1. Consider the polynomial \(p(z) = z^3 - 4z^2 + 5z - 2 \) and draw the curves \(U \) and \(T \). Hint: Use Desmos.

2. The set \(\mathbb{Z}[i] = \{ a + bi \mid a, b \in \mathbb{Z} \} \) is known as the Gaussian integers. Let \(z, w \in \mathbb{Z}[i] \) be such. One says that \(w \mid z \) (\(w \) divides \(z \)) if \(\frac{z}{w} \in \mathbb{Z}[i] \).
 - If \(z = a + bi \) is a Gaussian integer, compute \(z \bar{z} \).
 - Show that if \(w \mid z \), then \((w \bar{w}) \mid (z \bar{z}) \).
 - Find all Gaussian integers that divide 1.
 - Decide true or false: \(1 + i \mid 2 \), \(2 + i \mid 5 \), \(1 + i \mid 7 \).

A Gaussian integer is called prime if every factorization is trivial.

3. More Sum of Squares and the Quaternions. Consider the following set of \(2 \times 2 \) complex matrices: \(\mathcal{Q} = \left\{ \begin{pmatrix} \alpha & \beta \\ -\bar{\beta} & \bar{\alpha} \end{pmatrix} \mid \alpha, \beta \in \mathbb{Z}[i] \right\} \) where \(\bar{\alpha} \) is the conjugate of \(\alpha \). An element \(M \in \mathcal{Q} \) is called a (n integral) quaternion. Do the following:
 - Prove that the sum and the product of two elements of \(\mathcal{Q} \) is an element of \(\mathcal{Q} \).
 - Compute \(\det M \) for any quaternion and show that it is never 0 unless \(M \) is zero.
 - Find two quaternions that do not commute (under multiplication of course).
 - Assume that every prime is the sum of four integer squares, prove that every positive integer is the sum of four squares (possibly 0 of course).
 - Find a quaternion \(M \) so that \(\det M = \# \) where \(\# \) is your student id number. Hint: Be greedy.

Bonus: Find a number that cannot be written as a sum of 8 cubes (Waring).