Th m (Heine-Borel)

A subspace $K \subset \mathbb{R}^n$ is compact iff K is closed and bounded.

Pf
Suppose $K \subset \mathbb{R}^n$ is compact. Since \mathbb{R}^n is Hausdorff, then K is closed.

Suppose to form a contradiction that K is unbounded. Then \(\exists \cup_k \forall x \in K \neq \emptyset \) s.t.

\[U_k = (-k, k) \times (-k, k) \times \cdots \times (-k, k) \]

is an open cover of K with no finite sub-cover. Hence K must be bounded.

\[\Leftarrow \]
Suppose K is closed and bounded.

Since K is bounded there exists a closed box \(B = [-L, L] \times \cdots \times [-L, L] \) s.t. \(K \subset B \).

Since the product of compact spaces is compact, then B is compact.

Since closed subsets of compact spaces are compact then K is compact. (Here we are implicitly using the H.W. problem that states subspace top. on $K \subset \mathbb{R}^n$ is same as $K \subset B \subset \mathbb{R}^n$.)
Theorem (Extreme Value thm)

Let \(f: X \to \mathbb{R} \) be continuous, with \(X \) compact. Then \(f \) takes on its maximum and minimum values.

Proof: Since the continuous image of compact is compact, then \(f(X) \) is a compact subset of \(\mathbb{R} \). By Heine Borel, \(f(X) \) is closed and bounded.

Let \(M = \sup(f(X)) \). Since \(f(X) \) is bounded, \(M < \infty \). By def. of supremum \(\exists \{a_n\}_{n=1}^{\infty} \) contained in \(f(X) \) s.t. \(\lim_{n \to \infty} a_n = M \).

Since \(f(X) \) is closed \(f(X) = f(X) \) and \(M \in f(X) \). Thus \(f \) attains its maximum. A similar argument shows \(f \) attains its minimum.

Other notions of compactness

Definition: \(X \) is limit point compact if every infinite subset of \(X \) has a limit point.

Example: \(\mathbb{R} \) is not l.p. compact since \(\mathbb{Z} \subset \mathbb{R} \) has no limit points.

Proposition: If \(X \) is compact then \(X \) is limit point compact.

Proof: Exercise
\[\text{Ex} \quad X = (\mathbb{Z}_+, \text{discrete}) \times (\mathbb{R}, \text{indiscrete}) \]

\[\text{Claim} \quad X \text{ is not compact.} \]

Look at the open cover \(U_n = \times n \times Y \)

\[b \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \]

\[\text{Claim} \quad X \text{ is l.p. compact} \]

\[\text{Pf} \quad \text{Let } A \text{ be any non empty set.} \]

Since \(A \text{ is non-empty } \exists n \in \mathbb{N}_+ \text{ s.t. } (n, a) \text{ or } (n, b) \in A. \]

If \((n, a) \in A\), then \((n, b)\) is a limit point of \(A\). If \((n, b) \in A\), then \((n, a)\) is a limit point of \(A\).

\[\text{Def} \quad X \text{ is sequentially compact if every sequence} \]

in \(X\) has a convergent subsequence.

In general, not comparable to compactness.

\[\text{Thm} \quad \text{If } X \text{ is metrizable, TFAE} \]

1) \(X\) is compact
2) \(X\) is limit point compact
3) \(X\) is sequentially compact

\[\text{Pf} \quad \text{See real analysis text.} \]
Def Let X be a top. space. A collection \mathcal{C} of subsets of X has the finite intersection property if for every finite subcollection $\mathcal{C}_1, \ldots, \mathcal{C}_n \subseteq \mathcal{C}$, the intersection $\bigcap_{i=1}^n \mathcal{C}_i \neq \emptyset$.

Thm X is compact iff every collection of closed sets \mathcal{C} with the finite intersection property also has the property $\bigcap_{\mathcal{C} \in \mathcal{C}} \mathcal{C} \neq \emptyset$.

Ex $X = (0, 1]$ and $\mathcal{C} = \{ (0, \frac{1}{n}) \mid n \in \mathbb{Z}^+ \}$. The sets in \mathcal{C} are closed in X and have the finite intersection property. However $\bigcap_{n \in \mathbb{N}^+} (0, \frac{1}{n}) = \emptyset$.

pf First some observations

Let \mathcal{U} be any collection of sets in X and $\mathcal{C} = \{ X - U \mid U \in \mathcal{U} \}$.

1. Elements of \mathcal{U} are open \iff elements of \mathcal{C} are closed
2. \mathcal{U} covers X \iff $\bigcap_{\mathcal{C} \in \mathcal{C}} \mathcal{C} = \emptyset$
3. $\{ U_1, \ldots, U_n \} \subseteq \mathcal{U}$ covers X \iff $\bigcap_{i=1}^n U_i = \emptyset$.

(Contrapositive of the definition of compactness)

X is compact iff “for any collection \(U \) of open sets, if no finite subcover of \(U \) covers \(X \) then \(U \) does not cover \(X \).”

This statement is equivalent to

“for any collection \(\mathcal{C} \) of closed sets, if every finite intersection is non-empty, then \(\bigwedge_{C \in \mathcal{C}} C \neq \emptyset \)”

Corollary: If \(X \) is compact and \(C_1 \supseteq C_2 \supseteq \ldots \)

is a sequence of nested non-empty closed sets, then \(\bigwedge_{n=1}^{\infty} C_n \neq \emptyset \).

Proof: Let \(\mathcal{C} = \{C_n\} \subseteq \mathcal{P}(X) \). \(\mathcal{C} \) has the finite intersection property, so \(\bigwedge_{n=1}^{\infty} C_n = \emptyset \).