Math 760

Def: A Heegaard splitting of a closed orientable manifold M is a triple (H_1, H_2, f) s.t. H_1 and H_2 are handlebodies, $f: \partial H_1 \to \partial H_2$ is a homeomorphism and $M = H_1 \cup_{f} H_2 / \sim$

where $x \sim y$ if $x \in \partial H_1$ or $y \in \partial H_2$ and $f(x) = y$.

Def: A bridge splitting for (S^3, K) is a triple (T_1, T_2, f) s.t. T_1 and T_2 are trivial tangles, $f: \partial T_1 \to \partial T_2$ is a homeo. of the 2n-punctured spheres s.t. cond $(S^3, K) = T_1 \cup_{f} T_2 / \sim$

Ex.

Let $L^1_0 \to \bigcirc \circ \bigcirc \downarrow f$

\[2\text{-fold branched cover}\]

\[\bigcirc \circ \bigcirc \downarrow f\]

Th. Every closed orientable Heegaard splitting 3-manifold has a Heegaard splitting.

If By Moise, every 3-manifold has a triangulation \mathcal{T}. Let T be a 3-simplex in \mathcal{T}.

Let $H_1 = \eta(T^1)$
Let $(\Sigma^1)^*$ be the dual 1-skeleton for Σ.

\[I \quad \text{Let } H_2 = \eta((\Sigma^1)^*) \]

\[M = H_2 \cup H_2 \]

Hence M has a Heegaard splitting. \qed

Theorem Let K be a knot in S^3. (S^3, K) has a bridge splitting.

Proof Let $h: S^3 \to [-1, 1]$ be the natural height function on S^3.

\[S^3 \cong S^2 \times [-1, 1] / \sim \]

\[\sim: \text{Identify } S^2 \times \{1\} \text{ to a point} \]

\[\} \text{ Identify } S^2 \times \{-1\} \text{ to a point} \]

\[h: S^2 \times [-1, 1] / \sim \to [-1, 1] \]

by $h(x, t) = t$.

By Morse theory we can assume $h|K$ has finitely many isolated critical points.

There is an isotopy of K supported in a n.h. of Σ.

Since after the isotopy all maxima of $h|K$ lie above all minima.

Any level sphere between the lowest max and highest min is a bridge sphere. \qed
Are Bridge Heegaard splittings of
Bridge splittings unique? No.

Stabilization of a Heegaard Surface

This has the effect of adding a handle
to one handle body and drilling out an
unknot boundary parallel arc from the other.

Hence every 3-manifold has \(\infty \)-many
distinct bridge Heegaard Splittings.

Stabilization of a Bridge Splittings

Ex! Justify that stabilizations of
Bridge surfaces lift to stabilizations
of Heegaard Splittings in \(2 \)-fold
branched cover.
What do Heegaard Surfaces and Bridge Surfaces have in common?

They are bicompressible!

Def: A compressing disk for a surface \(F \subset M \) is an embedded disk s.t.
\[\partial D \cap F = \partial D \] and \(\partial D \) is essential in \(F \).

Ex.1

\(T^2 \times \mathbb{R}^3 \)

Def: If \(F \subset M \) has no compressing disks, then \(F \) is bicompressible.

In comp in \(S^3 \) - trefoil

Def: If \(F \subset M \) has a compressing disk to each side, then \(F \) is bicompressible.

- Heegaard Splittings
- Bridge Splittings
How are Heegaard Splittings related to topology and geometry of the ambient 3-manifold?

Def: A Heegaard spl: A bicompressible surface $F \subset M$ is reducible if there exists an essential curve in F that bounds comp disks to both sides.

Thm: Any Heegaard splitting surface for a reducible 3-manifold is reducible.

Pf: Next time.

Def: A bicompressible surface $F \subset M$ is weakly reducible if there exist disjoint essential curves γ_1 and γ_2 s.t. γ_1 bounds a comp disk to one side and γ_2 bounds a comp disk to the other side, and F is not reducible.

Thm (Casson & Gordon)
If M is a closed orientable 3-manifold with a weakly reducible Heegaard surface, then M contains an incompressible surface.