Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false. \(a \in \mathbb{Z}^+ \).

1. \(|a|_m^k = 2^{k+1} \).
2. If \(|a|_m = k \), then \(\varphi(m) \) is a multiple of \(k \).
3. Let \(\chi(n) \) denote the number of solutions to \(x^2 + 1 \) mod \(n \). Then \(\chi(p) > 1 \) for only finitely many primes.
4. If \(\varphi(n) = 4 \), then \(n = 5 \).
5. There are exactly 4 idempotent mod 100.

Alex is given the following problem: let \(n \in \mathbb{Z}^+ \). Then \(\alpha(n) \) is the number of ways of writing \(n \) as a sum of consecutive positive integers. Compute \(\alpha(1,000,000) \). Emulate Alex by answering the following:

1. Prove \(\alpha(9) = 3 \).
2. Compute \(\alpha(8) \), \(\alpha(12) \) and \(\alpha(15) \).
3. Let \(n = k \times d \) where \(k \) is odd. Show that one can write \(n \) as a sum with \(k \) consecutive integers and \(d \) in the middle.
4. Revisit 2 from the 3 point of view.
5. Show \(\alpha(n) \) is the number of odd divisors of \(n \).
6. Compute \(\alpha(1,000,000) \).

On Exponents.

1. Find \(\xi(30) \) and find an element of that order.
2. Find \(\xi(30^p) \) and find an element of that order for each \(n \).
3. Find \(\xi(6300) \) and \(\xi(630000) \).

On Nilpotents. Consider modulo \(m \). If a residue \(x \) satisfies \(x^k \equiv 0 \) for some \(k \), then \(x \) is called nilpotent. Certainly 0 is nilpotent.

1. Find all nilpotents mod 36.
2. Find all nilpotents mod 100.
3. Find all nilpotents mod \(p^\ell \) where \(p \) is a prime.
4. Let \(m = p_1^{\ell_1} p_2^{\ell_2} \cdots p_\ell^{\ell_\ell} \) be factored into primes. Which residues are nilpotent? Prove your answer.
5. Is the number of nilpotents a multiplicative function?
6. How many nilpotents mod \(p^\ell \)?

Bonus. Sylvester Revisited. Let \(a, b > 1 \) be relatively prime integers. Most of the proof of Sylvester’s theorem can come from studying the function:
\[T(x) = \frac{1}{1-x} - \frac{1-x^{ab}}{(1-x^a)(1-x^b)}. \]

1. Prove that \(T(x) \) is a polynomial of degree \(ab - a - b \).
2. Use \(\text{L'Hôpital's Rule} \) to compute \(T(1) \).
3. Compute \(T'(1) \), the derivative at 1.