An important example from Calc. 3!

Let \(f: [0, 1] \rightarrow \mathbb{R}^3 \) a parameterized curve. If \(f \) is differentiable \(f(t) = \langle f_1(t), f_2(t), f_3(t) \rangle \) (where \(f_i: [0, 1] \rightarrow \mathbb{R} \) and \(f'(t) = \langle \frac{df_1}{dt}(t), \frac{df_2}{dt}(t), \frac{df_3}{dt}(t) \rangle \)

The affine function best approximating \(f(t) \) at \(a \) is \(t \cdot f'(a) + f(a) \).

- We want a notion of derivative for a function \(f: \mathbb{R}^n \rightarrow \mathbb{R}^m \).
Partial Derivatives

Given \(f: \mathbb{R}^n \rightarrow \mathbb{R} \) defined by \(f(x_1, \ldots, x_n) \)

\[
\frac{df}{dx_i} (a_1, \ldots, a_n) = \lim_{h \to 0} \frac{f(a_1, \ldots, a_i+h, \ldots, a_n) - f(a_1, \ldots, a_n)}{h}
\]

the partial derivative of \(f \) at \((a_1, \ldots, a_n)\) in the direction of \(x_i \).

Def. A function \(f: \mathbb{R}^n \rightarrow \mathbb{R}^m \) is differentiable at \(\bar{x}_0 \) if there exists a linear map \(J: \mathbb{R}^n \rightarrow \mathbb{R}^m \) such that

\[
\lim_{h \to 0} \frac{\|f(\bar{x}_0 + h) - J(h)\|_{\mathbb{R}^n}}{\|h\|_{\mathbb{R}^n}} = 0
\]

Additionally, if \(f: \mathbb{R}^n \rightarrow \mathbb{R}^m \) is differentiable at \(\bar{x}_0 \) and \(f(x_1, \ldots, x_n) = (f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)) \),

then \(J \) is given by the Jacobian Matrix

\[
J = \begin{bmatrix}
\frac{df_1}{dx_1} & \cdots & \frac{df_1}{dx_n} \\
\vdots & \ddots & \vdots \\
\frac{df_m}{dx_1} & \cdots & \frac{df_m}{dx_n}
\end{bmatrix}
\]
Example: $f : \mathbb{R}^2 \to \mathbb{R}^3$

$$f(x, y) = \langle x, y, 1-x^2-y^2 \rangle$$

$$f_1(x, y) = x$$

$$f_2(x, y) = y$$

$$f_3(x, y) = 1-x^2-y^2$$

$$J = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2x & -2y & 1
\end{bmatrix}$$

$$\text{Image } (J_{(0,1)}) = \text{span}(\langle 1,0,0 \rangle, \langle 0,1,-2 \rangle)$$

So, the tangent plane approximation of $f(\mathbb{R}^2)$ at $\langle 0,1 \rangle$ is the plane spanned by $\langle 1,0,0 \rangle$ and $\langle 0,1,-2 \rangle$ and translated by $f(\langle 0,1 \rangle) = \langle 0,1 \rangle$.
Important: Given \(f: \mathbb{R}^n \to \mathbb{R}^m \), the existence of all partial derivatives \(\frac{df}{dx_i} \) at a point \(\bar{x}_0 \) does not guarantee that \(f \) is differentiable.

Example:
\[
 f(x, y) = \begin{cases}
 x & \text{if } y \neq x^2 \\
 0 & \text{if } y = x^2
 \end{cases}
\]

\[
 \frac{df}{dx} (0, 0) = 0 \quad \frac{df}{dy} (0, 0) = 0
\]

But, \(f \) is not differentiable at \((0,0)\).

Smooth Manifolds:

Def: Let \(U \) be an open set in \(\mathbb{R}^n \).

\(f: U \to \mathbb{R}^m \) is **smooth** if \(f \) has continuous partial derivatives of all orders.

(i.e. \(\frac{\partial^2 f_z}{\partial x_3 \partial x_4} \) is continuous, \(\frac{\partial^2 f_z}{\partial x_1^2} \) is continuous)

First, we want to define "smooth" for maps whose domain are not open sets.

Def: \(f: X \to \mathbb{R}^m \) is **smooth** if \(\forall x \in X \) there is an open nbhd \(U \subset \mathbb{R}^n \) and a smooth map \(F: U \to \mathbb{R}^n \) s.t.

\[
 F|_{x \in U} = f.
\]
Definition: Given \(X \subset \mathbb{R}^n \) and \(Y \subset \mathbb{R}^m \), a smooth map \(f: X \rightarrow Y \) is a diffeomorphism if it is a bijection and \(f^{-1} \) is smooth.

If such a map exists, we say \(X \) and \(Y \) are diffeomorphic.

Important! Diffeomorphic will be the notion of "sameness" for this class.

Let's develop our intuition for diffeomorphic with some examples:

- \(S^1 \) in \(\mathbb{R}^2 \): not diffeo.
- \(\text{not diffeo} \) in \(\mathbb{R}^3 \): diffeo.
- \(\text{not diffeo} \) in \(\mathbb{R}^2 \): not diffeo.
- \(\text{not diffeo} \) in \(\mathbb{R}^2 \): not diffeo.
- \(\text{not diffeo} \) in \(\mathbb{R}^3 \): diffeo.
- \(\text{not diffeo} \) in \(\mathbb{R}^3 \): diffeo.
- \(\text{not diffeo} \) in \(\mathbb{R}^3 \): diffeo.
- \(\text{not diffeo} \) in \(\mathbb{R}^3 \): diffeo.

Note: If \(X \) and \(Y \) are diffeomorphic, then \(X \) and \(Y \) are homeomorphic.
Def. Let $X \subset \mathbb{R}^N$. X is a (smooth) k-manifold if for every $x \in X$ there is an open nbhd, U_x, of x in X and a diffeomorphism $f : U_x \rightarrow V$ where V is an open subset of \mathbb{R}^k.

Thm. If $X \subset \mathbb{R}^N$ is a smooth k-manifold, then X with the subspace topology is a (topological) manifold.

Pf. Recall, we are considering \mathbb{R}^N with the standard topology and $X \subset \mathbb{R}^N$ with the subspace topology τ_x. From 550, \mathbb{R}^N is both 2nd-countable and Hausdorff. From last time, this implies X is both 2nd-countable and Hausdorff.

To show X is locally Euclidean let $x \in X$. By def. of smooth k-manifold $\exists U_x \subset X$ and open set containing x s.t. U_x is diffeomorphic to V, an open subset of \mathbb{R}^k. However, diffeomorphic implies homeomorphic, so U_x is homeomorphic to V. Hence, X is locally Euclidean. \square