\qquad

1. The average scores and covariance matrix are obtained from $\mathrm{n}=92$ high school students on a college entrance example with two subtests (X_{1} and X_{2}).

$$
\bar{x}=\left[\begin{array}{l}
65 \\
78
\end{array}\right], \quad S=\left[\begin{array}{ll}
12 & 5 \\
& 8
\end{array}\right]
$$

(a) Test the hypothesis $\mu^{\prime}=[70,80]$ at 0.05 level.
(b) Test for the equality of mean scores at 0.05 level.
(c) Compute 95% simultaneous CI for μ_{1} and μ_{2}. Also, compute 95% simultaneous CI for $\mu_{1}-\mu_{2}$. Does this CI support your answer in (a)?
2. Observations on two responses are collected for three groups. The observation vectors are

Group 1: $\left[\begin{array}{l}6 \\ 7\end{array}\right],\left[\begin{array}{l}5 \\ 9\end{array}\right],\left[\begin{array}{l}8 \\ 6\end{array}\right],\left[\begin{array}{l}4 \\ 9\end{array}\right],\left[\begin{array}{l}7 \\ 9\end{array}\right]$,
Group 2: $\left[\begin{array}{l}3 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 6\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]$,
Group 3: $\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}5 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]$
It is calculated that

$$
\begin{aligned}
& \bar{x}=\left[\begin{array}{l}
4 \\
5
\end{array}\right], \bar{x}_{1}=\left[\begin{array}{l}
6 \\
8
\end{array}\right], \bar{x}_{2}=\left[\begin{array}{l}
2 \\
4
\end{array}\right], \bar{x}_{3}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] \text { and } \\
& S=\frac{1}{11}\left[\begin{array}{cc}
54 & 35 \\
35 & 102
\end{array}\right], S_{1}=\left[\begin{array}{cc}
2.5 & -1.5 \\
-1.5 & 2
\end{array}\right], S_{2}=\left[\begin{array}{cc}
1 & -1.5 \\
-1.5 & 3
\end{array}\right], S_{3}=\left[\begin{array}{cc}
2 & -1.33 \\
-1.33 & 1.33
\end{array}\right]
\end{aligned}
$$

(a) Using the summary statistics complete the MANOVA table below.

Source	Degrees of freedom
Group	SSCP
Error	$\left[\begin{array}{l} \\ \\ \\ \text { Total } \\ \end{array}\right]\left[\begin{array}{l} \\ \hline\end{array}\right.$

(b) Evaluate Wilks' lambda and perform hypothesis test for group effect at 0.05 level. Repeat the test using the Bartlett's chi-square approximation.
(c) Construct 95% simultaneous CI for the difference between Group1 and Group2 for each response.
(d) Now, consider Group1 and Group 2 only. Sketch the 95% confidence ellipse for $\mu_{1}-\mu_{2}$. Determine the lengths and directions for the axes of the ellipse.

