MATH 590: KNOT THEORY, HOMEWORK 4

ADDITIVITY OF CROSSING NUMBER AND MANIFOLDS

Thursday, 10/20
Problems (to turn in).
(1) Carefully prove that if K_{1} and K_{2} are alternating knots, then $c\left(K_{1} \# K_{2}\right)=c\left(K_{1}\right)+$ $c\left(K_{2}\right)$. (Hint: Make sure to prove that the connected sum of two reduced diagrams is a reduced diagram.)
(2) Carefully prove that the unit 2-sphere in \mathbb{R}^{3} is homeomorphic to the polyhedral surface that is the union the following eight metric triangles in \mathbb{R}^{3}.
$\triangle(1,0,0)(0,1,0)(0,0,1)$
$\triangle(-1,0,0)(0,1,0)(0,0,1)$
$\triangle(-1,0,0)(0,-1,0)(0,0,1)$
$\triangle(1,0,0)(0,-1,0)(0,0,1)$
$\triangle(1,0,0)(0,1,0)(0,0,-1)$
$\triangle(-1,0,0)(0,1,0)(0,0,-1)$
$\triangle(-1,0,0)(0,-1,0)(0,0,-1)$
$\triangle(1,0,0)(0,-1,0)(0,0,-1)$
(Hint: You may use the following theorem from real analysis: If A is a compact metric subspace of \mathbb{R}^{n}, B is a metric subspace of \mathbb{R}^{m} and $f: A \rightarrow B$ is a continuous bijection, then f is a homeomorphism.)

