Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.

1. If A is diagonalizable, then $r(A) = r(A^2)$.
2. If some power of A is the identity, then A is diagonalizable.
3. If $A^3 = A$, then A is diagonalizable.
4. It is possible that the only nonzero idempotent in $\langle A \rangle$ is I.
5. If A is nilpotent, then all of its eigenvalues are 0.

On Nilpotent Matrices.

1. Let F be arbitrary. Show that if $A \in F^{n \times n}$ is nilpotent then $\text{tr}(A^i) = 0$ for $i = 1, 2, \ldots$.
2. Show that the converse fails in \mathbb{Z}_p for any prime p.
3. Let $F = \mathbb{C}$. Let $A \in \mathbb{C}^{n \times n}$ be such that $\text{tr}(A^i) = 0$ for $i = 1, \ldots, n$. Show that if $n = 2$, then A is nilpotent.
4. Let $F = \mathbb{C}$. Let $A \in \mathbb{C}^{n \times n}$ be such that $\text{tr}(A^i) = 0$ for $i = 1, \ldots, n$. Show that if $n = 3$, then A is nilpotent.

Bonus: Prove 4 for arbitrary n.

Find the rational canonical form for M^2 where M is the companion matrix to the polynomial $x^3(x - 1)^2(x + 1)$.

1. Find its rational canonical form.
2. Find its Jordan canonical form.