Differential Topology Lec. 1

Outline

- Syllabus
- Quick Review of 550
- Topological Manifolds

First Big Goal of Course: Define calculus on Manifolds

Review of 550

Def: A topology on a set X is a collection of subsets τ of X satisfying

1) Any arbitrary union of elements of τ is again an element of τ
2) Any finite intersection of elements of τ is an element of τ
3) $\emptyset, X \in \tau$

Examples

- Indiscrete \rightarrow 1) $\{\emptyset, X\}$ is a topology for any set X
- Discrete \rightarrow 2) $\mathcal{P}(X)$ is a topology

Def: Given a top. space (X, τ), $U \subseteq X$ is open if $U \in \tau$. Additionally $U \subseteq X$ is closed if $X - U$ is open.

Note: Clopen sets exist!
Def: A function \(f : (X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y) \) is **continuous** if for every \(U \subseteq \mathcal{T}_Y \),
\[f^{-1}(U) \subseteq \mathcal{T}_X. \]

Def: A function \(f : (X, \mathcal{T}_X) \rightarrow (Y, \mathcal{T}_Y) \) is a **homeomorphism** if all of the following hold:
1) \(f \) is continuous
2) \(f \) is a bijection
3) \(f^{-1} \) is continuous.

Example that we need 3):
Let \(f : (\mathbb{R}, \mathcal{T}_{\text{std}}) \rightarrow (\mathbb{R}, \mathcal{T}_{\text{discrete}}) \)

s.t. \(f(x) = x \).

Def: Given a top. space \((X, \mathcal{T}_X)\), \(\mathcal{B} \subseteq \mathcal{T}_X \) is a **basis** if every element of \(\mathcal{T}_X \) is the union of elements in \(\mathcal{B} \).

Ex: \(\mathbb{R} \) with the standard topology has basis \(\mathcal{B} = \{ (a, b) | a < b \} \).

Def: Given a top. space \((X, \mathcal{T})\) and \(Y \subseteq X \),
\[\forall a, b \in A \exists c \in \mathbb{C} \text{ is an open cover for } Y \text{ if } Y \subseteq \bigcup_{a \in A} U_a. \]

Def \((X, \mathcal{T})\) is **compact** if every open cover of \(X\) has a finite subcover.

Examples

\(S^1\) **compact**

\((\mathbb{R}, \text{std})\) **not compact**

\((\mathbb{R}, \text{discrete})\) **not compact**

\((\mathbb{R}, \text{indiscr})\) **compact**.

Def \((X, \mathcal{T})\) is **Lindelöf** if every open cover has a countable sub cover.

Ex \((\mathbb{R}, \text{std})\) is **Lindelöf**.

Def \((X, \mathcal{T})\) is **2nd-countable** if \((X, \mathcal{T})\) has a countable basis.

Thm If \((X, \mathcal{T})\) is 2nd-countable, then \((X, \mathcal{T})\) is Lindelöf.

Ex \(B = \{ (a, b) \mid a < b \text{ and } a, b \in \mathbb{Q} \} \) is a basis for \((\mathbb{R}, \text{std})\).

Def \((X, \mathcal{T})\) is **Hausdorff** if \(\forall x, y \in X \text{ s.t. } x \neq y, \text{ there exist } U, V \in \mathcal{T} \text{ s.t. } x \in U, y \in V \text{ and } U \cap V = \emptyset.\)
Let \((X, \tau_x)\) be a top. space and \(Y \subset X\). The subspace topology on \(Y\) is
\(\tau_Y = \{Y \cap U | U \in \tau_x\}\).

Let \((Y, \tau_Y)\) be a subspace of \((X, \tau_x)\).

1. If \((X, \tau_x)\) is 2nd-countable, then \((Y, \tau_Y)\) is second 2nd-countable, and \(Y\) is closed.
2. If \((X, \tau_x)\) is Lindelöf, then \((Y, \tau_Y)\) is Lindelöf.
3. If \((X, \tau_x)\) is compact and \(Y\) is closed, then \((Y, \tau_Y)\) is compact.
4. If \((X, \tau_x)\) is Hausdorff, \((Y, \tau_Y)\) is Hausdorff.

Example: Technically, we put a topology on \(S^1\) by viewing it as a subset of \(\mathbb{R}^2\) with the standard topology.

\[U \text{ open in } \mathbb{R}^2 \]
\[U \cap S^1 \text{ open in } S^1 = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \}. \]

Topological Manifolds

Big idea: Spaces that locally look like Euclidean space.
Def. A top. space \((X, \mathcal{E})\) is **locally Euclidean** if there exists \(n \in \mathbb{Z}^+\) s.t. for every \(x \in X\) there exists \(U \in \mathcal{E}\) s.t. \(x \in U\) and \(U\) is homeomorphic to \((\mathbb{R}^n, \text{std})\).

Ex. \(S^1\) is locally Euclidean with \(n = 1\).

![Diagram](image)

Def. A top. space \((X, \mathcal{E})\) is a **\(k\)-manifold** if \((X, \mathcal{E})\) is hausdorff, 2nd-countable and locally Euclidean with \(n = k\).

Examples
- Connected 1-manifolds: \(S^1, \mathbb{R}\)

 ![Diagram](image)

 This is all of them!

- Connected 2-manifolds: \(S^2, S^1 \times S^1 = \text{torus}, \ldots\)

 ![Diagrams](image)

 klein bottle, ...
 These are classified!
Connected 3-manifolds: S^3, $S^1 \times S^1 \times S^1$, $S^2 \times S^1$, $\bigcirc \bigcirc \bigcirc \times S^1$, ... and many many more.

Very much not classified, you win a Fields medal for getting close.