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Abstract This paper proposes a simple class of threshold

autoregressive model for purpose of forecasting daily

maximum ozone concentrations in Southern California.

Linear time series model has been widely considered in

environmental modeling. However, this class of models

fails to capture the nonlinearity in ozone process and the

complexity of meteorological interactions with ozone. In

this article, we used the threshold autoregressive models

with two classes of regimes; periodic and meteorological

regimes. Days in week were used for the periodic regimes

and the regression tree method was used to define the

regimes as a function of meteorological variables. As the

reference model we used the autoregressive model with

lagged ozone and various lagged meteorological variables

as the covariates. The proposed models were applied to a

3-year dataset of daily maximum ozone concentrations

obtained from five monitoring stations in San Bernardino

County, CA and their forecast performances were evalu-

ated using an independent year-long dataset from the same

stations. The results showed that the threshold models well

capture the nonlinearity in ozone process and remove the

nonstationarity in model residuals. The threshold models

outperformed the non-threshold autoregressive models in

day-ahead forecasts. The tree-based model showed slightly

better performance than the periodic threshold model.

Keywords Ozone forecast � Nonlinear time series �
Meteorological adjustment � Autoregression

1 Introduction

Ground-level ozone (O3), a major element of urban smog, is

the one of the most complex, difficult to control, and per-

vasive pollutants. Ozone can be produced by photochemical

reactions between primary pollutions such as oxides of

nitrogen (NOx) and volatile organic compounds (VOC)

in the presence of sunlight. Some of the major sources of

NOx and VOC are emissions from industrial facilities and

electric utilities, motor vehicle exhaust, gasoline vapors,

and chemical solvents. Ozone concentrations can reach

unhealthful level when the weather is hot and sunny with

little or no wind. Despite decades of effort in reducing air

pollution, California suffers from the worst air quality in the

nation and over 30 million individuals in the state are

exposed to unhealthful levels of ozone. Southern California

area currently has the highest ozone level in the US. The

area’s sunny climate and mountainous topography accel-

erates the formation of ozone episodes. The meteorological

adjustment of ozone in various statistical modeling has been

considered in a number of articles (e.g. Fiester and Balzer

1991; Bloomfield et al. 1996; Davis and Deistler 1998).

A comprehensive review can be found in Thomson et al.

(2001). We consider daily ambient and soil temperature,

global radiation, relative humidity, evapotranspiration, and

wind components as predictors in the statistical forecast

model proposed in this article.

One of the most important roles of air pollution forecasts

is to provide the public early warnings of high pollution

levels. For this, the ability of a forecast model to forecast

pollution levels accurately at least one day ahead is impor-

tant. The purpose of this study is to develop and to implement

operational statistical model to forecast daily maximum

ozone levels. Of particular interest is to model the nonlinear

dynamics of ozone processes using linear approximation.
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Linear time series model, like autoregressive model, has

been widely considered in environmental modeling (e.g.

Robeson and Steyn 1990; Chaloulakou et al. 1999).

However, this class of model fails to capture the com-

plexity of meteorological interactions and nonlinearity in

ozone process (e.g. Kim and Kumar 2005). For this a

nonlinear model can be considered (e.g. Bloomfield et al.

1996). However, nonlinear modeling is rather complex

with too many possible structures and is not suitable for

multi-step forecasts. In this paper, we consider the

threshold model of Tong (1983, 1990). The threshold

model is considered as separates linear time series models

where the separations are made in terms of regimes where

the dynamic of the ozone system changes. For instance,

temperature correlation of ozone measurements at high

ozone level and at low ozone level may well be different.

Two classes of regime are considered. We first naturally

consider day in week to define the threshold regimes so that

ozone data can be modeled linearly within each of 7 days

in week. We also define regimes as a function of meteo-

rological variables and lagged ozone concentrations. A

regression tree approach is used to recursively partition

data to meteorologically homogeneous subsets or clusters.

We then fit separate linear models to observations in each

cluster. For the purpose of forecasting, we use a global

linear model with indicator variables.

The data are described in Sect. 2 and a brief outline of

the regression tree method is given in Sect. 3. The model

classes are presented in Sect. 4. Section 5 gives the test

statistics for nonlinearity and the model evaluation

parameters. Section 6 presents an empirical application of

the proposed models to the Southern California ozone data.

Model identification, comparison, and the performance

of one-day-ahead forecast are also given in Sect. 6.

Concluding remarks are given in Sect. 7.

2 Data

The South Coast Air Basin, which covers Los Angeles,

Orange, Riverside, and San Bernardino counties in

Southern California, currently is not in compliance with

National Ambient Air Quality Standard (NAAQS) for

ozone. According to the American Lung Association, the

four counties graded ‘‘F’’ for ozone and San Bernardino

ranked as the most ozone-polluted county in the US.

Riverside and Los Angeles ranked the third and the fourth,

respectively. The California Air Resources Board (ARB)

gathers air quality data for the State of California and

makes it available to public. Data used in modeling fitting

are based on daily maximum ozone records (in ppb) from

five monitoring stations in San Bernardino County from

January 2001 to December 2003. The stations are listed in

Table 1. For the purpose of evaluating the performance of

short term ozone forecast, 2004 data from the same station

is used. Thus, the evaluation uses an independent data set.

The meteorological data used in this study came from the

University of California Statewide Integrated Pest Man-

agement Program (UC IPM: http://www.ipm.ucdavis.edu).

It consists of daily ambient and soil temperature, global

radiation, relative humidity, evapotranspiration, and west–

east and south–north wind components (see Table 2).

3 Outline of regression trees

Regression tree model recursively partitions data into

meteorologically homogeneous subsets toward the response

and is very useful when data shows nonlinear relation

between response and various predictors. Regression tree

method has been used in environmental studies (e.g. Burrows

et al. 1995; Huang and Smith 1999). Detail discussion of

regression tree can be found in Breiman et al. (1984).

The tree method consists of two sequential processes;

splitting and pruning. Staring with a global node having all

observations in the node, the splitting process partitions the

data in the current node (parent node) into two parts (child

nodes) with maximum homogeneity. Under the normal

assumption, the deviance for node k is defined as

Dk ¼
X

i

ðyi � l̂kÞ2;

where l̂k is the sample mean of the observed responses yi’s

in the given node. Then the parent node is split into two

children nodes (left and right) which minimize the

Table 1 Ozone monitoring stations in San Bernardino County, CA

Stations AIRS ID Latitude Longitude Missing %

(01–04)

Crestline 060710005 34.24 -117.28 2

Fontana 060712002 34.10 -117.49 4

Redlands 060714003 34.06 -117.15 0

SB-4th St 060719004 34.11 -117.27 1

Upland 060711004 34.10 -117.63 0

Table 2 Meterological variables

1 Temp Daily maximum air temperature (F)

2 Eto Daily reference evapotranspiration (in.)

3 Prec Daily total precipitation (in.)

4 Rh Daily maximum relative humidity (%)

5 Soil Daily maximum soil temperature (F)

6 Solar Daily global radiation (Watts/m2)

7 Wind.u Daily west-east wind component (m/s)

8 Wind.v Daily south–north wind component (m/s)

20 Stoch Environ Res Risk Assess (2010) 24:19–28

123

http://www.ipm.ucdavis.edu


difference between the deviance of the parent node and the

sum deviance of the children nodes. Then for each split

node this splitting process is applied. This procedure con-

tinues until the number of observations in the node is less

than a pre-specified limit (usually 10% of the training

sample size) or the difference between the deviance of the

parent node and the sum deviance of the children nodes is

small enough (usually less than 1% of the parent deviance).

The grown tree from the splitting process is usually very

complex and causes over-fitting problems when it is

applied to an independent data for prediction. The pruning

process chooses a right size of tree by cutting off insig-

nificant nodes and subtrees. Breiman et al. (1984) first

introduced the minimum cost-complexity pruning method.

The tree is pruned to minimize the cost-complexity factor,

RaðTÞ ¼ RðTÞ þ a sizeðTÞ;

where R(T) is the mean square error of the predictions of

the subtree T, a the cost-complexity parameter and size(T)

the number of nodes of T. The pruning algorithm used in

this study uses a tenfold cross-validation to compute a cost-

complexity factor. The nodes in the final tree serve as

regimes in the threshold model. We used the S-Plus library

rpart which is available from Stat Lib (http://lib.stat.cmu.

edu/S/). Detailed discussion on rpart is available in

Venables and Ripley (2002).

4 Statistical model

4.1 Reference model

We consider an autoregressive model with an exogenous

vector process (ARX) as the reference model for this study.

The daily observed time series y(t) with mean l can be

modeled as a regression form:

/ðBÞyðtÞ ¼ lþ b0xðtÞ þ wðtÞ; t ¼ qþ 1; . . .; n ð1Þ

where B is the backshift operator defined as Bky(t) =

y(t - k), k = 0, ±1, ±2,…, and /(B) is polynomials given

by /(B) = 1 -
P

j=1
p /jB

j with /p = 0 where p, the order

of the autoregressive model, is a positive integer. w(t)

is assumed to be zero mean white noise process. The

exogenous vector x(t) = (x1(t),…,xl(t))
0 contains l exo-

genous processes with lags r1,r2,…,rl, respectively,

xk(t) = (x(t),x(t - 1),…,x(t - rk)), k = 1,2,…,l and

q = max (p,r1,…,rl). The order r1,r2,…,rl may involve

seasonal components. The parameter vector b are denoted

by b = (c1, c2,…, cl)
0, where ck ¼ ðck0; ck1; . . .; ckrk

Þ; k ¼
1; . . .; l: For the exogenous processes, we used the

meteorological series listed in Table 2. Two temporal

variables which may affect the baseline measurements of

ozone level are added as a binary signals defined by

weekðtÞ ¼ Iðt ¼ weekend dayÞ and

seasonðtÞ ¼ Iðt ¼ ozone season dayÞ;

where I(A) is the indicator function equal to one if the event

A occurs and zero otherwise. Weekend days are Saturdays

and Sundays and ozone season days are days between

April 1 and October 31. The model can be written as a

multiple regression form in which the vector of predictor is

zðtÞ ¼ ð1; z1ðtÞ; z2ðtÞ; . . .; zMðtÞÞ0

¼ ð1; yðt � 1Þ; . . .; yðt � pÞ; x1ðtÞ; . . .; xlðtÞÞ0; ð2Þ

with the corresponding parameter vector of

h ¼ ðh0; h1; . . .; hMÞ0 ¼ ðl;/1; . . .;/p; bÞ0; ð3Þ

where M denotes the number of predictors.

For a comparison purpose we also consider the model

without exogenous processes (AR model). The order p can

be estimated using the iterative procedure of Box and

Jenkins (1976) and the order r1,r2,…,rl can be obtained

from the cross-correlation functions (CCF) between the pre-

whitten response and each of the pre-whitten exogenous

processes (see Box and Jenkins 1976 for detailed discus-

sions). Some alternative optimality criteria, e.g., Akaike’s

AIC (Akaike 1974) and Schwarz’s SIC (Schwarz 1978), can

be also used. However, in order to avoid overfitting prob-

lems, the procedure by Box and Jenkins has been suggested

in air pollution modeling (Millionis and Davies 1994).

4.2 Threshold autoregressive model with an exogenous

vector process (TARX)

Due to the nonlinear feature of an ozone process, the ARX

model, even with use of high dimensional predictor vec-

tors, shows seasonal nonstationarity in residuals that cause

systematic over- and under-predictions (see Bauer et al.

2001; Fasso and Negri 2002; Kim and Kumar 2005). Since

first introduced by Tong (1983), the threshold autoregres-

sive model has been an important tool for modeling

nonlinear phenomena in many areas, including environ-

metrics (e.g. Bauer et al. 2001; Fasso and Negri 2002; Kim

and Kumar 2005) and economics (e.g. Tiao and Tsay 1994;

Potter 1995; Hansen 1999).

The threshold ARX model (TARX) separates the auto-

regressive model in terms of regimes such that ozone can

be modeled linearly within each regime. The threshold

model is considered as separated ARX models where the

separations are made in term of regimes where the dynamic

of the system changes:

yðtÞ ¼ h0zðtÞ þ
XK�1

k

h0kzðtÞdkðtÞ þ wðtÞ;

dkðtÞ ¼ I s0zðtÞ 2 Rkð Þ ð4Þ
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where, z(t) and h are as in (2) and (3) and the regimes, Rk,

k = 1,…, K, are mutually exclusive and exhaustive regions

in real line, R. s is a known column vector of size n and I(�) is

the indicator function. The threshold model is flexible and

very effective when regimes are well defined such that ozone

can be modeled linearly within regimes. This paper uses and

tests two classes of regimes; periodic and meteorological

regimes. We use day in week, h(t) = 1,2,…,7, as the peri-

odic regimes. For this regimes dk(t) takes one if h(t) = k,

k [ {1,2,…,7} and zero otherwise. The TARX model with

such regimes is called periodic TARX model (P-TARX). To

reduce the number of regimes, regimes with similar ozone

dynamics can be combined. To identify the proper number

of regimes model evaluation parameters in Sect. 5 are used.

Regimes can be also defined as a function of meteorological

variables and lagged ozone concentrations through various

classification approaches, like clustering and tree model. We

use the regression tree for this application and call such

model tree-based TARX model (T-TARX). Once regimes

are identified, we fit the ARX model for each regime sepa-

rately. However, for prediction purpose, we fit the ARX

model with indicator function given in (4).

5 Hypothesis test and model evaluation parameters

5.1 Testing hypothesis

The hypothesis for testing varying coefficients over

regimes can be formulated as

H0 : hk ¼ 0 for all k 2 f1; 2; . . .;K � 1g and k 6¼ j;

where K is the number of regimes.

For given q = max (p,r1,…,rl), the effective number of

observations in the regression in (4) is n - q. The number

of parameter is K(M ? 1) for the full model (4) and M ? 1

for the reduced model under H0. Then, when the model

under H0 is correct, the general linear test statistic

F ¼ RSS0 � RSS1

RSS1

� �
n� q� KðM þ 1Þ
ðK � 1ÞðM þ 1Þ

� �
ð5Þ

has a central F-distribution with (K - 1)(M ? 1) and

n - q - K(M ? 1) degrees of freedom. Here, RSS0 and

RSS1 are the residual sum of squares under the reduced

model and the full model, respectively. Once the test rejects

the null hypothesis, it indicates that not all regression

coefficients are constant and thus the threshold regression is

suggested. For each fitted model, we also consider two

versions of the portmanteau test of goodness of fit. Let q̂2
k be

the kth sample autocorrelation coefficient of the residuals

from the fitted model, then in the case of white residuals,

Ljung and Box (1978) showed that the statistic

QLB ¼ n0ðn0 þ 2Þ
Xh

k¼1

ðn0 � kÞ�1q̂2
k ð6Þ

has an approximate v2 distribution with h degrees of free-

dom. Here n0 denotes the number of sample used to calculate

q̂2
k : Monti (1994) proposed a similar statistic which replaces

the autocorrelation q̂2
k with the partial autocorrelation.

5.2 Model evaluations parameters

Several model evaluation parameters widely used in envi-

ronmental study are considered. The consideration is based

on their use in air pollution model evaluation studies. If we

denote yt the observed values, ŷt the predicted values, �y the

sample mean of observed values, ŷ the sample mean of

predicted values, and p the number of parameters in the

model, one can compute:

Root mean square error ðRMSEÞ :

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t ðyðtÞ � ŷðtÞÞ2

n� p

s
ð7Þ

Coefficient of determination ðR2Þ :

R2 ¼
P

t ðŷðtÞ � �yÞ2
P

t ðyðtÞ � �yÞ2
ð8Þ

RMSE is an unbiased estimator of the regression error

variance and most commonly used statistic in cross-

validation schemes. It takes the number of parameters p

into account through n - p in the denominator. R2 is the

proportionate reduction of total variation in the time series

associated with the use of the model. Three parameters

below are also introduced to assess the forecast

performance of air quality models (e.g. Kumar et al. 1999).

Fraction bias ðFBÞ : FB ¼ 2ðy� ŷÞ
ðyþ ŷÞ

ð9Þ

Normalized mean square error ðNMSEÞ :

NMSE ¼ ðy� ŷÞ2

y ŷ

ð10Þ

Factor of two ðFa2Þ :

Fa2 ¼ fraction of data which satisfy 0:5� ŷðtÞ
yðtÞ � 2:0

ð11Þ

FB is the normalized mean bias varying between -2 and

?2 and has a value of zero for an ideal model. NMSE

emphasizes the scatterness of residuals in the entire data

set. The normalization by the product in the denominator

assures that the statistic will not be biased towards over- or

under-predictions. Smaller values of NMSE denote better

model performance. Fa2 is defined as the percentage of the
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predictions within a factor of two of the observed values.

The ideal value for Fa2 should be 1. In addition, the

percentage of the predicted values within ±5 and ±10 ppb

of the observed values are calculated to get an idea of the

forecasting ability of the models.

6 Ozone prediction in San Bernardino, CA

Periodic threshold ARX (P-TARX) and tree-based thresh-

old ARX (T-TARX) models are fitted for 3 years of

training data (2001–2003) from each monitoring stations in

San Bernardino County, CA. Then, the fitted models are

applied to 2004 data to evaluation the performance of day-

ahead forecasts.

6.1 Model identification

To identify an initial ARX model, the iterative procedure

by Box and Jenkins (1976) is applied to each of training

data. The partial autocorrelation function of ozone shows

one dominant peak at lag one and this suggests AR(1) for

an initial model. Further investigations of the cross-corre-

lation functions (CCF) between the pre-whitten response

and each of the eight pre-whitten exogenous processes

show dominant peaks at lag 0 or lag 0 and 1. We also

include the two indicator variables, week(t) and season(t),

in the model. This defines the reference ARX model. A

stepwise model selection procedure is applied to fit the

final ARX model.

Table 3 contains the results from fitting the AR and the

ARX models for each station. It is clear that the ARX

model fits significantly better than AR; R2 is increased by

5–16% and RMSE is decreased by 13–24%. This shows the

importance of meteorological variables in ozone modeling.

The estimated values of the AR and the final ARX

parameters for the Upland data are listed in Table 4.

Figure 1 draws the P values of the portmanteau v2 tests

with the lag up to 30. This shows that both AR and ARX

models reject the null hypothesis of white errors. The

autocorrelation function (ACF) plots (Fig. 2a, b) also

pronounce the weekly behaviors of the model residuals.

This is due to the nonlinear feature of ozone process and

this motivates the use of a threshold model.

To account for the nonlinearity in the model, the

threshold models in Sect. 4.2 are applied to the ARX

model. The weekly behavior of the model residuals sug-

gests the use of the day of week as periodic regimes

(P-TARX). The F test statistics (5) range from 3.8 to 4.1

with P values all less than 0.001. This rejects the null

hypothesis of constant coefficients and supports the use of

the threshold model. Figure 3 gives the least squared

estimates of the coefficients with 95% confidence limits

under the P-TARX model for each of 7 days of week. The

plot well discloses the changes of the regression coeffi-

cients over the regimes. The results from the fitted the

P-TARX model are summarized in Tables 3 and 4. To

avoid singularity which may occur during the estimation

procedure, the estimated coefficient for week variable is

assumed to be the same across regimes. A stepwise mod-

eling selection procedure is applied to find the final model.

Comparing to the results from the ARX model, the

P-RARX model increases R2 by about 3% and decreases

RMSE by 3–17%.

We also consider regimes defined as a function of

meteorological variables through the regression tree

(T-TARX). Figure 4 shows examples of the nonlinear

relations between ozone and meteorological variables for

Upland data. Figure 4a indicates that the data can be par-

titioned into two regimes with a threshold at around

temp(t) = 85. Similarly, the data can be partitioned with a

threshold at around eto(t) = 0.14. The regression tree for

Upland data is shown in Fig. 5 containing six clusters,

indexed 1 through 6 from the left. Cluster 6 has the highest

average daily maximum ozone level at 114 ppm containing

73 days. The corresponding conditions for the cluster are

y(t - 1) [ 55, temp(t) [ 88.2, and week(t) = 1. Cluster 1

contains 436 day and has the lowest average daily maxi-

mum with the conditions of y(t - 1) \ 55.5 and

eto(t) \ 0.135. The six clusters are used as threshold

regimes in the T-TARX for Upland data. Separate tree

model is applied to each of the five data sets. The numbers

of cluster range from five to seven. The F test statistics (5)

range from 5.2 to 6.1 with P values all less than 0.001.

Table 3 Comparison of fitted models

Model Crestline Fontana Redlands SB-4th St Upland

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

AR 0.74 15.32 0.66 19.45 0.70 17.51 0.68 17.22 0.64 18.05

ARX 0.80 13.37 0.80 14.89 0.81 13.96 0.81 13.11 0.80 14.89

P-TARX 0.82 12.92 0.83 13.91 0.83 13.41 0.84 12.28 0.83 12.37

T-TARX 0.83 12.56 0.85 12.25 0.84 13.10 0.86 11.60 0.85 11.89
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Table 3 shows that the T-TARX model fits the data slightly

better than the P-TARX. The final fitted model for Upland

data is in Table 4.

Both P-TARX and T-TARX model remove the auto-

correlation in residuals (Fig. 2c, d). The portmanteau tests

for Upland data in Fig. 1 support this result with the

P values ranging from 0.2 to 0.8. Data from other stations

show similar results.

6.2 Forecasting

The performance of the forecasting models was evaluated

using the five parameters in Sect. 5.2. To avoid further

complications, it is assumed that meteorological processes

are observable or at least predictable from a weather

forecasting system. In this sense, forecasting procedures

discussed in this section is conditional to known exogenous

processes. Since similar results are found for data from all

five stations, we only discuss the results for Upland data in

this section.

Table 5 summarizes the evaluation of one-day-ahead

forecast performances. All models have FB and NMSE

values close to zero showing that they are acceptable in

terms of unbiasness and scatterness of the mean residuals.

Both P-TARX and T-TARX models clearly outperform the

AR and the ARX model. As regard the two threshold

models, the T-TARX model is slightly better in terms of all

evaluation parameters.

Figure 6 draws the daily profile of one-day-ahead fore-

casts of daily maximum ozone level from different models

for July to August, 2004 at Upland station. During the

months of July and August, the study area usually shows

high daily maximum ozone levels. Both P-TARX and

T-TARX models give similar results, so the daily forecasts

from the P-TARX model is omitted from the plot. The

threshold model clearly outperforms the constant coeffi-

cient models and seems to give a satisfactory forecasting

performance. Both T-TARX and ARX model nicely cap-

ture the temporal pattern of the ozone maxima, however,

the ARX model under predicts the peaks at over 100 ppb.

The forecast performance for the AR model is not satis-

factory; the forecasts are consistently shifted by a day and

this is due to the heavy dependence on the immediate past

ozone readings in the model. The T-TARX models appear

Table 4 Model identification for Upland data

Const Oz (t) Temp (t) Temp (t - 1) Soil (t) Soil (t - 1) Eto (t) Pr (t) Week (t)

AR

11.13 (1.2) 0.80 (0.02) na na na na na na na

ARX

-36.92 (4.2) 0.45 (0.02) 0.6 (0.09) -0.59 (0.08) 2.04 (0.41) -1.34 (0.40) 103.3 (10.3) 2.45 (1.47) 13.86 (0.90)

P-TARX

1 -60.30 (10.9) 0.61 (0.06) 1.24 (0.21) -0.88 (0.22) 4.35 (1.09) -3.39 (1.05) – – –

2 – 0.53 (0.04) 0.72 (0.18) -0.69 (0.18) – – 83.0 (21.2) 8.13 (2.90) –

3 – 0.48 (0.05) – – – – 163.4 (17.2) – –

4 -26.12 (9.9) 0.58 (0.07) 0.74 (0.22) -0.80 (0.19) 0.62 (0.22) – 77.9 (25.5) – –

5 -34.83 (8.8) 0.27 (0.06) – – 4.07 (0.86) -3.28 (0.85) 132.0 (20.4) – –

6 -14.21 (7.4) 0.60 (0.06) 0.95 (0.20) -0.73 (0.19) – – 111.5 (23.7) 7.56 (3.17) –

7 -51.66 (12.1) 0.67 (0.08) 1.19 (0.26) -0.92 (0.24) 0.72 (0.24) – 83.6 (29.6) – –

T-TARX

1 – 0.35 (0.04) 0.16 (0.09) -0.27 (0.07) 1.32 (0.38) -0.62 (0.37) 123.2 (12.3) – –

2 -43.87 (7.8) 0.39 (0.10) 0.65 (0.15) -0.56 (0.14) 0.88 (0.14) – 73.2 (26.5) – –

3 – 0.27 (0.06) 0.88 (0.23) -0.64 (0.20) – – 123.6 (25.3) – –

4 -69.62 (30.7) 0.42 (0.08) 1.33 (0.40) – 13.95 (2.29) -13.50 (2.06) -92.7 (47.0) – –

5 – 0.38 (0.06) 0.77 (0.40) -1.09 (0.34) 3.91 (1.67) -3.22 (1.63) 111.3 (35.3) – –

6 – 0.51 (0.10) – -0.88 (0.50) 1.90 (0.59) – – – –

Values in parentheses are the standard errors for the estimates
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Fig. 1 P values of Portmanteau v2 test
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to agree very well with the observed values on most days.

Figure 6b shows that the absolute forecast errors in each

model. For 263 of 366 days (72%) the forecasted values

from the T-TARX are within ±10 ppb of the actual values.

The percentage is 54% for the AR and 64% for the ARX

model.
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7 Conclusion

Daily maximum ozone data from five monitoring stations in

San Bernardino County, CA have been used to develop a

statistical forecasting model. The autoregressive model

with exogenous vector process (ARX) is used as the refer-

ence model. The lagged meteorological variables are used

as the exogenous variables. Due to the nonlinearity in ozone

data, the ARX model fails to remove the nonstationarity in

errors and is not suitable for ozone prediction. In this paper,

high-resolution threshold autoregressive models (TARX)

with two classes of regimes are proposed; periodic and

meteorological regimes. The periodic threshold model

makes use of the day in week as the threshold regimes. This

model equals to separate ARX model for each day in week.

We also considered the tree-based TARX model where

regimes are defined as a function of meteorological vari-

ables through the regression tree model. Application of the

proposed model to three-year training data in San Bernar-

dino indicates that both threshold models successfully

removed the nonstationarity in model residuals and the

RMSE was decreased by up to 17%. The fitted models are

applied to new year-long data from the same stations and

the performance of the day-ahead forecast was evaluated

using five parameters. The result indicates that the threshold

models clearly outperform the non-threshold model in all

five model evaluation parameters. The tree-based TARX

model showed slightly better performance than the periodic

TARX model.

By removing the nonstationarity in model residuals,

the TARX models well predict the days with high peaks

of ozone concentrations. This would make it possible to

use the predicted ozone concentrations to predict air

quality index (AQI). Finally, we note that, the autocor-

relation in time series in each tree cluster has been

handled using ARX model. However, one may apply an

appropriate transformation prior to the tree construction

to remove the autocorrelation in time series and to have

the deviance used in tree construction more meaningful.

The statistical assessment of this alternative requires

further investigation.
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Fig. 5 Regression tree for Upland data

Table 5 Model evaluation parameters for day-ahead forecasts of

2004 daily maximum ozone level at San Bernadino, CA for different

model classes

AR ARX P-TARX T-TARX

R2 0.63 0.78 0.81 0.83

RMSE 15.81 12.16 11.58 11.21

FB -0.07 -0.02 -0.02 -0.02

NMSE \0.01 \0.01 \0.01 \0.01

Fa2 0.973 0.980 0.981 0.990

±5 0.30 0.34 0.36 0.43

±10 0.54 0.64 0.67 0.72

26 Stoch Environ Res Risk Assess (2010) 24:19–28

123



Acknowledgment This work was supported in part by a grant from

California State University, Long Beach, SCAC program.

References

Akaike H (1974) A new look at statistical model identification. IEEE

Trans Automat Contr AC-19:716–723

Bauer G, Deistler M, Scherrer W (2001) Time series models for short

term forecasting of ozone in the eastern part of Austria.

Environmetrics 12:117–130

Bloomfield P, Royle JA, Steinberg LJ, Yang Q (1996) Accounting for

meteorological effects in measuring urban ozone levels and

trends. Atmos Environ 30(17):3067–3077

Box GEP, Jenkins GM (1976) Time series analysis: forecasting and

control, revised edn. Holden Day, San Francisco

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification

and regression trees. Chapman & Hall, London

Burrows WR, Benjamin M, Beauchamp S (1995) CART decision-tree

statistical analysis and prediction of summer season maximum

surface ozone for the Vancouver, Montreal, and Atlantic Regions

of Canada. J Appl Meteorol 34:1848–1862

Chaloulakou A, Assimacopoulos D, Lekkas T (1999) Forecasting

daily maximum ozone concentrations in the Athens Basin.

Evrion Monit Assess 56:97–112

Davis MD, Deistler M (1998) Modeling ozone in the Chicago urban

area. In: Nychka D, Piegorsch W, Cox LH (eds) Case studies in

environmental statistics. Lecture notes in statistics. Springer,

Berlin

Fasso A, Negri I (2002) Non-linear statistical modeling of high

frequency ground ozone data. Environmetrics 13:225–241

Fiester U, Balzer K (1991) Surface ozone and meteorological

predictors on a subregional scale. Atmos Environ 25:1781–1790

Hansen BE (1999) Threshold effects in non-dynamic panels: estima-

tion, testing, and inference. J Econom 93:345–368

Huang L-S, Smith R (1999) Meteorologically-dependent trends in

urban ozone. Environmetrics 10:103–118

042022002081

day count

0

40

80

120

O
zo

ne
 (

pp
b)

observed
AR
ARX
TARX

(b) 

(a) 

042022002081

day count

0

10

20

30

40

50

A
bs

ol
ut

e 
er

ro
r 

(p
pb

)

AR
ARX
TARX

Fig. 6 Performance of day-

ahead forecasts of daily

maximum ozone level for July

to August, 2004 at Upland

station using various models;

(a) actual observation and

forecasts, (b) absolute errors

Stoch Environ Res Risk Assess (2010) 24:19–28 27

123



Kim SE, Kumar A (2005) Accounting seasonal nonstationarity in

time series models for short-term ozone level forecast. Stoch Env

Res Risk A 19:241–248

Kumar A, Bellam N, Sud A (1999) Performance of industrial source

complex model in predicting long-term concentrations in an

urban area. Environ Prog 18(2):93–100

Ljung GM, Box GEP (1978) On a measure of lack of fit in time series

models. Biometrika 65:297–303

Millionis M, Davies TD (1994) Regression and stochastic models for

air pollution-I. Review, comments and suggestion. Atmos

Environ 28(17):2801–2810

Monti AC (1994) A proposal for residual autocorrelation test in linear

models. Biometrika 81:776–780

Potter SM (1995) A nonlinear approach to US GNP. J Appl Econom

10:109–125

Robeson SM, Steyn DG (1990) Evaluation and comparison of

statistical forecast models for daily maximum ozone concentra-

tions. Atmos Environ 24B:303–312

Schwarz F (1978) Estimating the dimension of a model. Ann Stat

6:461–464

Thomson ML, Reynolds J, Lawrence HC, Guttorp P, Sampson PD

(2001) A review of statistical methods for the meteorological

adjustment of tropospheric ozone. Atmos Environ 35:617–630

Tiao GC, Tsay RS (1994) Some advances in non-linear and adaptive

modelling in time series. J Forecast 13:109–131

Tong H (1983) Threshold models in non-linear time series analysis.

In: Brillinger D, Fienberg J, Gani J, Hartigan J, Krickberg K

(eds) Lecture notes in statistics. Springer, Heidelberg

Tong H (1990) Nonlinear time series: a dynamic system approach.

Oxford University Press, Oxford

Venables WN, Ripley BD (2002) Modern applied statistics with S.

Fourth Ed. Springer, Heidelberg

28 Stoch Environ Res Risk Assess (2010) 24:19–28

123


	Tree-based threshold modeling for short-term forecast �of daily maximum ozone level
	Abstract
	Introduction
	Data
	Outline of regression trees
	Statistical model
	Reference model
	Threshold autoregressive model with an exogenous vector process (TARX)

	Hypothesis test and model evaluation parameters
	Testing hypothesis
	Model evaluations parameters

	Ozone prediction in San Bernardino, CA
	Model identification
	Forecasting

	Conclusion
	Acknowledgment
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


