MAXIMAL IDEALS IN SUBALGEBRAS OF $C(X)$
LOTHAR REDLIN AND SALEEM WATSON

ABSTRACT. Let X be a completely regular space, and let $A(X)$ be a subalgebra of $C(X)$ containing $C^*(X)$. We study the maximal ideals in $A(X)$ by associating a filter $Z(f)$ to each $f \in A(X)$. This association extends to a one-to-one correspondence between $\mathcal{M}(A)$ (the set of maximal ideals of $A(X)$) and βX. We use the filters $Z(f)$ to characterize the maximal ideals and to describe the intersection of the free maximal ideals in $A(X)$. Finally, we outline some of the applications of our results to compactifications between vX and βX.

1. Introduction. The algebra $C(X)$ of continuous real-valued functions on a completely regular space X and its subalgebra $C^*(X)$ of bounded functions have been studied extensively (see Gillman and Jerison [3], and Aull [1]). One of the interesting problems considered in [3] is that of characterizing the maximal ideals in these two algebras. It is a remarkable fact that the distinct problems of identifying the maximal ideals in $C(X)$ and $C^*(X)$ have a common solution—the maximal ideals are in one-to-one correspondence with the points of βX in a natural way. The methods of achieving this correspondence, however, are quite different in the two cases. In this paper we consider this problem for subalgebras $A(X)$ of $C(X)$ that contain $C^*(X)$. We show that for such algebras the maximal ideals are in one-to-one correspondence with βX. The correspondence we construct reduces to that in [3] for the cases of $C(X)$ and $C^*(X)$. Thus our result puts in a common setting these apparently distinct problems.

A function is invertible in $C(X)$ if it is never zero, and in $C^*(X)$ if it is bounded away from zero. In an arbitrary $A(X)$, of course, there is no such description of invertibility which is independent of the structure of the algebra. Thus in §2 we associate to each noninvertible $f \in A(X)$ a z-filter $Z(f)$ that is a measure of where f is “locally” invertible in $A(X)$. This correspondence extends to one between maximal ideals of $A(X)$ and z-ultrafilters on X. In §3 we use the filters $Z(f)$ to describe the intersection of the free maximal ideals in any algebra $A(X)$. Finally, our main result allows us to introduce the notion of $A(X)$-compactness of which compactness and realcompactness are special cases. In §4 we show how the Banach-Stone theorem extends to $A(X)$-compact spaces.

2. The structure space. Throughout this paper X will denote a completely regular Hausdorff space and $A(X)$ a subalgebra of $C(X)$ containing $C^*(X)$. In this section we construct the correspondence mentioned in the introduction.

A zero set in X is a set of the form $Z(f) = \{x \in X : f(x) = 0\}$ for some $f \in C(X)$. The complement of a zero set is a cozero set. $Z[X]$ will denote the

Received by the editors April 18, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 54C40; Secondary 46E25.
Key words and phrases. Algebras of continuous functions, maximal ideal, compactifications.

©1987 American Mathematical Society
0002-9939/87 $1.00 +$.25 per page

763
collection of all zero sets in \(X \). If \(E \) is a cozero set in \(X \) we will say that \(f \in A(X) \) is \(E\text{-regular} \) if there exists \(g \in A(X) \) such that \(fg|_E = 1 \).

Lemma 1. Let \(f, g \in A(X) \) and let \(E, F \) be cozero sets in \(X \).

(a) If \(f \) is \(E\text{-regular} \) and \(F \subseteq E \), then \(f \) is \(F\text{-regular} \).

(b) If \(f \) is \(E\text{-regular} \) and \(F \subseteq E \), then \(f \) is \(E \cup F\text{-regular} \).

(c) If \(f(x) \geq c > 0 \) for all \(x \in E \), then \(f \) is \(E\text{-regular} \).

(d) If \(0 < f(x) \leq g(x) \) for all \(x \in E \) and \(f \) is \(E\text{-regular} \), then \(g \) is \(E\text{-regular} \).

(e) If \(f \) is \(E\text{-regular} \) and \(g \) is \(F\text{-regular} \), then \(fg \) is \(E \cap F\text{-regular} \) and \(f^2 + g^2 \) is \(E \cup F\text{-regular} \).

Proof. (a) Obvious.

(b) Let \(h, k \in A(X) \) satisfy \(hf|_E = 1 \) and \(kf|_F = 1 \). Let \(w = h + k - fhk \). Then \(fw|_{E \cup F} = 1 \).

(c) Let \(h = \max\{c, f\} \). Then \(h|_E = f|_E \) and \(h \geq c \). So \(0 < h^{-1} \leq c^{-1} \). Hence \(h^{-1} \in C^+(X) \subseteq A(X) \), and \(h^{-1}f|_E = 1 \).

(d) Let \(h \in A(X) \) satisfy \(hf|_E = 1 \). For \(x \in E \), \(h(x) > 0 \), so \(h(x)g(x) \geq h(x)f(x) = 1 \). Thus by (c), there exists \(k \in A(X) \) such that \(khg|_E = 1 \).

(e) If \(hf|_E = 1 \) and \(kg|_E = 1 \), then \(hkg|_{E \cap F} = 1 \). Now \(f^2 + g^2 \geq f^2 \), so by (d), \(f^2 + g^2 \) is \(E\text{-regular} \). Similarly, it is \(F\text{-regular} \), and so the result follows by (b).

For \(f \in A(X) \), we define

\[
Z(f) = \{ E \in Z[X] : f \text{ is } E^c\text{-regular} \},
\]

and for \(S \subseteq A(X) \), \(Z[S] = \bigcup_{f \in S} Z(f) \). We recall that a \textit{z-filter} is a nonempty collection \(\mathcal{F} \) of zero sets in \(X \) such that \(\mathcal{F} = \mathcal{G} \cap Z[X] \), for some filter \(\mathcal{G} \) on \(X \).

Theorem 1. If \(f \) is not invertible in \(A(X) \), then \(Z(f) \) is a z-filter on \(X \), and conversely.

Proof. If \(f \) is not invertible, \(\emptyset \notin Z(f) \). Moreover, if \(E, F \in Z(f) \), then by Lemma 1(b), \(E \cap F \in Z(f) \). If \(G \) is a zero set containing \(E \in Z(f) \), then \(G \in Z(f) \) by Lemma 1(a). Hence \(Z(f) \) is a z-filter.

The converse is obvious.

Theorem 2. If \(I \) is an ideal in \(A(X) \), then \(Z[I] \) is a z-filter on \(X \).

Proof. Clearly \(\emptyset \notin Z[I] \). If \(E, F \in Z[I] \), there exist \(f, g \in I \) such that \(f \) is \(E^c\text{-regular} \) and \(g \) is \(F^c\text{-regular} \). Then \(f^2 + g^2 \in I \), and by Lemma 1(e), \(f^2 + g^2 \) is \((E \cap F)^c\text{-regular} \). Thus \(E \cap F \in Z[I] \). Finally, if \(F \) is a zero set and \(F \supseteq E \in Z[I] \), then \(E \in Z(f) \) for some \(f \in I \), and so \(F \in Z(f) \subseteq Z[I] \) by Theorem 1.

Using the notation of [3], we write \(Z^{-1}[\mathcal{F}] = \{ f \in A(X) : Z(f) \subseteq \mathcal{F} \} \) for the inverse of the set function \(Z \). We will show that if \(\mathcal{F} \) is a z-filter, then \(Z^{-1}[\mathcal{F}] \) is an ideal in \(A(X) \), giving a converse to the above theorem. We need two preliminary lemmas.

Lemma 2. If \(f \in A(X) \), then \(\lim_{Z(f)} fh = 0 \) for any \(h \in A(X) \).

Proof. We claim \(\lim_{Z(f)} fh = 0 \). The result will follow from this claim and Lemma 1(e), since then \(\lim_{Z(fh)} fh = 0 \) and \(Z(fh) \subseteq Z(f) \). So let \(V = (-\varepsilon, \varepsilon) \) be a neighborhood of zero in \(\mathbb{R} \) and let \(E = f^{-1}(V) \). Clearly \(f \) is \(E^c\text{-regular} \) (Lemma 1(b) and (c)). Thus \(f^{-1}(V) \in Z(f) \) and so \(fh \) converges to zero on \(Z(f) \).
LEMMA 3. Let \mathcal{F} be a z-filter on X. If $\lim_{F} fh = 0$ for all $h \in A(X)$, then $Z(f) \subseteq \mathcal{F}$.

PROOF. For $E \in Z(f)$ we show that there is an $F \in \mathcal{F}$ such that $F \subseteq E$. Suppose not. Then $F \cap E^c \neq \emptyset$ for every $F \in \mathcal{F}$. Let $h \in A(X)$ satisfy $fh|_{E^c} = 1$. It follows that 1 is a cluster point of $\{fh(F) : F \in \mathcal{F}\}$, contradicting our hypothesis.

THEOREM 3. For any z-filter \mathcal{F} on X, $I = Z^{-}[\mathcal{F}]$ is an ideal in $A(X)$.

PROOF. If $f \in I$ and $g \in A(X)$, then $Z(fg) \subseteq Z(f)$ (Lemma 1(e)), so $fg \in I$. Now if $f, g \in I$, then by Lemma 2, $\lim_{F} fh = \lim_{F} gh = 0$ for every $h \in A(X)$. So $\lim_{F} fh + \lim_{F} gh = \lim_{F} (f + g)h = 0$ for all $h \in A(X)$, and hence by Lemma 3, $Z(f + g) \subseteq \mathcal{F}$. Finally, we note that since $\emptyset \notin \mathcal{F}$, I consists of noninvertible elements only.

Both Z and Z^{-} preserve inclusion and so they map maximal elements to maximal elements. Hence Z provides a one-to-one correspondence between βX and the set $M(A)$ of maximal ideals of $A(X)$. If $M(A)$ is equipped with the hull-kernel topology, then as in [3] in the cases of $C^*(X)$ and $C(X)$, we have the following theorem (see [6] for a different method of arriving at this result).

THEOREM 4. The maximal ideal space $M(A)$ of $A(X)$ equipped with the hull-kernel topology is homeomorphic to βX.

3. Free maximal ideals. Let M^p be the maximal ideal corresponding to $p \in \beta X$ and \mathcal{U}^p the z-ultrafilter on X that converges to p, so that $Z(M^p) = \mathcal{U}^p$. Using our filter $Z(f)$ we see immediately that for $f \in A(X)$, $f \in M^p$ if and only if $Z(f) \subseteq \mathcal{U}^p$. Thus we have the following analogue of the Gelfand-Kolmogoroff theorem [3, Theorem 7.3] for an arbitrary $A(X)$.

THEOREM 5. For the maximal ideals in $A(X)$, we have

$$M^p = \{f \in A(X) : p \text{ is a cluster point of } Z(f) \text{ in } \beta X\}.$$

We now describe the intersection of all the free maximal ideals in $A(X)$. An ideal I is free if $\cap Z[I] = \emptyset$, otherwise it is fixed. Note that a maximal ideal is free if and only if it is of the form M^p for some $p \in \beta X \setminus X$. We call a set $E \subseteq X$ small if every zero set contained in E is compact. Let $K = \{E \in Z[X] : E^c \text{ is small}\}$, and let $A_K(X) = \{f \in A(X) : Z(f) \subseteq K\}$.

THEOREM 6. $A_K(X) = \cap \{M^p : p \in \beta X \setminus X\}$.

PROOF. Let $f \in A_K(X)$. If \mathcal{U} is any z-ultrafilter on X such that $Z(f) \notin \mathcal{U}$, then there exist disjoint zero sets $E \in Z(f)$ and $F \subseteq \mathcal{U}$. But then $F \subseteq E^c$, so F is compact and \mathcal{U} is fixed. It follows that $Z(f)$ is contained in every free z-ultrafilter, and so f belongs to every free maximal ideal. Conversely, if f is in every free maximal ideal, then $Z(f)$ belongs to every free z-ultrafilter. Suppose $E \in Z(f)$ is not in K. Then E^c must contain a noncompact zero set F. Since $E \cup F \supseteq E \in Z(f)$, $E \cup F$ belongs to every free z-ultrafilter, and hence F belongs to no free z-ultrafilter. But clearly every noncompact zero set must belong to some free z-ultrafilter. Thus E is in K and $f \in A_K(X)$.

We note that if X is realcompact and $A(X) = C(X)$, then $A_K(X)$ is the family of functions on X of compact support and Theorem 8.19 of [3] follows from our Theorem 6. If $A(X) = C^*(X)$, then $A_K(X)$ is the family of functions on X that vanish at infinity and Lemma 3.2 in [4] is a special case of Theorem 6.
4. **A-compactness.** It is well known that C^* distinguishes among compact spaces (the Banach-Stone theorem) and that C distinguishes among realcompact spaces (Hewitt's isomorphism theorem). Theorem 4 allows us to define the notion of A-compactness which will enable us to place both of these theorems in a common setting (Theorem 7).

A maximal ideal M in $A(X)$ is *real* if $A(X)/M$ is isomorphic to \mathbb{R}. Every fixed maximal ideal is real. If every real maximal ideal is fixed, we will say that X is $A(X)$-compact (or simply A-compact). With this definition, a compact space is one that is C^*-compact while a realcompact space is C-compact.

THEOREM 7. Let X be A-compact and Y be B-compact. If $A(X)$ is isomorphic to $B(Y)$, then X is homeomorphic to Y.

PROOF. Since X is A-compact its points correspond to the real maximal ideals of $A(X)$ under the homeomorphism described in Theorem 4. Thus we can recover X from the ring structure of $A(X)$. Since this can be done in the same way for Y, the result follows.

Although the converse of the above theorem is trivial if A and B are C or C^*, in this more general setting the converse is not even true. For a given X there can exist nonisomorphic algebras $A(X)$ and $B(X)$ for which X is both A-compact and B-compact. For example, let $H(N)$ be the algebra of sequences which occur as the coefficients of the Taylor series representation of functions holomorphic on the open unit disc. Then N is both H-compact (see [2]) and C-compact, but $H(N)$ is obviously not isomorphic to $C(N)$. Indeed, it is clear from the definition that if X is A-compact and $B(X) \supseteq A(X)$, then X is B-compact. This raises the question: Does there exist in some sense a "minimal" algebra $A_m(X)$ for which X is A_m-compact, at least up to isomorphism?

We conclude by noting that another characterization of A-compactness follows from Mandelker [5]. We call a family S of closed sets in X A-stable if every $f \in A(X)$ is bounded on some member of S. Then one can show (as in [5]) that a space is A-compact if and only if every A-stable family of closed sets with the finite intersection property has nonempty intersection.

REFERENCES

PENNSYLVANIA STATE UNIVERSITY, OGONTZ CAMPUS, ABINGTON, PENNSYLVANIA 19001

PENNSYLVANIA STATE UNIVERSITY, DELAWARE COUNTY CAMPUS, MEDIA, PENNSYLVANIA 19063