A second-order linear differential equation has the form

\[P(x) \frac{d^2y}{dx^2} + Q(x) \frac{dy}{dx} + R(x)y = G(x) \]

where \(P, Q, R, \) and \(G \) are continuous functions. Equations of this type arise in the study of the motion of a spring. In Additional Topics: Applications of Second-Order Differential Equations we will further pursue this application as well as the application to electric circuits.

In this section we study the case where \(G(x) = 0 \), for all \(x \), in Equation 1. Such equations are called homogeneous linear equations. Thus, the form of a second-order linear homogeneous differential equation is

\[P(x) \frac{d^2y}{dx^2} + Q(x) \frac{dy}{dx} + R(x)y = 0 \]

If \(G(x) \neq 0 \) for some \(x \), Equation 1 is nonhomogeneous and is discussed in Additional Topics: Nonhomogeneous Linear Equations.

Two basic facts enable us to solve homogeneous linear equations. The first of these says that if we know two solutions \(y_1 \) and \(y_2 \) of such an equation, then the linear combination \(y = c_1y_1 + c_2y_2 \) is also a solution.

Theorem
If \(y_1(x) \) and \(y_2(x) \) are both solutions of the linear homogeneous equation (2) and \(c_1 \) and \(c_2 \) are any constants, then the function

\[y(x) = c_1y_1(x) + c_2y_2(x) \]

is also a solution of Equation 2.

Proof Since \(y_1 \) and \(y_2 \) are solutions of Equation 2, we have

\[P(x)y_1'' + Q(x)y_1' + R(x)y_1 = 0 \]

and

\[P(x)y_2'' + Q(x)y_2' + R(x)y_2 = 0 \]

Therefore, using the basic rules for differentiation, we have

\[P(x)y'' + Q(x)y' + R(x)y = c_1[P(x)y_1'' + Q(x)y_1' + R(x)y_1] + c_2[P(x)y_2'' + Q(x)y_2' + R(x)y_2] \]

\[= c_1(0) + c_2(0) = 0 \]

Thus, \(y = c_1y_1 + c_2y_2 \) is a solution of Equation 2.

The other fact we need is given by the following theorem, which is proved in more advanced courses. It says that the general solution is a linear combination of two linearly independent solutions \(y_1 \) and \(y_2 \). This means that neither \(y_1 \) nor \(y_2 \) is a constant multiple of the other. For instance, the functions \(f(x) = x^2 \) and \(g(x) = 5x^2 \) are linearly dependent, but \(f(x) = e^x \) and \(g(x) = xe^x \) are linearly independent.
Theorem 4 If \(y_1 \) and \(y_2 \) are linearly independent solutions of Equation 2, and \(P(x) \) is never 0, then the general solution is given by

\[
y(x) = c_1 y_1(x) + c_2 y_2(x)
\]

where \(c_1 \) and \(c_2 \) are arbitrary constants.

Theorem 4 is very useful because it says that if we know two particular linearly independent solutions, then we know every solution.

In general, it is not easy to discover particular solutions to a second-order linear equation. But it is always possible to do so if the coefficient functions \(P, Q, \) and \(R \) are constant functions, that is, if the differential equation has the form

\[
ay'' + by' + cy = 0
\]

where \(a, b, \) and \(c \) are constants and \(a \neq 0 \).

It’s not hard to think of some likely candidates for particular solutions of Equation 5 if we state the equation verbally. We are looking for a function \(y \) such that a constant times its second derivative \(y'' \) plus another constant times \(y' \) plus a third constant times \(y \) is equal to 0. We know that the exponential function \(y = e^{rx} \) (where \(r \) is a constant) has the property that its derivative is a constant multiple of itself: \(y' = re^{rx} \). Furthermore, \(y'' = r^2 e^{rx} \). If we substitute these expressions into Equation 5, we see that \(y = e^{rx} \) is a solution if

\[
ar^2 e^{rx} + bre^{rx} + ce^{rx} = 0
\]
or

\[
(ar^2 + br + c)e^{rx} = 0
\]

But \(e^{rx} \) is never 0. Thus, \(y = e^{rx} \) is a solution of Equation 5 if \(r \) is a root of the equation

\[
ar^2 + br + c = 0
\]

Equation 6 is called the **auxiliary equation** (or characteristic equation) of the differential equation \(ay'' + by' + cy = 0 \). Notice that it is an algebraic equation that is obtained from the differential equation by replacing \(y'' \) by \(r^2 \), \(y' \) by \(r \), and \(y \) by 1.

Sometimes the roots \(r_1 \) and \(r_2 \) of the auxiliary equation can be found by factoring. In other cases they are found by using the quadratic formula:

\[
r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \quad r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}
\]

We distinguish three cases according to the sign of the discriminant \(b^2 - 4ac \).

CASE 1 \(b^2 - 4ac > 0 \)

In this case the roots \(r_1 \) and \(r_2 \) of the auxiliary equation are real and distinct, so \(y_1 = e^{r_1 x} \) and \(y_2 = e^{r_2 x} \) are two linearly independent solutions of Equation 5. (Note that \(e^{rx} \) is not a constant multiple of \(e^{rx} \).) Therefore, by Theorem 4, we have the following fact.

If the roots \(r_1 \) and \(r_2 \) of the auxiliary equation \(ar^2 + br + c = 0 \) are real and unequal, then the general solution of \(ay'' + by' + cy = 0 \) is

\[
y = c_1 e^{r_1 x} + c_2 e^{r_2 x}
\]
EXAMPLE 1 Solve the equation \(y'' + y' - 6y = 0\).

SOLUTION The auxiliary equation is

\[r^2 + r - 6 = (r - 2)(r + 3) = 0\]

whose roots are \(r = 2, -3\). Therefore, by (8) the general solution of the given differential equation is

\[y = c_1e^{2x} + c_2e^{-3x}\]

We could verify that this is indeed a solution by differentiating and substituting into the differential equation.

EXAMPLE 2 Solve \(3y'' + y' - y = 0\).

SOLUTION To solve the auxiliary equation we use the quadratic formula:

\[r = \frac{-1 \pm \sqrt{13}}{6}\]

Since the roots are real and distinct, the general solution is

\[y = c_1e^{\left(-1+\sqrt{13}\right)x/6} + c_2e^{\left(-1-\sqrt{13}\right)x/6}\]

CASE II \(b^2 - 4ac = 0\)

In this case \(r_1 = r_2\); that is, the roots of the auxiliary equation are real and equal. Let’s denote by \(r\) the common value of \(r_1\) and \(r_2\). Then, from Equations 7, we have

\[r = \frac{-b}{2a}\quad\text{so}\quad 2ar + b = 0\]

We know that \(y_1 = e^{rx}\) is one solution of Equation 5. We now verify that \(y_2 = xe^{rx}\) is also a solution:

\[ay'' + by' + cy = a(2re^{rx} + r^2xe^{rx}) + b(e^{rx} + rxe^{rx}) + cxe^{rx}\]
\[= (2ar + b)e^{rx} + (ar^2 + br + c)xe^{rx}\]
\[= 0(e^{rx}) + 0(xe^{rx}) = 0\]

The first term is 0 by Equations 9; the second term is 0 because \(r\) is a root of the auxiliary equation. Since \(y_1 = e^{rx}\) and \(y_2 = xe^{rx}\) are linearly independent solutions, Theorem 4 provides us with the general solution.

EXAMPLE 3 Solve the equation \(4y'' + 12y' + 9y = 0\).

SOLUTION The auxiliary equation \(4r^2 + 12r + 9 = 0\) can be factored as

\[(2r + 3)^2 = 0\]
so the only root is \(r = -\frac{3}{2} \). By (10) the general solution is
\[
y = c_1 e^{-3x/2} + c_2 xe^{-3x/2}
\]

CASE III \(b^2 - 4ac < 0 \)
In this case the roots \(r_1 \) and \(r_2 \) of the auxiliary equation are complex numbers. (See Additional Topics: Complex Numbers for information about complex numbers.) We can write
\[
r_1 = \alpha + i\beta \quad r_2 = \alpha - i\beta
\]
where \(\alpha \) and \(\beta \) are real numbers. [In fact, \(\alpha = -b/(2a) \), \(\beta = \sqrt{4ac - b^2}/(2a) \).] Then, using Euler’s equation
\[
e^{i\theta} = \cos \theta + i \sin \theta
\]
from Additional Topics: Complex Numbers, we write the solution of the differential equation as
\[
y = C_1 e^{\alpha x} + C_2 e^{\beta x} = C_1 e^{(\alpha + i\beta)x} + C_2 e^{(\alpha - i\beta)x}
\]
\[
= C_1 e^{\alpha x} (\cos \beta x + i \sin \beta x) + C_2 e^{\alpha x} (\cos \beta x - i \sin \beta x)
\]
\[
= e^{\alpha x} [(C_1 + C_2) \cos \beta x + i(C_1 - C_2) \sin \beta x]
\]
\[
= e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)
\]
where \(c_1 = C_1 + C_2 \), \(c_2 = i(C_1 - C_2) \). This gives all solutions (real or complex) of the differential equation. The solutions are real when the constants \(c_1 \) and \(c_2 \) are real. We summarize the discussion as follows.

If the roots of the auxiliary equation \(ar^2 + br + c = 0 \) are the complex numbers \(r_1 = \alpha + i\beta, r_2 = \alpha - i\beta \), then the general solution of \(ay'' + by' + cy = 0 \) is
\[
y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)
\]

EXAMPLE 4 Solve the equation \(y'' - 6y' + 13y = 0 \).

SOLUTION The auxiliary equation is \(r^2 - 6r + 13 = 0 \). By the quadratic formula, the roots are
\[
r = \frac{6 \pm \sqrt{36 - 52}}{2} = \frac{6 \pm \sqrt{-16}}{2} = 3 \pm 2i
\]
By (11) the general solution of the differential equation is
\[
y = e^{3x}(c_1 \cos 2x + c_2 \sin 2x)
\]

INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS

An initial-value problem for the second-order Equation 1 or 2 consists of finding a solution \(y \) of the differential equation that also satisfies initial conditions of the form
\[
y(x_0) = y_0 \quad y'(x_0) = y_1
\]
where \(y_0 \) and \(y_1 \) are given constants. If \(P, Q, R, \) and \(G \) are continuous on an interval and \(P(x) \neq 0 \) there, then a theorem found in more advanced books guarantees the existence and uniqueness of a solution to this initial-value problem. Examples 5 and 6 illustrate the technique for solving such a problem.
EXAMPLE 5 Solve the initial-value problem

\[y'' + y' - 6y = 0 \quad y(0) = 1 \quad y'(0) = 0 \]

SOLUTION From Example 1 we know that the general solution of the differential equation is

\[y(x) = c_1 e^{2x} + c_2 e^{-3x} \]

Differentiating this solution, we get

\[y'(x) = 2c_1 e^{2x} - 3c_2 e^{-3x} \]

To satisfy the initial conditions we require that

\[y(0) = c_1 + c_2 = 1 \]
\[y'(0) = 2c_1 - 3c_2 = 0 \]

From (13) we have \(c_2 = \frac{2}{5}c_1 \) and so (12) gives

\[c_1 + \frac{2}{5}c_1 = 1 \quad c_1 = \frac{5}{7} \quad c_2 = \frac{2}{5} \]

Thus, the required solution of the initial-value problem is

\[y = \frac{5}{7} e^{2x} + \frac{2}{5} e^{-3x} \]

EXAMPLE 6 Solve the initial-value problem

\[y'' + y = 0 \quad y(0) = 2 \quad y'(0) = 3 \]

SOLUTION The auxiliary equation is \(r^2 + 1 = 0 \), or \(r^2 = -1 \), whose roots are \(\pm i \). Thus \(\alpha = 0, \beta = 1, \) and since \(e^{0x} = 1 \), the general solution is

\[y(x) = c_1 \cos x + c_2 \sin x \]

Since

\[y'(x) = -c_1 \sin x + c_2 \cos x \]

the initial conditions become

\[y(0) = c_1 = 2 \quad y'(0) = c_2 = 3 \]

Therefore, the solution of the initial-value problem is

\[y(x) = 2 \cos x + 3 \sin x \]

A boundary-value problem for Equation 1 consists of finding a solution \(y \) of the differential equation that also satisfies boundary conditions of the form

\[y(x_0) = y_0 \quad y(x_1) = y_1 \]

In contrast with the situation for initial-value problems, a boundary-value problem does not always have a solution.

EXAMPLE 7 Solve the boundary-value problem

\[y'' + 2y' + y = 0 \quad y(0) = 1 \quad y(1) = 3 \]

SOLUTION The auxiliary equation is

\[r^2 + 2r + 1 = 0 \quad \text{or} \quad (r + 1)^2 = 0 \]

whose only root is \(r = -1 \). Therefore, the general solution is

\[y(x) = c_1 e^{-x} + c_2 xe^{-x} \]
Let be a nonzero real number. Show that the boundary-value problem has only the trivial solution for

The boundary conditions are satisfied if

The first condition gives , so the second condition becomes

Solving this equation for by first multiplying through by , we get

Thus, the solution of the boundary-value problem is

\[
y = e^{-x} + (3e - 1)xe^{-x}
\]

Summary: Solutions of \(ay'' + by' + c = 0 \)

<table>
<thead>
<tr>
<th>Roots of (ar^2 + br + c = 0)</th>
<th>General solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1, r_2) real and distinct</td>
<td>(y = c_1e^{r_1x} + c_2e^{r_2x})</td>
</tr>
<tr>
<td>(r_1 = r_2 = r)</td>
<td>(y = c_1e^{rx} + c_2xe^{rx})</td>
</tr>
<tr>
<td>(r_1, r_2) complex: (\alpha \pm i\beta)</td>
<td>(y = e^{\alpha x}(c_1 \cos \beta x + c_2 \sin \beta x))</td>
</tr>
</tbody>
</table>

EXERCISES

1–13 Solve the differential equation.

1. \(y'' - 6y' + 8y = 0 \)
2. \(y'' - 4y' + 8y = 0 \)
3. \(y'' + 8y' + 41y = 0 \)
4. \(2y'' - y' - y = 0 \)
5. \(y'' - 2y' + y = 0 \)
6. \(3y'' = 5y' \)
7. \(4y'' + y = 0 \)
8. \(16y'' + 24y' + 9y = 0 \)
9. \(4y'' + y' = 0 \)
10. \(9y'' + 4y = 0 \)
11. \(\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} - y = 0 \)
12. \(\frac{d^2y}{dx^2} - 6 \frac{dy}{dx} + 4y = 0 \)
13. \(\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0 \)

14–16 Graph the two basic solutions of the differential equation and several other solutions. What features do the solutions have in common?

14. \(6 \frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0 \)
15. \(\frac{d^2y}{dx^2} - 8 \frac{dy}{dx} + 16y = 0 \)
16. \(\frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + 5y = 0 \)

17–24 Solve the initial-value problem.

17. \(2y'' + 5y' + 3y = 0, \ y(0) = 3, \ y'(0) = -4 \)
18. \(y'' + 3y = 0, \ y(0) = 1, \ y'(0) = 3 \)
19. \(4y'' - 4y' + y = 0, \ y(0) = 1, \ y'(0) = -1.5 \)

20. \(2y'' + 5y' - 3y = 0, \ y(0) = 1, \ y'(0) = 4 \)
21. \(y'' + 16y = 0, \ y(\pi/4) = -3, \ y'(\pi/4) = 4 \)
22. \(y'' - 2y' + 5y = 0, \ y(\pi) = 0, \ y'(\pi) = 2 \)
23. \(y'' + 2y' + 2y = 0, \ y(0) = 2, \ y'(0) = 1 \)
24. \(y'' + 12y' + 36y = 0, \ y(1) = 0, \ y'(1) = 1 \)

25–32 Solve the boundary-value problem, if possible.

25. \(4y'' + y = 0, \ y(0) = 3, \ y(\pi) = -4 \)
26. \(y'' + 2y' = 0, \ y(0) = 1, \ y(1) = 2 \)
27. \(y'' - 3y' + 2y = 0, \ y(0) = 1, \ y(3) = 0 \)
28. \(y'' + 100y = 0, \ y(0) = 2, \ y(\pi) = 5 \)
29. \(y'' - 6y' + 25y = 0, \ y(0) = 1, \ y(\pi) = 2 \)
30. \(y'' - 6y' + 9y = 0, \ y(0) = 1, \ y(1) = 0 \)
31. \(y'' + 4y' + 13y = 0, \ y(0) = 2, \ y(\pi/2) = 1 \)
32. \(9y'' - 18y' + 10y = 0, \ y(0) = 0, \ y(\pi) = 1 \)

33. Let \(L \) be a nonzero real number.

(a) Show that the boundary-value problem \(y'' + \lambda y = 0, \ y(0) = 0, y(L) = 0 \) has only the trivial solution \(y = 0 \) for the cases \(\lambda = 0 \) and \(\lambda < 0 \).

(b) For the case \(\lambda > 0 \), find the values of \(\lambda \) for which this problem has a nontrivial solution and give the corresponding solution.

34. If \(a, b, \) and \(c \) are all positive constants and \(y(x) \) is a solution of the differential equation \(ay'' + by' + cy = 0 \), show that \(\lim_{x \to \infty} y(x) = 0 \).
ANSWERS

17. $y = 2e^{-3x/2} + e^{-x}$
19. $y = e^{x^2} - 2xe^{x/2}$
21. $y = 3 \cos 4x - \sin 4x$
23. $y = e^{-x}(2 \cos x + 3 \sin x)$
25. $y = 3 \cos(\frac{1}{2}x) - 4 \sin(\frac{1}{2}x)$
27. $y = \frac{e^{x^3}}{e^x - 1} + \frac{e^{2x}}{1 - e^x}$
29. No solution
31. $y = e^{-x}(2 \cos 3x - e^x \sin 3x)$
33. (b) $\lambda = n^2\pi^2/L^2$, n a positive integer; $y = C \sin(n\pi x/L)$
1. The auxiliary equation is $r^2 - 6r + 8 = 0 \Rightarrow (r-4)(r-2) = 0 \Rightarrow r = 4, r = 2$. Then by (8) the general solution is $y = c_1 e^{4x} + c_2 e^{2x}$.

3. The auxiliary equation is $r^2 + 8r + 41 = 0 \Rightarrow r = -4 \pm 5i$. Then by (11) the general solution is $y = e^{-4x}(c_1 \cos 5x + c_2 \sin 5x)$.

5. The auxiliary equation is $r^2 - 2r + 1 = (r-1)^2 = 0 \Rightarrow r = 1$. Then by (10), the general solution is $y = c_1 e^x + c_2 x e^x$.

7. The auxiliary equation is $4r^2 + 1 = 0 \Rightarrow r = \pm \frac{1}{2}i$, so $y = c_1 \cos \left(\frac{1}{2}x\right) + c_2 \sin \left(\frac{1}{2}x\right)$.

9. The auxiliary equation is $4r^2 + r = r(4r + 1) = 0 \Rightarrow r = 0, r = -\frac{1}{4}$, so $y = c_1 + c_2 e^{-x/4}$.

11. The auxiliary equation is $r^2 - 2r - 1 = 0 \Rightarrow r = 1 \pm \sqrt{2}$, so $y = c_1 e^{(1+\sqrt{2})t} + c_2 e^{(1-\sqrt{2})t}$.

13. The auxiliary equation is $r^2 + r + 1 = 0 \Rightarrow r = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$, so $y = e^{-t/2} \left[c_1 \cos \left(\frac{\sqrt{3}}{2}t\right) + c_2 \sin \left(\frac{\sqrt{3}}{2}t\right) \right]$.

15. $r^2 - 8r + 16 = (r - 4)^2 = 0$ so $y = c_1 e^{4x} + c_2 x e^{4x}$.

The graphs are all asymptotic to the x-axis as $x \to -\infty$.

and as $x \to \infty$ the solutions tend to $\pm \infty$.

17. $2r^2 + 5r + 3 = (2r+3)(r+1) = 0$, so $r = -\frac{3}{2}, r = -1$ and the general solution is $y = c_1 e^{-3x/2} + c_2 e^{-x}$. Then $y(0) = 3 \Rightarrow c_1 + c_2 = 3$ and $y'(0) = -4 \Rightarrow -\frac{3}{2} c_1 - c_2 = -4$, so $c_1 = 2$ and $c_2 = 1$. Thus the solution to the initial-value problem is $y = 2e^{-3x/2} + e^{-x}$.

19. $4r^2 - 4r + 1 = (2r-1)^2 = 0 \Rightarrow r = \frac{1}{2}$ and the general solution is $y = c_1 e^{x/2} + c_2 x e^{x/2}$. Then $y(0) = 1 \Rightarrow c_1 = 1$ and $y'(0) = -1.5 \Rightarrow \frac{1}{2} c_1 + c_2 = -1.5$, so $c_2 = -2$ and the solution to the initial-value problem is $y = e^{x/2} - 2xe^{x/2}$.

21. $r^2 + 16 = 0 \Rightarrow r = \pm 4i$ and the general solution is $y = e^{0x}(c_1 \cos 4x + c_2 \sin 4x) = c_1 \cos 4x + c_2 \sin 4x$.

Then $y\left(\frac{\pi}{4}\right) = -3 \Rightarrow -c_1 = -3 \Rightarrow c_1 = 3$ and $y'(\frac{\pi}{4}) = 4 \Rightarrow -4c_2 = 4 \Rightarrow c_2 = -1$, so the solution to the initial-value problem is $y = 3 \cos 4x - \sin 4x$.

23. $r^2 + 2r + 2 = 0 \Rightarrow r = -1 \pm i$ and the general solution is $y = e^{-x}(c_1 \cos x + c_2 \sin x)$. Then $2 = y(0) = c_1$ and $1 = y'(0) = c_2 - c_1 \Rightarrow c_2 = 3$ and the solution to the initial-value problem is $y = e^{-x}(2 \cos x + 3 \sin x)$.

25. $4r^2 + 1 = 0 \Rightarrow r = \pm \frac{1}{2}i$ and the general solution is $y = c_1 \cos \left(\frac{1}{2}x\right) + c_2 \sin \left(\frac{1}{2}x\right)$. Then $3 = y(0) = c_1$ and $-4 = y(\pi) = c_2$, so the solution of the boundary-value problem is $y = 3 \cos \left(\frac{1}{2}x\right) - 4 \sin \left(\frac{1}{2}x\right)$.

27. $r^2 - 3r + 2 = (r-2)(r-1) = 0 \Rightarrow r = 1, r = 2$ and the general solution is $y = c_1 e^x + c_2 e^{2x}$. Then $1 = y(0) = c_1 + c_2$ and $0 = y(3) = c_1 e^3 + c_2 e^6$ so $c_2 = 1/(1-e^3)$ and $c_1 = e^3/(e^3 - 1)$. The solution of the boundary-value problem is $y = \frac{e^{x+3}}{e^3-1} + \frac{e^{2x}}{1-e^3}$.
29. \(r^2 - 6r + 25 = 0 \) \(\Rightarrow \) \(r = 3 \pm 4i \) and the general solution is \(y = e^{3x}(c_1 \cos 4x + c_2 \sin 4x) \). But \(1 = y(0) = c_1 \) and \(2 = y(\pi) = c_1 e^{3\pi} \) \(\Rightarrow \) \(c_1 = 2/e^{3\pi} \), so there is no solution.

31. \(r^2 + 4r + 13 = 0 \) \(\Rightarrow \) \(r = -2 \pm 3i \) and the general solution is \(y = e^{-2x}(c_1 \cos 3x + c_2 \sin 3x) \). But \(2 = y(0) = c_1 \) and \(1 = y\left(\frac{\pi}{2}\right) = e^{-\pi}(-c_2) \), so the solution to the boundary-value problem is \(y = e^{-2x}(2 \cos 3x - e^{\pi} \sin 3x) \).

33. (a) Case 1 (\(\lambda = 0 \)): \(y'' + \lambda y = 0 \) \(\Rightarrow \) \(y'' = 0 \) which has an auxiliary equation \(r^2 = 0 \) \(\Rightarrow \) \(r = 0 \) \(\Rightarrow \) \(y = c_1 + c_2x \) where \(y(0) = 0 \) and \(y(L) = 0 \). Thus, \(0 = y(0) = c_1 \) and \(0 = y(L) = c_2 L \) \(\Rightarrow \) \(c_1 = c_2 = 0 \). Thus, \(y = 0 \).

Case 2 (\(\lambda < 0 \)): \(y'' + \lambda y = 0 \) has auxiliary equation \(r^2 = -\lambda \) \(\Rightarrow \) \(r = \pm \sqrt{-\lambda} \) (distinct and real since \(\lambda < 0 \)) \(\Rightarrow \) \(y = c_1 e^{\sqrt{-\lambda}x} + c_2 e^{-\sqrt{-\lambda}x} \) where \(y(0) = 0 \) and \(y(L) = 0 \). Thus, \(0 = y(0) = c_1 + c_2 \) (\(\ast \)) and \(0 = y(L) = c_1 e^{\sqrt{-\lambda}L} + c_2 e^{-\sqrt{-\lambda}L} \) (\(\dagger \)).

Multiplying (\(\ast \)) by \(e^{\sqrt{-\lambda}L} \) and subtracting (\(\dagger \)) gives \(c_2 \left(e^{\sqrt{-\lambda}L} - e^{-\sqrt{-\lambda}L} \right) = 0 \) \(\Rightarrow \) \(c_2 = 0 \) and thus \(c_1 = 0 \) from (\(\ast \)). Thus, \(y = 0 \) for the cases \(\lambda = 0 \) and \(\lambda < 0 \).

(b) \(y'' + \lambda y = 0 \) has an auxiliary equation \(r^2 + \lambda = 0 \) \(\Rightarrow \) \(r = \pm i \sqrt{\lambda} \) \(\Rightarrow \) \(y = c_1 \cos \sqrt{\lambda} x + c_2 \sin \sqrt{\lambda} x \) where \(y(0) = 0 \) and \(y(L) = 0 \). Thus, \(0 = y(0) = c_1 \) and \(0 = y(L) = c_2 \sin \sqrt{\lambda} L \) since \(c_1 = 0 \). Since we cannot have a trivial solution, \(c_2 \neq 0 \) and thus \(\sin \sqrt{\lambda} L = 0 \) \(\Rightarrow \) \(\sqrt{\lambda} L = n\pi \) where \(n \) is an integer \(\Rightarrow \lambda = n^2\pi^2/L^2 \) and \(y = c_2 \sin(n\pi x/L) \) where \(n \) is an integer.