Topology - Homework 1

(1) Munkres §51 #1

Given topological spaces $X, Y,$ and $Z,$ suppose $h, h' : X \to Y$ are homotopic, witnessed by the homotopy

$$ H : X \times I \to Y $$

(where $H(s, 0) = h(s)$), and $k, k' : Y \to Z$ are homotopic, witnessed by

$$ K : Y \times I \to Z $$

(where $K(s, 0) = k(s)$). Let $h_t : X \to Y$ be defined by $h_t(x) = H(x, t),$ and define the map $G : X \times I \to Z$ by

$$ G(x, t) = K(h_t(x), t). $$

We verify that for any $x \in X,$

$$ G(x, 0) = K(h_0(x), 0) = K(h(x), 0) = (k \circ h)(x), $$

and

$$ G(x, 1) = K(h_1(x), 1) = K(h'(x), 1) = (k' \circ h')(x). $$

Further, if we set $F(x, t) = (H(x, t), \pi_2(x, t)),$ then F is a continuous map by Theorem 19.6. Thus, $G = K \circ F$ is continuous. Thus G is a homotopy witnessing that $k \circ h$ and $k' \circ h'$ are homotopic.

(2) Munkres §51 #3

(a) Let $H : \mathbb{R} \times I \to \mathbb{R}$ by

$$ H(x, t) = (1 - t)x. $$

If $f(t) = 1 - t,$ $g(x, t) = (\pi_1(x, t), f(\pi_2(x, t)))$, and h is multiplication, then f, g, h are continuous, and $H = h \circ g$ is continuous. Further, for all $x \in X,$ we have $H(x, 0) = x = i_X(x),$ and $H(x, 1) = 0.$ Thus H witnesses that i_X is homotopic to the constant map with image $\{0\}.$ H is therefore null-homotopic and \mathbb{R} is contractible.
Now let $H : I \times I \to \mathbb{R}$ by

$$H(x,t) = (1-t)x.$$

We observe that for all $x \in I$, $H(x,0) = x = i(x)$ and $H(x,1) = 0$. Furthermore H is continuous by an argument analogous to the one above. Thus i is homotopic to a constant map and I is contractible.

(b) Suppose X is contractible. Let $H : X \times I \to X$ witness this, with $H(x,0) = \text{Id}(x)$, for all $x \in X$. Let a and b be two points in X. Let

$$G(t) = \begin{cases}
H(b, 2t), & \text{if } t \in [0, \frac{1}{2}] \\
H(a, 2 - 2t), & \text{if } t \in [\frac{1}{2}, 1]
\end{cases}$$

Note that $H(b, 2t)$ is continuous, its domain of $[0, \frac{1}{2}]$ is closed, $H(a, 2 - 2t)$ is continuous, while $[\frac{1}{2}, 1]$ is also closed, and $H(b, 2t)$ agrees with $H(a, 2 - 2t)$ at $t = \frac{1}{2}$, which is the only element of $[0, \frac{1}{2}) \cap [\frac{1}{2}, 1]$. By the pasting lemma, G is a continuous function from $[0, 1]$ to X. Further, $G(0) = H(b, 0) = b$, while $G(1) = H(a, 0) = a$, so that G is a path from b to a. Since a, b were arbitrary in X, X is path connected.

(3) Let X be a topological space and let P be the set of all paths in X. Show that the relation given by “$f \simeq g$ if and only if f is path-homotopic to g” is an equivalence relation on P.

Reflexive: Let $f : I \to X$ be a path from a to b. Define $F : I \times I \to X$ by $F(s,t) = f(s)$. Then F is continuous since f is by assumption, and also $F(s,t) = f(s)$ for $t = 0, 1$ (all t), while $F(0, t) = f(0) = a$ and $F(1, t) = f(1) = b$. So F is a path homotopy between f and f.

Symmetric: Letting f be as above, let g be another path from a to b, and suppose there is a path homotopy F between f and g such that $F(s, 0) = f(s)$ and $F(s, 1) = g(s)$. Let $G : X \times I \to X$ be the map defined by $G(s, t) = F(s, 1 - t)$. G is continuous since F is and by arguments similar to those in the previous problems, and we have $G(s, 0) = F(s, 1) = g(s), G(s, 1) = F(s, 0) = f(s), G(0, t) = F(0, 1 - t) = a$, and finally, $G(1, t) = F(1, 1 - t) = b$. Thus, G is a path homotopy from g to f and \simeq is symmetric.

Transitive: Let f, g, and F be as above ("Symmetric" part), and let h be another path from a to b, with $g \simeq h$, witnessed by H (i.e. $H(s, 0) = g(s), H(s, 1) = h(s)$). Define K as follows:

$$K(s,t) = \begin{cases}
F(s, 2t), & \text{if } t \in [0, \frac{1}{2}] \\
H(s, 2t - 1), & \text{if } t \in [\frac{1}{2}, 1]
\end{cases}$$

K is well defined at $t = \frac{1}{2}$ (equal to $g(s)$ there) and the hypotheses of the pasting lemma are satisfied so that K is a continuous function. Further, $K(s, 0) = ...$
$F(s, 0) = f(s)$, while $K(s, 1) = H(s, 1) = h(s)$. Also, for all $t \in [0, \frac{1}{2}]$, $K(0, t) = F(0, 2t) = a$, and $K(1, t) = F(1, 2t) = b$; and for all $t \in [\frac{1}{2}, 1]$, $K(0, t) = H(0, 2t - 1) = a$, $K(1, t) = H(1, 2t - 1) = b$, so that for all $t \in I$, $K(0, t) = a$ and $K(1, t) = b$. It follows that K is a path-homotopy between f and h so that \simeq is transitive and, in conclusion, an equivalence relation.