Math 760 Day 8 (2-7)

Uniqueness of prime decompositions

\(M \cong P_1 \# \cdots \# P_k \# \mathbb{R} \times S^2 \)
\(\cong Q_1 \# \cdots \# Q_m \# n(S^1 \times S^2) \)

Let \(S \) be a collection of \(\mathbb{Z} \)-spheres s.t.

\(M \# S \) is \(n \)-punctured \(P_1 \) and punctured \(S^3 \)

\(M - T \) is \(n \)-punctured \(Q_1 \) and punctured \(S^3 \)

If lost time we can rechoose \(S \)

s.t. \(TNS = \emptyset \).

Then \(M - (TNS) \) is the union of

- \(n \)-punctured \(P_i \) and punctured \(S^3 \)
- \(\mathbb{Q} \) and punctured \(S^3 \)

Hence \(k = m \) and \(\exists P_1, \ldots, P_k, Q_1, \ldots, Q_m \)

To show \(l = n \), note

\(M \# N \# (S^1 \times S^2) \cong N \# m(S^1 \times S^2) \)

\(H_1(M) \cong H_1(N) \# \mathbb{Z}^2 \cong H_1(N) \# \mathbb{Z}^n \)

so \(l = n \).
Introduction to 2-fold branched covers.

Def: An **trivial tangle** is an embedding of $0 \subseteq [0,1]$ into \mathbb{R}^3 ambient isotopic to n strands.

Def: A **handlebody** is a compact 3-manifold homeomorphic to the closed regular nbh of a finite graph embedded in \mathbb{R}^3.

Def: A 2-fold branched cover...

Ex1 The genus n handlebody 2-fold branched covers the $n+1$ strand trivial tangle.

Ex1
Def: A Heegaard splitting of a closed 3-manifold \(M \) is a triple \((H_1, H_2, f)\) s.t. \(H_1 \) and \(H_2 \) are handlebodies, \(f \) is a homeomorphism \(f : \partial H_1 \to \partial H_2 \) s.t. \(M = H_1 \cup H_2 \) where \(x \sim y \) if \(x \in \partial H_1 \) and \(y \in \partial H_2 \) and \(f(x) = y \).

Ex: \(L(p,q) \) lens space.

\[L(p,q) \cong D^2 \times S^1 \cup D^2 \times S^1 / \sim \]

Ex:

\[S^3 \cong \begin{array}{c}
\bigcirc \bigcup \bigcirc \\
B^3 \\
B^3
\end{array} \]

Def: A bridge splitting of a knot \(K \) in \(S^3 \) is a triple \((T_1, T_2, f)\) s.t. \(T_1 \) and \(T_2 \) are trivial tangles and \(f \) is an orientation reversing homeomorphism \(f : \partial T_1 \to \partial T_2 \) s.t. \((S^3, K) \cong T_1 \cup T_2 \) where \(x \sim y \) if \(x \in \partial T_1 \) and \(y \in \partial T_2 \) and \(f(x) = y \).

Ex: bridge surface