Announcements
- H.W. Due by tomorrow morning

Outline
- Transversality of maps Φ
- Generalizations of the pre image Thm

Recall

Thm If $f: x \to y$ is a smooth map and $y \in Y$ is a regular point, then $f^{-1}(y)$ is a sub manifold.

Goal: Generalize the pre image theorem to give a sufficient condition for $f^{-1}(Z)$ where $Z \subseteq Y$ is a sub manifold, to be a manifold.

Def Let $f: x \to y$ be a smooth map and let $Z \subseteq Y$ be a sub manifold. We say f is transversal to Z, denoted $f \pitchfork Z$ if for every $x \in f^{-1}(Z)$

$$Im(\text{d}f_x) + T_y(Z) = T_y(Y)$$
(i.e. every vector in $T_y(Y)$ can be written as a linear combination of a vector in $\text{Im}(df_x)$ and \mathbf{z}, a vector in $T_y(Z)$).

Thm If $f: X \to Y$ is a smooth map and \mathbf{z} is transversal to $Z \subseteq Y$, then $f^{-1}(Z)$ is a submanifold of X. Moreover, the codimension of $f^{-1}(Z)$ in X is equal to the codimension of Z in Y.

Def If Z is a submanifold of Y, the codimension of Z in Y is $\dim(Y) - \dim(Z)$.

Pf Let $x \in X$. First, $f^{-1}(Z) \subseteq X \subseteq \mathbb{R}^m$.

Let $x \in f^{-1}(Z)$. Let $y = f(x) \in Z$.

From H.W., if Z is an l-dim.λ submanifold of the k-dim.λ manifold Y, then there exists a local coordinate system $\{x_1, \ldots, x_k\}$ defined in a nbh U of y in Y s.t. $Z \cap U = \{v \in U | x_{l+1}(v) = x_{l+2}(v) = \ldots = x_k(v) = 0\}$

Recall: $x_i: U \to \mathbb{R}$ is a smooth function.
The coordinate systems are linearly independent on every point in their domain. Hence \(g : U \rightarrow \mathbb{R}^d \) given by \(g(v) = (x_1(v), \ldots, x_d(v)) \) is a submersion on its domain and \(g^{-1}(0) = Z \cap U \).

Moreover \((g \circ f)^{-1}(0) = f^{-1}(Z) \cap V \) for some suitable nbhd \(V \) of \(x \) in \(X \).

We want to show \(0 \) is a regular value of \(g \circ f \).

Examine \(d(g \circ f)_x = dg_y \circ df_x \)

\(d(g \circ f)_x : T_x(X) \rightarrow \mathbb{R}^d \)

\(d(g \circ f)_x \) is onto iff \(dg_y \) carries \(\text{Im}(df_x) \) onto \(\mathbb{R}^d \).

However \(dg_y \) is onto with kernel \(T_y(Z) \).

Hence, by linear algebra, \(d(g \circ f)_x \) is onto iff \(\text{Im}(df_x) \) together with \(T_y(Z) \) span all of \(T_y(Y) \).

However, by def of transversal, this holds for all \(x \in f^{-1}(Z) \).
Thus, \(d(g \circ f)_x \) is onto for all \(x \in f^{-1}(z) \cap V \).

So, \((g \circ f)^{-1}(\emptyset) \) is a submanifold of \(V \).

of dimension \(\dim(X) - 1 = \dim(X) - (\dim(Y) - \dim(z)) \).

It easily follows that \(f^{-1}(z) \) is a submanifold of \(X \) of dimension co-dimension the same as the co-dimension of \(z \) in \(Y \). \(\square \)