MATH 590: KNOT THEORY, HOMEWORK 3

CLASSICAL INTEGER INVARIANTS AND THE KAUFFMAN BRACKET

Due Tuesday, 10/4

Problems (to turn in).
(1) Prove that the Kauffman bracket polynomial is invariant under RIII Reidemeister moves.
(2) Prove that the crossing number of a trefoil knot is 3. (Hint: Prove that any knot diagram with 2 or fewer crossings is a diagram of the unknot)
(3) If K and J have bridge number 2, prove that $K \# J$ has width 14. (Hint: Use Schubert's theorem to deduce the minimal number of maxima and minima for $K \# J$. What are the possible heights of these maxima and minimal?)
(4) Find a formula for the Kauffman bracket of a connected sum (i.e. $<K_{1} \# K_{2}>$) in terms of the Kauffman brackets of the summands (i.e. $<K_{1}>$ and $<K_{2}>$) and carefully prove your formula holds.

