555 Lec 3

Announcements
- Class cancelled on Thursday
- HW up on web, due Tuesday.

Review

Def: If $U \subset \mathbb{R}^n$ is open, $f: U \to \mathbb{R}^m$ is smooth if f has continuous partial derivatives of all orders. (If U is not open, f is smooth if it can be extended to an open subset of \mathbb{R}^n.)

Def: Given $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$, $f: X \to Y$ is a diffeomorphism if

1. f is smooth
2. f is a bijection
3. f^{-1} is smooth.
Def. Let $X \subset \mathbb{R}^n$. X is a \textbf{(smooth) k-manifold} if for every $x \in X$ there is an open nbh, U_x, of x in X and a diffeomorphism $f: U_x \rightarrow V$ where V is an open subset of \mathbb{R}^k.

Thm. If $X \subset \mathbb{R}^n$ is a smooth k-manifold, then X with the subspace topology is a \textbf{(topological) manifold}.

Pf. Recall, we are considering \mathbb{R}^n with the standard topology and $X \subset \mathbb{R}^n$ with the subspace topology \mathcal{T}_X. From 550, \mathbb{R}^n is both 2nd-countable and Hausdorff. From last time, this implies X is both 2nd-countable and Hausdorff.

To show X is locally Euclidean let $x \in X$. By def. of smooth k-manifold $\exists U_x \in X$ and open set containing x s.t. U_x is diffeomorphic to V an open subset of \mathbb{R}^k. However, diffeomorphic implies homeomorphic, so U_x is homeomorphic to V. Hence, X is locally Euclidean. \square
Coordinates

Let \(X \subset \mathbb{R}^n \) be a \(k \)-smooth manifold.

\(\forall x \in X \ \exists \ V_x \subset X \ \text{s.t.} \ V_x \text{ is an nbhd of} \ x \ \text{in} \ X \ \text{and there is a diffeomorphism from} \ f : U_x \to V_x \ \text{for some open set} \ U_x \ \text{in} \ \mathbb{R}^k. \)

\(f \) is a parametrization of \(V_x \)

\(f^{-1} \) is a coordinate system on \(V_x \)

Note \(f^{-1} : V_x \to U_x \subset \mathbb{R}^k \)

So, \(f^{-1} = \langle x_1, x_2, \ldots, x_k \rangle \) where \(x_i : V_x \to \mathbb{R} \)

Each \(x_i \) is a coordinate function.

We can implicitly identify \(V_x \) with \(U_x \) by identifying \(v \in V_x \) with \(\langle x_1(v), x_2(v), \ldots, x_k(v) \rangle \).
Notation | If X is a k-dim smooth manifold, we say $\dim(X) = k$.

Thm | If X and Y are smooth manifolds, then $X \times Y$ is a smooth manifold and $\dim(X \times Y) = \dim(X) + \dim(Y)$

Pf | Suppose X is a k-dim manifold in \mathbb{R}^N and Y is a l-dim manifold in \mathbb{R}^m. $X \times Y$ is a subset of $\mathbb{R}^{N+m} = \mathbb{R}$.

Let $(x, y) \in X \times Y$.

Since $x \in X$ exists a local parametrization $\phi : \mathcal{W} \rightarrow X$ around x (where $\mathcal{W} \subset \mathbb{R}^k$ is open) and $y \in Y$ exists a local parametrization $\psi : \mathcal{U} \rightarrow Y$ around y (where $\mathcal{U} \subset \mathbb{R}^l$ is open).

Define $\phi \times \psi : \mathcal{W} \times \mathcal{U} \rightarrow X \times Y$ s.t.

$\phi \times \psi(w, u) = (\phi(w), \psi(u))$

Note $\mathcal{W} \times \mathcal{U}$ is open in \mathbb{R}^{k+l}.

Since the product of smooth functions is smooth, $\phi \times \psi$ is smooth.

Since ϕ and ψ are invertible, then $\phi \times \psi$ is invertible with inverse $\phi^{-1} \times \psi^{-1}(x, y) = (\phi^{-1}(x), \psi^{-1}(y))$.

Showing $\phi^{-1} \times \psi^{-1}$ is smooth is a bit more subtle, but still true.

Hence $X \times Y$ is a smooth manifold in \mathbb{R}^{N+m} and $\dim(X \times Y) = \dim(X) + \dim(Y)$.
Def: Suppose X and \mathcal{Z} are smooth manifolds in \mathbb{R}^n s.t. $\mathcal{Z} \subset X$, then we say \mathcal{Z} is a submanifold of X.

Note: Any open subset of a manifold is a manifold.

Derivatives & Tangents

Given a smooth map $f: \mathbb{R}^n \rightarrow \mathbb{R}^m$, denote the derivative of f at x by df_x.

Chain rule

$$d(gof)_x = dg_{f(x)} \circ df_x$$

In other words, from the commutative diagram

$$
\begin{array}{ccc}
U & \xrightarrow{f} & V \\
\downarrow & & \downarrow \\
\mathbb{R}^e & \xrightarrow{g} & \mathbb{R}^m \\
\end{array}
$$

we get

$$
\begin{array}{ccc}
\mathbb{R}^n & \xrightarrow{df_x} & \mathbb{R}^m \\
\downarrow & & \downarrow \\
\mathbb{R}^e & \xrightarrow{dg_{f(x)}} & \mathbb{R}^x \\
\end{array}
$$

$$d(gof)_x$$
Let X be a smooth manifold in \mathbb{R}^N and let $\phi: U \rightarrow X$ be a local parametrization at the point x. For convenience, assume $\phi(0) = x$.

Def. The tangent space of X at x is the image of the map $d\phi_0: \mathbb{R}^k \rightarrow \mathbb{R}^N$, and we denote it by $T_x(X)$.

Note. The best k-dim flat approximation to X at x is $x + T_x(X) \subset \mathbb{R}^N$.

Pic.

Note $v \in T_x(X)$ is called a tangent vector.

Question: Is tangent vector space well-defined?