Recall: $Y \subseteq X$ is closed iff $X - Y$ is open.

Key facts about closed sets

Property: Let X be a topological space

1. X and \emptyset are closed sets
2. Arbitrary intersections of closed sets are closed.
3. Finite intersections of closed sets are closed.

Proof:

1. \emptyset is open and $X = X - \emptyset$.
2. X is open and $\emptyset = X - X$.
3. Suppose $\{A_\alpha\}_{\alpha \in \mathcal{J}}$ is a collection of closed sets.

 Examine $X - \left(\bigcap_{\alpha \in \mathcal{J}} A_\alpha \right) = \bigcup_{\alpha \in \mathcal{J}} (X - A_\alpha)$, by de Morgan's Law.

 Since A_α is closed, $X - A_\alpha$ is open for each $\alpha \in \mathcal{J}$.

 Since $X - A_\alpha$ is open for each $\alpha \in \mathcal{J}$, then $\bigcup_{\alpha \in \mathcal{J}} (X - A_\alpha)$ is open.

 Since $\bigcup_{\alpha \in \mathcal{J}} (X - A_\alpha)$ is open, then $\bigcap_{\alpha \in \mathcal{J}} A_\alpha$ is closed. \(\square\)

2. Similar to 1).
Q: How do closed subsets relate to the subspace topology?

Prop. Let \(A \subseteq Y \subseteq X \) where \(X \) is a top. space. \(A \) is a closed set in \(Y \) with the subspace topology iff \(A = Y \cap C \) where \(C \) is closed in \(X \).

Pf. \(\Rightarrow \)

Suppose \(A \) is closed in \(Y \).

Thus, \(Y - A \) is open in \(Y \).

By def. of subspace top., \(Y - A = Y \cap U \) where \(U \) is open in \(X \).

Hence, \(X - U \) is closed.

Claim: \(A = Y \cap (X - U) \)

Exercise

\(\Leftarrow \)

Suppose \(C \) is closed in \(X \) and \(A = Y \cap C \).

Thus, \(X - C \) is open in \(X \).

By def. of subspace top, \(Y \cap (X - C) \) is open in \(Y \). Hence, \(Y - (Y \cap (X - C)) \) is closed in \(Y \).

Claim: \(A = Y - (Y \cap (X - C)) \)

Exercise
Closure

Def: Given \(A \subseteq X \), the closure of \(A \), denoted \(\overline{A} \), is the intersection of all closed sets that contain \(A \).

Facts:
- \(\overline{A} \) is closed
- \(A \subseteq \overline{A} \)
- \(A = \overline{A} \) iff \(A \) is closed (exercise)
- \(\overline{A} \) is the "smallest" closed set containing \(A \)
- \(\overline{X} = X \), \(\overline{\emptyset} = \emptyset \).

The following is a useful alternative characterization.

Prop: Let \(A \subseteq X \). \(x \in \overline{A} \) iff every open set \(U \) that contains \(x \) intersects \(A \) non-trivially.

Pic:

Ex: \(a \) \in \(\mathbb{R} \), \(a \in (a, b) \)

PF: (Instead of "\(P \Leftrightarrow Q \)", we will show "not \(P \Leftrightarrow \) not \(Q \).")

Show \(x \notin \overline{A} \) iff there exists \(U \subseteq X \) open s.t. \(U \cap A = \emptyset \).
\[\Rightarrow \] If \(x \notin \overline{A} \), then \(x \in X - \overline{A} \). Since \(\overline{A} \) is closed, \(X - \overline{A} \) is open. Thus \(X - \overline{A} \) is an open set that contains \(x \) and is disjoint from \(A \).

\[\Leftarrow \] Suppose there exists an open set \(U \subset X \) s.t. \(x \in U \) and \(U \cap A = \emptyset \). Since \(U \) is open \(X - U \) is closed. Since \(\overline{A} \) is the intersection of all closed sets containing \(A \), and \(x \notin X - U \), then \(x \notin \overline{A} \). \(\square \)

Useful Prop | If \((X, \mathcal{B})\) has basis \(\mathcal{B} \), then \(x \in \overline{A} \) iff every basis element containing \(x \) intersects \(A \).

Examples | Let \(IR_s \) be \(IR \) with the standard topology.

- In \(IR_s \), \(A = \{ \frac{1}{n} | n \in \mathbb{Z}^+ \} \), \(\overline{A} = A \cup \{0\} \)
- In \(IR_s \), \(\emptyset = \emptyset \).
- In \(IR_s \), \(A = (a, b) \), \(\overline{A} = [a, b] \)

Note: There is something special about points in \(\overline{A} - A \).

Def | Let \(X \) be a top. space and \(A \subset X \). A point \(x \in X \) is a limit point of \(A \) if every open set \(U \) that contains \(x \) intersects \(A - \{x \} \) non-trivially. (Equivalently, \(x \) is a limit point of \(A \) if \(x \in \overline{A} - \{x \} \).)
Examples
- In \mathbb{R}_s, the limit points of $[0,1]$ are all points in $[0,1]$.
- In \mathbb{R}_s, the limit points of $\left\{ \frac{1}{n} \mid n \in \mathbb{Z}^+ \right\}$ is just 0.
- In \mathbb{R}_s, the limit points of $\{0\}$ is \emptyset.

Let A' denote the set of limit points of a set A.

Theorem

$\overline{A} = A \cup A'$.

Proof

\subseteq Let $x \in \overline{A}$

Case 1: If $x \in A$ then $x \in A \cup A'$

Case 2: If $x \notin A$, then by prop. every open set containing x intersects A nontrivially. Since $x \in A$, then every open set containing x intersects $A - \{x\}$ nontrivially. So $x \notin A'$

In either case $x \in A \cup A'$.

\supseteq First, $A \subset \overline{A}$ by def. of closure

Claim: $A' \subset A$

Let $x \in A'$, then every open set that contains x intersects $A - \{x\}$ nontrivially. So, every open set that contains x and intersects A non trivially, by previous prop. $x \in \overline{A}$.

Hence $A \cup A' \subseteq \overline{A}$.