Preliminaries:

Theorem: Every embedded 2-sphere in \mathbb{R}^3 bounds an embedded 3-ball.

Definition: A compact surface F in a 3-manifold M is 2-sided if there is an embedding $h: F \times I \to M$ such that $h(x, y_2) = x$ for all $x \in F$ and $h(F \times I) \cap \partial M = h(\partial F \times I)$.

Example:

Theorem: If F is a compact, orientable, properly embedded surface in a 3-manifold M, then F is 2-sided.
Def: If M is a connected 3-manifold and S is an embedded sphere s.t. $M - S$ has two components M' and M'', and M' is obtained by filling in M's boundary sphere with a 3-ball, then M is the connected sum $M \# M''$.

Ex:

![Diagram of connected sum operation]

Connect sum operation is:
- Well defined (Unique way up to homeo to glue a S^3 to a S^2 boundary component)
- Commutative
- Has S^3 as identity

Def: A 3-manifold M is prime if $M = P \# Q$ implies $P \cong S^3$ or $Q \cong S^3$.

By Alexander's thm S^3 is prime.

Def: A 3-manifold M is irreducible if every 2-sphere $S \subset M$ bounds a 3-ball in M.

Irreducible \Rightarrow prime.
Prime $\not\Rightarrow$ irreducible.
Theorem: The only orientable prime 3-manifold which is not irreducible is $S^1 \times S^2$.

\textbf{Pf:} If M is prime and S is a 2-sphere s.t. $M - S$ has 2-components then S bounds a ball. Hence, we can assume $|M - S| = 1$ and $M - S$ is path connected.

Let N be the submanifold consisting of a closed regular nbh of S union an arc from S^+ to S^-.

∂N is a separating 2-sphere in M, so ∂N bounds a 3-ball. Since N is not a 3-ball then $M = N \cup B^3 \cong S^2 \times S^1$. \square

\[M = S^2 \times I \cup D_1^2 \times I \cup D_2^2 \times I \quad \text{s.t.} \]
\[\partial D_1^2 \times \mathbb{E}t^3 = \partial D_2^2 \times \mathbb{E}t^3 \]
It remains to show $S^1 \times S^2$ is prime.

Suppose $S^1 \times S^2 \cong V \# W$.

Then $\mathbb{Z} \cong S^1 \times S^2 \cong \pi_1(V) \ast \pi_1(W)$

WLOG V is simply connected

So V lifts to \tilde{V} a homeomorphic copy of \mathbb{R}^3 in the universal cover of $S^1 \times S^2$, $\mathbb{R}^3 - \{0\}$.

$\partial \tilde{V}$ bounds a ball in \mathbb{R}^3 by Alexander's thm.

So \tilde{V} is a ball. Thus $S^1 \times S^2$ is prime.

Prime decomposition theorem

Let M be a compact, connected, orientable 3-manifold. Then there is a decomposition $M = P_1 \# \ldots \# P_n$ with each P_i prime and this decomposition is unique up to insertion or deletion of S^3's.
Existence:

Step 1: Take care of $S^2 \times S^1$ summands.

If M contains non-separating spheres, these give rise to $S^2 \times S^1$ summands, as previously seen. Each $S^2 \times S^1$ summand contributes 2 to $H_1(M)$, so there must be finitely many.

Step 2: We may assume every 2-sphere in M separates.

Step 2: Take care of S^2 boundary components

- Each such component corresponds to a B^3 summand and there are finitely many since M is compact.

Step 3: We may assume every 2-sphere in M separates and M has no 2-sphere boundary components.

To complete the proof of existence, it suffices to show that there is an upper bound on a system of spheres S satisfying

- No component of $M - S$ is a punctured S^3-sphere.
Note: If S satisfies \ast and $S_0 \subset S$ s.t. S_i' and S_i'' are obtained by compressing one of the S_i along a disk D, then the systems resulting from replacing S_i with S_i' or S_i'' has property \ast.

* If B' and B'' are punctured spheres then $B' \cup B'' \cup P$ is a punctured sphere \neq

* If B' is a punctured sphere, suppose B' is not a punctured sphere. If $A \cup B'' \cup P$ is a punctured sphere then A is a punctured sphere \neq.

So, one of the two new systems has property \ast.