting somewhere in the range of  45 - 55 successes in 100 trials.

We can make a plot of the probability distribution function pdf_binomial (k,100,0.5).

(%o53) [ [ 20 ,4.22816 10−10 ] , [ 80 ,4.22816 10−10 ] ,61 ]

(%o54) [ [ 20 ,4.22816 10−10 ] , [ 21 ,1.61073 10−9 ] , [ 22 ,5.78398 10−9 ] ]

(%o55) [ [ 78 ,5.78398 10−9 ] , [ 79 ,1.61073 10−9 ] , [ 80 ,4.22816 10−10 ] ]

mypoints : makelist ( [j, pdf_binomial (j, 100, 0.5) ], j, 20, 80)$
fll (mypoints);
head (mypoints);
tail (mypoints);

(%i55)

The *continuous* normal distribution (see pdf_normal (x, m, s)) closely agrees with the
discrete binomial distribution, provided m = mean_binomial(100, 0.5) = 50, and
s = std_binomial (100, 0.5) = 5.
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(%t56) 

wxdraw2d ( xrange = [30, 70], yrange = [0, 0.1], points_joined = impulses,
    xlabel = "number successes in 100 trials", ylabel = "probability", grid = true,
    title = "Binomial distribution n = 100, p = 0.5",
    background_color = light_gray,
    line_width = 2, color = red, points (mypoints),
    color = black, key_pos = top_left,
    key = "pdf normal (x, 50, 5)",
    explicit (pdf_normal (x, 50, 5), x, 30, 70) )$

(%i56)

pdf_normal (x, m, s) produces the probability at location x for a nomal distribution
having mean m and standard deviation s.

The maximum of the normal distribution used is given by:

(%o57) 0.0797885

pdf_normal (50, 50, 5), numer;(%i57)

which is also the maximum of our binomial distribution.

The area (probability) in the x-interval  [m - 3*s, m + 3*s], or within 3 standard deviations 
of the mean is almost equal to 1.

(%o58) 0.9973

integrate (pdf_normal (x, 50, 5), x, 35, 65), numer;(%i58)

Summing the values of pdf_binomial (k, n, p) we get very close to the same answer:

(%o59) 0.99821

sum (pdf_binomial (j, 100, 0.5), j, 35, 65);(%i59)
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Inverse Type of Problem  8.4.1 

Question: There is a 95% chance that the number of heads (in 100 coin flips) will be in 
the range [0, x].  What is the approximate value of x?

An *approximate* answer is provided by quantile_binomial (0.95, 100, 0.5), since as yet we don't
know if 0.95 is a possible return value of cdf_binomial (k, 100, 0.5) with k equal to an integer.

(%o60) 58

quantile_binomial (0.95, 100, 0.5);(%i60)

We can check this approximate value as follows:

57  0.933395  
58  0.955687  
59  0.971556  

for j: 57 thru 59 do print (j, cdf_binomial (j, 100, 0.5) )$(%i61)

There is about a 95% chance that the number of heads (in 100 coin flips) will lie
in the range of 0 to between 57 and 58.

binomialCalc (k, n, p)  8.4.2 

What is the probability (when n = 100 trials and p = 0.5) that k < 55?
That is,  what is the probability that the number of successes in 100 trials (flips) is less than 55?
One way to calculate this is by summing the values of pdf_binomial (k, 100, 0.5) from k = 0 to 
k = 54.

(%o62) 0.815899

sum (pdf_binomial (k, 100, 0.5), k, 0, 54);(%i62)

Another way is to use cdf_binomial (54, 100, 0.5): 

(%o63) 0.815899

cdf_binomial (54, 100, 0.5);(%i63)

What is the probability the number of successes in 100 trials (flips) is less than or equal to 55?

(%o64) 0.864373
(%o65) 0.864373

sum (pdf_binomial (k, 100, 0.5), k, 0, 55);
cdf_binomial (55, 100, 0.5);

(%i65)
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What is the probability the number of successes in 100 trials (flips) is greater than 55?

(%o66) 0.135627
(%o67) 0.135627

1 - sum (pdf_binomial (k, 100, 0.5), k, 0, 55);
1 - cdf_binomial (55, 100, 0.5);

(%i67)

What is the probability the number of successes in 100 trials is greater than or equal to 55?

(%o68) 0.184101
(%o69) 0.184101

1 - sum (pdf_binomial (k, 100, 0.5), k, 0, 54);
1 - cdf_binomial (54, 100, 0.5);

(%i69)

We can incorporate these methods into a Maxima function binomialCalc(xx, n, p) which shows 
the probabilities P(k = xx), P (k < xx), P (k <= xx), P(k > xx), and P (k >= xx) as output.

binomialCalc (xx, nn, pp) := 
block ( 
    print (" "),
    print (sconcat (" For n = ", nn, ",   p = ", pp, ",  the probabilities are:")),
    print ("  "),
    print (sconcat (" P ( k = ", xx, " )   : ", pdf_binomial (xx, nn, pp) )), 
    print (sconcat (" P ( k < ", xx, " )   : ", cdf_binomial (xx - 1 , nn, pp) )), 
    print (sconcat (" P ( k <= ", xx, " ) : ", cdf_binomial (xx, nn, pp) )), 
    print (sconcat (" P ( k > ", xx, " )   : ", 1 -   cdf_binomial (xx, nn,  pp) )), 
    print (sconcat (" P ( k >= ", xx, " ) : ", 1 -  cdf_binomial (xx - 1, nn, pp) )), 
    done )$

(%i70)

  
 For n = 100,   p = 0.5,  the probabilities are:  
   
 P ( k = 55 )   : 0.0484743 
 P ( k < 55 )   : 0.815899 
 P ( k <= 55 ) : 0.864373  
 P ( k > 55 )   : 0.135627  
 P ( k >= 55 ) : 0.184101  

binomialCalc (55, 100, 0.5)$(%i71)

These answers agree with the results returned from
                 https://www.statology.org/binomial-distribution-calculator/

confidence (q, m, s)  8.4.3 
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What is the q confidence interval about the mean m when we can approximate the distribution
with a (continuous) Normal (m, s) distribution?

Suppose q = 0.95 (in the case we are looking for the 95% confidence interval about the mean).
The normal distribution is symmetrical, so we can say that there is 95% confidence that the
resulting number of successes in 100 trials lies between x1 and x2, where x1 = m - dx,
x2 = m + dx (for some dx); that is the area (probability) under the normal curve in the interval
[m - dx, m + dx] is equal to 0.95. That means that the area left for the tails (left tail and right tail
combined) is 0.05 (5%) and the area of the left tail (x < x1) is 0.025 (2.5%) and the area under
the right tail (x > x2) is 0.025 (2.5%) as well.

We then generalize to an arbitrary choice for q. We make use of the Maxima function
quantile_normal (q, m, s) which we will cover in the worksheet Stat04-Normal.wxmx. Because
the Normal (m,s) distribution is an example of a continous probability distribution function
such as pdf_normal (x, m, s), where x can assume any real valued number, we can use
quantile_normal (q, m, s) with any real number q.

With q = 0.95, we find x2 using quantile_normal (0.975, m, s) since the combined left tail and the
interval [x1,x2] area is 0.95 + 0.025 = 0.975. We find x1 using quantile_normal (0.025, m, s).
We then find dx = (x2 - x1)/2

confidence (qq, mm, ss) := 
block ([ddx, xx1, xx2],
       float ( quantile_normal (qq + (1 - qq)/2, mm, ss) - 
                      quantile_normal ( (1 - qq)/2  , mm, ss)  ),
        ddx : %% / 2,    
        xx1 : mm - ddx,
        xx2 : mm + ddx,
        print ( "delx = ", ddx ),
        print ( " x1 = ", xx1, ",  x2 = ", xx2 ),
       [xx1, xx2])$

(%i72)

For our 100 flips of a balanced coin example, the mean m = 50, the standard deviation s = 5.

delx =  9.79982  
 x1 =  40.2002  ,  x2 =  59.7998  

confidence (0.95, 50, 5)$(%i73)

delx =  9.79982  
 x1 =  40.2002  ,  x2 =  59.7998  

(%o74) [ 40.2002 ,59.7998 ]

confidence (0.95, 50, 5);(%i74)
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We can thus be 95% confident that the number of successes in 100 flips of a balanced coin will 
lie in the range (40 - 60).

We can alter confidence (q,m,s) to confidence_integral (q,m,s) which rounds x1 and x2 to
the closest integer.

confidence_integral (qq, mm, ss) := 
block ([ddx, xx1, xx2],
       float ( quantile_normal (qq + (1 - qq)/2, mm, ss) - 
                      quantile_normal ( (1 - qq)/2  , mm, ss)  ),
        ddx : %% / 2,    
        xx1 : mm - ddx,
        xx2 : mm + ddx,
        print ( "delx = ", ddx ),
        print ( " x1 = ", round (xx1), ",  x2 = ", round (xx2) ),
        round ( [xx1, xx2] ))$

(%i75)

delx =  9.79982  
 x1 =  40  ,  x2 =  60  

confidence_integral (0.95, 50, 5)$(%i76)

delx =  9.79982  
 x1 =  40  ,  x2 =  60  

(%o77) [ 40 ,60 ]

confidence_integral (0.95, 50, 5);(%i77)

The following examples are from:
       https://www.statology.org/binomial-distribution-real-life-examples/
which offers the web based calculator referred to just above.

Statology 1: Number of Side Effects from Medications  8.5 
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This example is from the webpage
   https://www.statology.org/binomial-distribution-real-life-examples/

"Medical professionals use the binomial distribution to model the probability that a certain number 
of patients will experience side effects as a result of taking new medications."

"For example, suppose it is known that 5% of adults who take a certain medication experience 
negative side effects. We can use a Binomial Distribution Calculator to find the probability that 
more than a certain number of patients in a random sample of 100 will experience negative 
side effects."

"P(X > 5 patients experience side effects) = 0.38400
P(X > 10 patients experience side effects) = 0.01147
P(X > 15 patients experience side effects) = 0.0004 [we will show this is too large by a factor 
of 10].  And so on."

"This gives medical professionals an idea of how likely it is that more than a certain number of 
patients will experience negative side effects."

In this example, each patient taking the medication either experiences negative side effects 
('success') or does not experience negative side effects. The probability of 'success' 
is p = 0.05 (5%), and n = 100 patients take the same medication (100 trials), each with the 
same probability p of negative side effects. Then the average number of patients (out of 100) 
who experience negative side effects is 5 (out of 100) and the standard deviation is about 2.2.

(%o78) 5.0
(%o79) 2.17945

mean_binomial (100, 0.05);
std_binomial (100, 0.05);

(%i79)

Using our homemade Maxima function binomialCalc (x, n, p),

  
 For n = 100,   p = 0.05,  the probabilities are:  
   
 P ( k = 5 )   : 0.180018  
 P ( k < 5 )   : 0.435981  
 P ( k <= 5 ) : 0.615999 
 P ( k > 5 )   : 0.384001  
 P ( k >= 5 ) : 0.564019 

binomialCalc (5, 100, 0.05)$(%i80)

The above output shows that the example assertion P(k > 5) = 0.384 is correct.
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 For n = 100,   p = 0.05,  the probabilities are:  
   
 P ( k = 10 )   : 0.0167159 
 P ( k < 10 )   : 0.971812 
 P ( k <= 10 ) : 0.988528  
 P ( k > 10 )   : 0.0114724 
 P ( k >= 10 ) : 0.0281883 

binomialCalc (10, 100, 0.05)$(%i81)

The output above shows that the example assertion P(k > 10) = 0.1147 is correct.

  
 For n = 100,   p = 0.05,  the probabilities are:  
   
 P ( k = 15 )   : 9.88002e−5  
 P ( k < 15 )   : 0.999864 
 P ( k <= 15 ) : 0.999963  
 P ( k > 15 )   : 3.70541e−5  
 P ( k >= 15 ) : 1.35854e−4  

binomialCalc (15, 100, 0.05)$(%i82)

This last calculation shows P(x > 15) = 3.7*(10^(-5)) = 3.7e-5  = 0.000037 ~ 0.00004,
which is a factor of 10 smaller than the webpage asserts.

There is a 95% chance that the number of patients out of 100 who experience negative side 
effects will be in the range [0, x]. What is the approximate value of x?

An approximate answer is provided by quantile_binomial (0.95, 100, 0.05)

(%o83) 9

quantile_binomial (0.95, 100, 0.05);(%i83)

We can check this estimate as follows:

(%o84) 0.93691
(%o85) 0.971812

cdf_binomial (8, 100, 0.05);
cdf_binomial (9, 100, 0.05);

(%i85)

There is a 95% chance the number of patients who experience negative side effects (out of 100)
will lie in the range (0, 8 or 9).
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Here we try using confidence_integral (q, m, s).

We can have 95% confidence that the number of patients who experience negative side effects 
(out of 100) will lie in the interval (m - dx, m + dx). We know the mean number is m = 5, and one 
standard deviation s = 2.2 approximately.

delx =  4.31192  
 x1 =  1  ,  x2 =  9  

confidence_integral (0.95, 5, 2.2)$(%i86)

With dx about 4 and the mean equal to 5 we can be 95% confident that the number of patients
experiencing negative side effects (out of 100) will be in the approximate range (1, 9).

So both methods give the same approximate range.

Statology 2: Number of Fraudulent Credit Card Transactions  8.6 

This example is from the webpage
   https://www.statology.org/binomial-distribution-real-life-examples/

"Banks use the binomial distribution to model the probability that a certain number of credit 
card transactions are fraudulent."

"For example, suppose it is known that 2% of all credit card transactions in a certain region 
are fraudulent. If there are 50 transactions per day in a certain region, we can use a Binomial 
Distribution Calculator to find the probability that more than a certain number of fraudulent 
transactions occur in a given day:"  [assuming a random sample of 50 transactions per day]

"P(X > 1 fraudulent transaction) = 0.26423
P(X > 2 fraudulent transactions) = 0.07843
P(X > 3 fraudulent transactions) = 0.01776"

"And so on."

"This gives banks an idea of how likely it is that more than a certain number of fraudulent 
transactions will occur in a given day."

In this example, each credit card transaction either is fraudulent ('success') or is not fraudulent. 
The probability of 'success' is p = 0.02 (2%), and n = 50 credit card transactions occur 
(50 trials), each with the same probability p of being fraudulent.
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(%o87) 1.0
(%o88) 0.989949

mean_binomial (50, 0.02);
std_binomial (50, 0.02);

(%i88)

Let's show a plot of the probability distribution for this case Binomial (50, 0.02).

(mypoints) [ [ 0 ,0.36417 ] , [ 1 ,0.371602 ] , [ 2 ,0.185801 ] , [ 3 ,0.0606697 ] , [ 4 ,
0.0145483 ] , [ 5 ,0.00273152 ] ]

mypoints : makelist ( [j, pdf_binomial (j, 50, 0.02) ], j, 0, 5 );(%i89)

The *continuous* normal distribution (see pdf_normal (x, m, s)) closely agrees with the
discrete binomial distribution, provided m = mean_binomial(50, 0.2) = 1, and
s = std_binomial (50, 0.2) = 0.99, as we just calculated. Recall that pdf_binomial (k, n, p)
is only nonzero for k = 0, 1, 2, ..., so pdf_binomial (0.5, n, p ) = 0 (see just below).

(%o90) 0.36417

pdf_binomial (0, 50, 0.02);(%i90)

(%o91) 0

pdf_binomial (0.5, 50, 0.02);(%i91)

(%o92) 0.371602

pdf_binomial (1, 50, 0.02);(%i92)
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(%t93) 

wxdraw2d ( xrange = [0, 5], yrange = [0, 0.4], points_joined = impulses,
    xlabel = "number successes in 50 trials", ylabel = "probability", grid = true,
    title = "Binomial(50, 0.02), (red), Normal (1, 0.99), (black) ",
    background_color = light_gray,
    line_width = 2, color = red,  points (mypoints),
    color = black, explicit (pdf_normal (x, 1, 0.99), x, 0, 5) )$

(%i93)

Assertion:  P(X > 1 credit card transactions [out of 50] are fraudulent) = 0.26423.
Maxima check:

  
 For n = 50,   p = 0.02,  the probabilities are:  
   
 P ( k = 1 )   : 0.371602  
 P ( k < 1 )   : 0.36417  
 P ( k <= 1 ) : 0.735771 
 P ( k > 1 )   : 0.264229  
 P ( k >= 1 ) : 0.63583  

binomialCalc (1, 50, 0.02)$(%i94)

The chance that more than 1 credit card transaction (out of 50) will be fraudulent is about 26%.

Assertion:  P(X > 2 credit card transactions [out of 50] are fraudulent) = 0.07843
Maxima check:
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 For n = 50,   p = 0.02,  the probabilities are:  
   
 P ( k = 2 )   : 0.185801  
 P ( k < 2 )   : 0.735771  
 P ( k <= 2 ) : 0.921572 
 P ( k > 2 )   : 0.0784277  
 P ( k >= 2 ) : 0.264229 

binomialCalc (2, 50, 0.02)$(%i95)

The chance that more than 2 credit card transactions (out of 50) will be fraudulent is about 8%.

Assertion:  P(X > 3 credit card transactions [out of 50] are fraudulent) = 0.01776
Maxima check:

  
 For n = 50,   p = 0.02,  the probabilities are:  
   
 P ( k = 3 )   : 0.0606697  
 P ( k < 3 )   : 0.921572  
 P ( k <= 3 ) : 0.982242 
 P ( k > 3 )   : 0.0177581 
 P ( k >= 3 ) : 0.0784277  

binomialCalc (3, 50, 0.02)$(%i96)

The chance that more than 3 credit card transactions (out of 50) will be fraudulent is about 2%.

There is a 95% chance that the number of fraudulent transactions will be in the range [0, x]. 
What is the approximate value of x?

An approximate answer is provided by quantile_binomial (0.95, 50, 0.02).

(%o97) 3

quantile_binomial (0.95, 50, 0.02);(%i97)

We can check this as follows:

2  0.921572  
3  0.982242  
4  0.99679  

for j:2 thru 4 do print (j, cdf_binomial (j, 50, 0.02) )$(%i98)



Stat02-Binomial-fit.wxmx 32 / 44

There is a 95% chance the number of fraudulent credit card transactions per day will lie in the 
interval [0, 2 or 3].

Statology 3: Number of Spam Emails per Day  8.7 

This example is from
https://www.statology.org/binomial-distribution-real-life-examples/

"Email companies use the binomial distribution to model the probability that a certain number 
of spam emails land in an inbox per day."

"For example, suppose it is known that 4% of all emails are spam. If an account receives 20 
emails in a given day, we can use a Binomial Distribution Calculator to find the probability that 
a certain number of those emails are spam:"

"P(X = 0 spam emails) = 0.44200
 P(X = 1 spam email) = 0.36834
 P(X = 2 spam emails) = 0.14580
  And so on."

(%o99) [ [ 0 ,0.442002 ] , [ 1 ,0.368335 ] , [ 2 ,0.145799 ] ]

makelist ([ j, pdf_binomial (j, 20, 0.04) ], j, 0, 2);(%i99)

Out of 20 emails per day, (assuming a 4% spam rate) the chance of getting exactly no spam
is 44%, the chance of getting one spam email is 36%, and the chance of getting  two spam 
emails is about 15%.

Statology 4: Number of River Overflows  8.8 
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This example is from
https://www.statology.org/binomial-distribution-real-life-examples/

"Park systems use the binomial distribution to model the probability that rivers overflow 
a certain number of times each year due to excessive rain."

"For example, suppose it is known that a given river overflows during 5% of all storms. 
If there are 20 storms in a given year, we can use a Binomial Distribution Calculator to 
find the probability that the river overflows a certain number of times:"

"P(X = 0 overflows) = 0.35849
 P(X = 1 overflow) = 0.37735
 P(X = 2 overflows) = 0.18868"

"And so on."

"This gives the parks departments an idea of how many times they may need to prepare for 
overflows throughout the year."

(%o100) [ [ 0 ,0.358486 ] , [ 1 ,0.377354 ] , [ 2 ,0.188677 ] ]

makelist ([j, pdf_binomial (j, 20, 0.05)], j, 0, 2);(%i100)

Assuming a given river overflows during 5% of all storms, and assuming 20 storms/year, the
chance there will be no overflow (X = 0) is about 36%, the chance there will be exactly one
overflow during the 20 storms is about 38%, and the chance there will be exactly two river
overflows during the 20 storms is about 19%.

  
 For n = 20,   p = 0.05,  the probabilities are:  
   
 P ( k = 2 )   : 0.188677  
 P ( k < 2 )   : 0.73584  
 P ( k <= 2 ) : 0.924516  
 P ( k > 2 )   : 0.0754837  
 P ( k >= 2 ) : 0.26416  

binomialCalc (2, 20, 0.05)$(%i101)

(%o102) 1.0

mean_binomial (20, 0.05);(%i102)

Barlow Prob. 3.1  8.9 



Stat02-Binomial-fit.wxmx 34 / 44

A defence system is 99.5% efficient in intercepting ballistic missiles.

A.) What is the probability that it will intercept all of 100 missiles launched against it? 

The probability P(k,n) that the system will intercept exactly k missles out of n incoming if the 
defence system intercepts each missle with a probability p = 0.995, and we treat each missle 
as an (indepedent Bernoulli trial) is given by the binomial distribution.

P_intercept (k,n) = binomial (n, k) * p^k * (1-p)^(n-k) = pdf_binomial (k,n,p)

For n = 100 missiles and k = 100 intercepts,

(%o103) 0.60577

pdf_binomial (100, 100, 0.995);(%i103)

So about 61% chance of intercepting all 100 out of 100 incoming.

Let's make a plot of the values of the Binomial (n = 100, p = 0.995) for k <= 100.

(mypoints) [ [ 97 ,0.0124296 ] , [ 98 ,0.0757194 ] , [ 99 ,0.304407 ] , [ 100 ,0.60577 ] ]

mypoints : makelist ( [k, pdf_binomial (k, 100, 0.995) ], k, 97, 100 );(%i104)

(%t105) 

wxdraw2d ( xrange = [97, 100], yrange = [0, 0.7], points_joined = impulses,
    xlabel = "number of interceptions in 100 trials", ylabel = "probability", grid = true,
    title = "Binomial(100, 0.995) (red),  pdf binomial (x,100,0.995) (black) ",
    background_color = light_gray,
    line_width = 2, color = red,  points (mypoints),
    color = black, explicit (pdf_binomial (x, 100, 0.995), x, 97, 100) )$

(%i105)
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B.) How many missiles must an aggressor launch to have a better than even chance of one 
or more penetrating the defences?

'one or more' means at least one. Let x = number of missiles which evade the defense system. 
The probability of any given missile evading the defenses is  pe = 1 - 0.995 = 0.005.

This question is asking: for what number n of missiles launched do we have
    P_evade (x >= 1) = 0.5 ?

Since P_evade (x < 1) + P_evade (x >= 1) = 1, we have the identity:
    P_evade (x >= 1) = 1 - P_evade (x < 1)  = 1 - cdf_binomial (0, n, 0.005), or
    P_evade (x >= 1) = 1 - pdf_binomial (0, n, 0.005).

Numerical Solution  8.9.1 

(eqn) 1−1.0 0.995n=0.5

eqn : 1 -  pdf_binomial (0, n, 0.005) = 0.5;(%i106)

(expr) 0.5−1.0 0.995n

expr : lhs (eqn) - rhs(eqn);(%i107)

(%o108) 138.283

find_root (expr, n, 100, 200);(%i108)

Graphical Solution  8.9.2 

We first survey the feasible solutions graphically. Define look (n1, n2) which plots the
curve of 1 - pdf_binomial (0, n, 0.005) for n1 <= n <= n2.

look (n1, n2) :=  wxdraw2d (xlabel = "n", ylabel = "Pevade (x >= 1)",
    xrange = [n1, n2],  title = " 1 - pdf binomial (0, n, 0.005)", grid = true,
    explicit (1 - pdf_binomial (0, n, 0.005), n, n1, n2) )$

(%i109)
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(%t110) 

look(100, 200)$(%i110)

(%t111) 

look (130, 140)$(%i111)

For 138 missiles launched we appear to reach P_evade = ~0.5. Print out the values near
n = 138.

135  0.491705  
136  0.494246  
137  0.496775  
138  0.499291  
139  0.501795  
140  0.504286  

for n : 135 thru 140 do print (n, 1 - pdf_binomial (0, n, 0.005) )$(%i112)
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Thus with 139 missiles launched, the agressor has an even chance of one or more (at least one)
missiles evading the defence system.

Analytic Solution  8.9.3 

For an analytic approach to this problem:

(eqn) 1−1.0 0.995n=0.5

eqn : 1 - pdf_binomial (0, n, 0.005) = 0.5;(%i113)

(%o114) −1.0 0.995n=−0.5

eqn - 1;(%i114)

(%o115) 1.0 0.995n=0.5

-1*%;(%i115)

(%o116) −0.00501254 n=−0.693147

log (%);(%i116)

(%o117) [ n=138.283 ]

solve (%, n), numer;(%i117)

The analytic solution thus says the agressor should launch 138 missiles to have an even chance
of one or more evading the defense system.

Barlow Prob. 3.2  8.10 

In the previous question, how many missiles would be needed to ensure a better than even
chance of more than two missiles evading the defences?

P(x <= 2) + P (x > 2) = 1 implies:

P(x > 2) = 1 - P ( x <= 2 ), or 

P(x > 2) = 1 - cdf_binomial (2, n, 0.005)

numerical solution  8.10.1 

(eqn) −1.25 10−5 n2 0.995n − 2−0.0049625 n 0.995n − 2−0.990025 0.995n − 2+
1=0.5

eqn : expand (1 - cdf_binomial (2, n, 0.005) ) = 0.5;(%i118)
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(expr) −1.25 10−5 n2 0.995n − 2−0.0049625 n 0.995n − 2−0.990025 0.995n − 2+
0.5

expr : lhs (eqn) - rhs (eqn);(%i119)

find_root (expr, variable, start, stop) looks for the value of the variable for which the
expression expr passes through zero in the range [start, stop].

(%o120) 534.475

find_root (expr, n, 100, 800);(%i120)

graphical solution  8.10.2 

Graphical exploration for various values of n.

look (n1, n2) :=  wxdraw2d (xlabel = "n", ylabel = "Pevade (x > 2)", 
    xrange = [n1, n2], grid = true,
    title = " 1 - cdf binomial (2, n, 0.005) ",
    explicit (1 - cdf_binomial (2, n, 0.005), n, n1, n2) )$

(%i121)

(%t122) 

look (100, 800)$(%i122)
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(%t123) 

look (520, 540)$(%i123)

Print out values for n  in the range [530, 540]:

530  0.494453  
531  0.495695  
532  0.496936  
533  0.498175  
534  0.499413  
535  0.500649  
536  0.501883  
537  0.503116  
538  0.504347  
539  0.505577  
540  0.506805  

for n : 530 thru 540 do print (n, 1 - cdf_binomial (2, n, 0.005) )$(%i124)

The agressor needs 535 missiles launched to have an even chance of more than two
missiles (three or more) penetrating the defense system.

random_binomial (n, p), random_binomial (n, p, m)  8.11 

The Maxima function random_binomial (n, p) returns a Binomial (n, p) random variate, 
   with 0 < p < 1  and n a positive integer. Each time you run the following command, you
will get a different set of five numbers of successes (in general).
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Choosing n = 100, p = 0.5, reminds us of 100 flips of a balanced coin. With p = 0.5, the mean
number of heads ("success") out of 100 flips is 50, so we expect random_binomial (100, 0.5)
to return a number fairly close to 50 more often than not.

(%o125) 50.0

mean_binomial (100, 0.5);(%i125)

1  52  
2  51  
3  46  
4  59  
5  46  

for j thru 5 do print (j, random_binomial (100, 0.5) )$(%i126)

Random Sample of size m = 10, n = 100, p = 0.5  8.11.1 

The Maxima function random_binomial (n, p, m) returns a "random sample of size m", with
each of the m samples being the result of a simulation of n trials of an identical experiment, each
trial having the same probability of success p. Each trial is independent of the other trials, and in
each trial there are only two possible and mutually exclusive outcomes.

Thus random_binomial (100, 0.5, 10) calls random_binomial (100, 0.5) ten times and
returns a list of ten values, each value being the number of successes found in 100 identical
trials. For this example we know that the average (mean) number of successes in 100 identical
trials is 50 (which is n*p).

(%o128) [ 45 ,49 ,10 ]
(%o129) [ 45 ,49 ,54 ]
(%o130) [ 45 ,57 ,49 ]

rsample : random_binomial (100, 0.5, 10)$
fll (rsample);
head (rsample);
tail (rsample);

(%i130)

Here is the whole list of 10 values.

(%o131) [ 45 ,49 ,54 ,55 ,48 ,49 ,49 ,45 ,57 ,49 ]

rsample;(%i131)

With such a small sample there are no repeated integral values in this list.

Random sample size m = 100 simulations, n = 100, p = 0.5  8.11.2 
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We expect to get some integer repetitions in the returned list of values if we use 
random_binomial (100, 0.5, 100), which returns a list of 100 integers.

(%o133) [ 48 ,52 ,100 ]
(%o134) [ 48 ,45 ,49 ]
(%o135) [ 46 ,52 ,52 ]

rsample : random_binomial (100, 0.5, 100)$
fll (rsample);
head (rsample);
tail (rsample);

(%i135)

discrete_freq (data)   8.11.3 

The Maxima function discrete_freq( aList) counts the number of unique discrete "readings" 
of some instrument recorded in the list aList and returns a new list: 
         [ list-of-unique-readings, list-of-frequency-of-each-unique-reading].

The elements of the list 'frequencies' corresponds to the elements of the list 'uniqueData', 
in the following, element by element. 

(%o137) [ 39 ,40 ,41 ,42 ,43 ,44 ,45 ,46 ,47 ,48 ,49 ,50 ,51 ,52 ,53 ,54 ,55 ,56 ,57 ,
58 ,59 ,60 ]

(%o138) [ 1 ,1 ,1 ,2 ,7 ,3 ,2 ,11 ,5 ,9 ,6 ,2 ,4 ,8 ,10 ,6 ,7 ,5 ,5 ,2 ,2 ,1 ]

[uniqueData, frequencies] : discrete_freq (rsample)$
uniqueData;
frequencies;

(%i138)

If we add the integers in the list 'frequencies, we will get 100, since rsample has 100 elements,
and each of the 100 elements (an integer) will contribute unity to one of the uniqueData elements.

(%o139) 100

Lsum (frequencies);(%i139)

Let nfrequencies be a list of "normalized" frequencies (so the sum of the elements of
nfrequencies equals 1 (we need the sum of the probabilities to equal 1).

(nfrequencies) [ 0.01 ,0.01 ,0.01 ,0.02 ,0.07 ,0.03 ,0.02 ,0.11 ,0.05 ,0.09 ,0.06 ,0.02 ,
0.04 ,0.08 ,0.1 ,0.06 ,0.07 ,0.05 ,0.05 ,0.02 ,0.02 ,0.01 ]

nfrequencies : frequencies/100.0;(%i140)

(%o141) 1.0

Lsum (nfrequencies );(%i141)
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(%o142) 0.11

lmax (nfrequencies);(%i142)

To make  a plot of probabilities (vertical axis) versus specific numbers of successes in
100 trials (horizontal axis), we let mypoints be a list of 100 sublists, with each sublist containing
[x, y] =   [number successes in 100 trials, the corresponding probability] 
         =  [uniqueData[j], nfrequencies[j] ]
based on the m = 100 simulations.

(%o144) [ [ 39 ,0.01 ] , [ 60 ,0.01 ] ,22 ]
(%o145) [ [ 39 ,0.01 ] , [ 40 ,0.01 ] , [ 41 ,0.01 ] ]
(%o146) [ [ 58 ,0.02 ] , [ 59 ,0.02 ] , [ 60 ,0.01 ] ]

mypoints : makelist ([ uniqueData[j], nfrequencies [j] ], j, 1, length (uniqueData))$
fll (mypoints);
head (mypoints);
tail (mypoints);

(%i146)

(%t147) 

wxdraw2d ( xrange = [35, 65], yrange = [0, 0.1], points_joined = impulses,
    xlabel = "number successes in 100 trials", ylabel = "probability", grid = true,
    title = "100 Random Binomial samples, each for n = 100, p = 0.5",
    background_color = light_gray,
    line_width = 2, color = red, points (mypoints) )$

(%i147)

When you run this script on your own, your probabilities (vertical axis) will be slightly different, and
you can change the vertical range yrange in draw2d, if needed, to see all your points clearly.

Random sample size m =  1000,  n = 100, p = 0.5  8.11.4 
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(%o148) 50.0
(%o149) 5.0

mean_binomial (100, 0.5);
std_binomial (100, 0.5);

(%i149)

(%o151) [ 53 ,48 ,1000 ]
(%o152) [ 53 ,52 ,39 ]
(%o153) [ 45 ,47 ,48 ]

rsample : random_binomial (100, 0.5, 1000)$
fll (rsample);
head (rsample);
tail (rsample);

(%i153)

(%o155) [ 34 ,35 ,36 ,37 ,38 ,39 ,40 ,41 ,42 ,43 ,44 ,45 ,46 ,47 ,48 ,49 ,50 ,51 ,52 ,
53 ,54 ,55 ,56 ,57 ,58 ,59 ,60 ,61 ,62 ,63 ,64 ,65 ]

(%o156) [ 2 ,2 ,1 ,2 ,8 ,11 ,8 ,9 ,23 ,29 ,35 ,52 ,54 ,65 ,94 ,77 ,64 ,81 ,66 ,74 ,57 ,
49 ,39 ,29 ,24 ,12 ,18 ,6 ,3 ,2 ,2 ,2 ]

[uniqueData, frequencies] : discrete_freq (rsample)$
uniqueData;
frequencies;

(%i156)

Define a list of normalized frequencies, nfrequencies.

(nfrequencies) [ 0.002 ,0.002 ,0.001 ,0.002 ,0.008 ,0.011 ,0.008 ,0.009 ,0.023 ,0.029 ,
0.035 ,0.052 ,0.054 ,0.065 ,0.094 ,0.077 ,0.064 ,0.081 ,0.066 ,0.074 ,0.057 ,
0.049 ,0.039 ,0.029 ,0.024 ,0.012 ,0.018 ,0.006 ,0.003 ,0.002 ,0.002 ,0.002 ]

nfrequencies : frequencies/Lsum (frequencies), numer;(%i157)

(%o158) 1000

Lsum (frequencies);(%i158)

(%o159) 1.0

Lsum (nfrequencies);(%i159)

(%o160) 0.094

lmax (nfrequencies);(%i160)

(%o161) [ 34 ,35 ,36 ,37 ,38 ,39 ,40 ,41 ,42 ,43 ,44 ,45 ,46 ,47 ,48 ,49 ,50 ,51 ,52 ,
53 ,54 ,55 ,56 ,57 ,58 ,59 ,60 ,61 ,62 ,63 ,64 ,65 ]

uniqueData;(%i161)
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(Lud) 32

Lud : length (uniqueData);(%i162)

(%o164) [ [ 34 ,0.002 ] , [ 65 ,0.002 ] ,32 ]
(%o165) [ [ 34 ,0.002 ] , [ 35 ,0.002 ] , [ 36 ,0.001 ] ]
(%o166) [ [ 63 ,0.002 ] , [ 64 ,0.002 ] , [ 65 ,0.002 ] ]

mypoints : makelist ([ uniqueData[j], nfrequencies [j]  ], j, 1, Lud)$
fll (mypoints);
head (mypoints);
tail (mypoints);

(%i166)

  
32 normalized frequencies (red) from 1000 random simulations  
 pdf_binomial (k, 100, 0.5)   (black)  
  

(%t171) 

print (" ")$
print (sconcat (Lud,
         " normalized frequencies (red) from 1000 random simulations"))$
print (" pdf_binomial (k, 100, 0.5)", " (black) ")$
print (" ")$
wxdraw2d ( xrange = [35, 65], yrange = [0, 0.1], points_joined = impulses,
    xlabel = "number successes in 100 trials", ylabel = "probability", grid = true,
    title = sconcat (Lud, "  normalized frequencies "),
    background_color = light_gray,
    line_width = 2, color = red, points (mypoints),
    color = black, line_width = 2, key_pos = top_left,
    key = "pdf binomial (k, 100, 0.5)",
    explicit (pdf_binomial (kk, 100, 0.5), kk, 35, 65) )$

(%i171)


