MT1 Name: \qquad
Note: To get a full credit, you must show your work in details. Unless otherwise specified, the significance level is $\mathbf{0 . 0 5}$. In case the df is not available in the prob. table, use the closest one.

1. Consider a bivariate normal random vector with
$\underline{\mu}=\left[\begin{array}{l}2 \\ 5\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}4 & \sqrt{2} \\ \sqrt{2} & 3\end{array}\right]$,
Give the center, lengths, and directions of major and minor axes of 95% contour plot.
2. A sample of $n_{1}=25$ and $n_{2}=25$ is selected from two bivariate normal populations. The summary statistics for the sample are
$\bar{x}_{1}=\left[\begin{array}{c}12 \\ 5\end{array}\right], S_{1}=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$ and $\bar{x}_{2}=\left[\begin{array}{c}10 \\ 5\end{array}\right], S_{2}=\left[\begin{array}{ll}6 & 1 \\ 1 & 5\end{array}\right]$.
Assume that data are from a bivariate normal population.
(a) Perform a hypothesis test testing equality of two covariance matrices.
(b) Based on the result in (a), perform a hypothesis test testing equality of the mean vectors of two populations; that is $H_{0}: \underline{\mu}_{1}-\underline{\mu}_{2}=\underline{0}$
3. A sample of $n_{1}=20 n_{2}=20$ from two 3-variate normal populations gave the following summary statistics.

$$
\bar{x}_{1}=\left[\begin{array}{l}
6 \\
4 \\
7
\end{array}\right], S_{1}=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right] \text { and } \bar{x}_{2}=\left[\begin{array}{l}
6 \\
3 \\
6
\end{array}\right], S_{2}=\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 0 \\
1 & 0 & 4
\end{array}\right]
$$

Perform a complete profile analysis.

