Health Science 503
Advanced Community Health Statistics

Lecture 1
Overview of Inferential Statistics

Introduction to Course
Introduction
- S. Watson—Department of Mathematics and Statistics
- website: www.csulb.edu/~saleem
- Meet your classmates
- Sign log sheet

Course Materials
- Syllabus
- HSc 503 Overview
- Requirements for class project

Purpose of Course
- Understand common statistical procedures
- Learn to use SPSS software
Overview of Statistics

- **Types of statistics**
 - **Descriptive**: Conclusions restricted to observation studied
 - **Inferential**: Conclusions apply to population
 - Estimate population parameter from sample statistic
 - Estimate error in that estimate (or state a level of confidence in the estimate).

Diagram of Inferential Statistics

![Diagram of Inferential Statistics]

Research Methodology

- **Obtaining Data**
 - Observational
 - Surveys
 - Experiments
- **Types of studies**
 - Cross-Sectional
 - Retrospective
 - Prospective
 - Clinical Trials
 - Epidemiological
Random Samples
- Importance of randomness
- Properties of a sample
 - Sample size
 - Randomness

Obtaining a Random Sample
- Sampling
 - Simple Random
 - Convenience
 - Systematic
 - Stratified Random
 - Cluster
- Experimental Design
 - Completely Randomized
 - Randomized block
 - Matched pair

Why Is This Stuff Important?
- Decision can be made from data
- Understanding literature
- Language of academia
Types of Designs

- Correlational Designs
 - Weak claims of causality
 - Surveys, Epidemiological studies
- Experimental Designs
 - Strong claims of causality
 - Clinical trials, laboratory studies

Sampling & Inferential Statistics

![Diagram]

Types of Random Sampling

- Simple random samples
 - With replacement
 - Without replacement (Large pop. required)
- Complex sampling designs
 - Stratified
 - Fixes sizes within category
 - E.g., # of males = # of females
 - Clustering (multi-stage sampling)
 - E.g., Students within universities
Summation Notation Used To Calculate Mean

Sum Values of X
\[\sum_{i=1}^{n} X_i \]

Mean of a population
\[\mu = \frac{\sum_{i=1}^{N} X_i}{N} \]

Mean of a sample
\[\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n} \]