MATH 410
Assignment 7

1. (a) State Fermat’s little theorem.
 (b) Prove that if \(x \) is relatively prime to 7, then \(x^6 \equiv 1 \pmod{7} \).
 (c) Prove that if \(x \) is relatively prime to 7, then \(x^3 \equiv \pm 1 \pmod{7} \).
 (d) Prove that the Diophantine equation \(x^3 + y^3 = z^3 \) has no solutions where \(7 \nmid xyz \).

2. Let \(n \in \mathbb{N} \) and let \(G = \{ k \in \mathbb{N} \mid k < n \text{ and } k \text{ is relatively prime to } n \} \), and let \(\phi(n) \) denote the number of elements in \(G \).
 (a) Prove that \(G \) is a group under multiplication mod \(n \).
 (b) Prove that for any \(a \in G \), we have \(a^{\phi(n)} = 1 \).
 (c) State and prove Euler’s generalization of Fermat’s little theorem.

3. Consider the Diophantine equation \(y^3 = x^2 + 2 \).
 (a) Observe that \(x = \pm 5 \) and \(y = 3 \) are solutions.
 (b) Factor the equation as \(y^3 = (x + \sqrt{-2})(x - \sqrt{-2}) \). We’ve shown that this equation has only the solutions in part (a) in the ring \(R = \{ a + b\sqrt{-2} \mid a, b \in \mathbb{N} \} \). Explain why this proves that the original equation has only these same solutions in the ring of integers.

4. The Riemann zeta function is defined by \(\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \).
 (a) Explain how the Euler product formula is derived by writing each factor in the product as a geometric series:
 \[
 \prod_{p \text{ prime}} \left(1 - p^{-s}\right)^{-1} = \sum_{n=1}^{\infty} \frac{1}{n^s}
 \]
 (b) Define the Möbius function \(\mu(n) \) and prove that
 \[
 \frac{1}{\zeta(s)} = \sum_{n=1}^{\infty} \frac{\mu(n)}{n^s}
 \]