Announcements
- H.W. Due Thursday (Friday Morning)
- Want to move exam? Current March 10th, Thurs.
Recall from last time

Def: Given a smooth map $f: X \to Y$, $y \in Y$ is a critical value of f if y is not a regular value. Moreover, $x \in X$ is a critical point if df_x is not onto and is a regular point if df_x is onto.

Thm: (Sard's Theorem) If $f: X \to Y$ is a smooth map, then the set of critical values of f have measure 0 in Y.

(Important! It is not true that the set of critical points have measure 0 in X)

Ex: $f: \mathbb{R}^2 \to \mathbb{R}$ via $f(x, y) = x^2 - y^2$.

Every non-zero value of \mathbb{R} is vacuously a regular value of f. 0 is a critical value. All points in \mathbb{R}^2 are critical points.
We want to study the local behavior of smooth maps $f: X \to \mathbb{R}$.

First consider $f: \mathbb{R}^k \to \mathbb{R}$.

Suppose $x \in \mathbb{R}^k$ is a critical point (i.e. $df_x = 0$).

Define the Hessian matrix at x to be:

$$H = \begin{bmatrix}
\frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_k} \\
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_k} \\
\vdots & \ddots & \vdots \\
\frac{\partial^2 f}{\partial x_k \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_k \partial x_k}
\end{bmatrix}$$

If H is non-singular at x, we say x is a non-degenerate critical point.

Lemma: If $x \in \mathbb{R}^k$ is a non-degenerate critical point of a smooth map $f: \mathbb{R}^k \to \mathbb{R}$, then there exists an open nbh of x in \mathbb{R}^k s.t. f has a unique critical point at x.
PF Define \(g: \mathbb{R}^k \to \mathbb{R}^k \) via
\[
g(x) = \left(\frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_k}(x) \right)
\]
Since \(df_x = g(x) = \left[\frac{\partial f}{\partial x_1}(x), \ldots, \frac{\partial f}{\partial x_k}(x) \right] \)
then \(df_x = 0 \) iff \(g(x) = (0, \ldots, 0) \).
\[
dg_x = \begin{bmatrix}
\vdots \\
1
\end{bmatrix} = H
\]
Since \(x \) is a non-degenerate critical point, then \(dg_x \) is a vector space isomorphism.
By the inverse function theorem, since \(dg_x \) is a vector space isomorphism, then \(g \) is a local diffeomorphism at \(x \).
Hence, there exists an open nbhd \(U \) of \(x \) in \(\mathbb{R}^k \) s.t.
\[
g\big|_U (y) = 0 \Rightarrow y = x.
\]
Equivalently, \(f|_U \) has a unique critical point at \(x \). \(\square \)

Thm (Morse Lemma) Suppose \(a \in \mathbb{R}^k \) is a non-degenerate critical point of \(f: \mathbb{R}^k \to \mathbb{R} \) and let
\[
H = (h_{ij}) \text{ be the Hessian of } f \text{ at } a.
\]
Then there exists a local coordinate system around \(a \) s.t.
\[
f = f(a) + \sum h_{ij} x_i x_j \text{ near } a.
\]
Moreover, since H is a real, symmetric, invertible $k \times k$ matrix, H will have p positive eigenvalues and n negative eigenvalues so that $p + n = k$. Real symmetric matrices are diagonalizable.

From linear algebra, there exists yet another coordinate system y_1, \ldots, y_k so that

$$f = f(x) + \sum_{i=1}^{p} y_i^2 - \sum_{i=p+1}^{n} y_i^2$$

Let’s investigate the Morse lemma for functions $f : \mathbb{R}^2 \rightarrow \mathbb{R}$.

Suppose $f(0,0) = 0$

Then

$$f((x, y)) = f(0,0) + \sum_{i=p} \frac{\partial^2 f}{\partial x_i^2} x^2 + \frac{\partial^2 f}{\partial y^2} y^2$$

$$= 0 + x^2 + y^2 \quad \text{min}$$

$$+ x^2 - y^2 \quad \text{saddle}$$

or

$$-x^2 - y^2 \quad \text{max}$$

Ex1

\[\text{Diagram of a doughnut} \]
non-degenerate critical points for smooth maps

\[f : X \to \mathbb{R} \]

\[x \xrightarrow{f} \mathbb{R} \]

\[\phi(0) = x \xrightarrow{\phi} \mathbb{R} \]

\[\phi_{(0)} = x \xrightarrow{\phi} \mathbb{R} \]

\[x \text{ is a critical point of } f \text{ if } f \circ \phi = 0 \]

\[x \text{ is a critical point of } f \text{ if } f \circ \phi = 0 \]

Say \(x \) is a non-degenerate critical point of \(f : X \to \mathbb{R} \) if

\[x \text{ is a non-degenerate critical point of } f \circ \phi. \]

Problem: Suppose \(\gamma : V \to X \) is another parameterization about \(x \in X \) s.t. \(\gamma(0) = x \).

After restricting the domain & range of \(\phi \) and \(\gamma \) we can assume \(\phi \circ \gamma \) and \(\gamma \circ \phi \) are diffeomorphisms.

Since \(f \circ \gamma = f \circ \phi \circ (\phi^{-1} \circ \gamma) \), then we must show...

Lemma: Suppose \(f : \mathbb{R}^k \to \mathbb{R} \) has a non-degenerate critical point at \(0 \) and let \(g : \mathbb{R}^k \to \mathbb{R}^k \) be a diffeomorphism with \(g(0) = 0 \). Then \(f \circ g \) also has a non-degenerate critical value at \(0 \).

Pf: Terrible