(1) Munkres §30 Exercise 5
 (a) Every metrizable, separable space has a countable basis.

 Proof: Suppose X is metrizable and Q is a countable dense subset of X. Let d be a metric on X that induces the topology with which X is equipped. Let $n \in \mathbb{Z}^+$, and for each $x \in Q$, let $B_n(x)$ be the ball of radius $\frac{1}{n}$ centered at x. Since the set $A_n = \{B_n(x) | x \in Q\}$ is indexed by Q, A_n is countable. Let $\mathscr{B} = \bigcup_{n \in \mathbb{Z}^+} A_n$. Then \mathscr{B} is countable as the countable union of countable sets. The claim is that \mathscr{B} is basis for the topology on X.

 First, let $x \in X$. Fix $n > 0$. Since Q is dense in X, there exists a q in Q such that $d(x, q) < \frac{1}{n}$; that is $x \in B_n(q) \in \mathscr{B}$. This verifies the first basis axiom.

 Second, suppose $B_n(x)$ and $B_m(y)$ are two members of \mathscr{B} that have a nonempty intersection I. Let $z \in I$. Choose k so that

 \[
 \frac{1}{k} < \min \left\{ \frac{1}{n} - d(x, z), \frac{1}{m} - d(y, z) \right\},
 \]

 and choose $p \in Q$ so that $z \in B_k(p)$ (since Q is dense). It will be shown that $B_k(p) \subset I$.

 Let $q \in B_k(p)$. We have

 \[
 d(q, x) < d(q, p) + d(p, x) < d(q, p) + d(p, z) + d(z, x) < \frac{1}{k} + \frac{1}{k} + d(z, x) < 2 \frac{1}{k} + d(z, x) < \min \left\{ \frac{1}{n} - d(x, z), \frac{1}{m} - d(y, z) \right\} + d(x, z) \leq \frac{1}{n}.
 \]

 Hence, $q \in B_n(x)$. Similar computations show that $q \in B_m(y)$. Thus, $q \in I$, and one can conclude that $B_k(p) \subset I$, verifying the second basis axiom. □

 (b) Every metrizable Lindelof space has a countable basis.

 Proof: Let X be metrizable and Lindelof. Let d be a metric on X that induces the topology with which X is equipped. For each $n \in \mathbb{Z}^+$, $x \in X$, let $B_n(x)$ be defined as in (a), and observe that these balls cover X, so since X is Lindeloff, there exists a countable subcollection A_n of these balls that also covers X. Let $\mathscr{B} = \bigcup_{n \in \mathbb{Z}^+} A_n$, which is countable as the countable union
of countable sets. If \(x \in X \), then for any \(n \in \mathbb{Z}^+ \), \(A_n \) covers \(X \), so there is some ball in \(A_n \), and hence in \(\mathcal{B} \), that contains \(x \). Next, suppose \(x \in B_n(x_1) \cap B_m(x_2) \) for two elements \(x_1, x_2 \) in \(X \). Let \(\frac{1}{k} < \frac{1}{2} \min \left\{ \frac{1}{n} - d(x, x_1), \frac{1}{m} - d(x, x_2) \right\} \). Let \(x_0 \in X \) such that \(x \in B_k(x_0) \). Let \(y \in B_k(x_0) \) be arbitrary. Then we have

\[
d(y, x_1) \leq d(y, x_0) + d(x, x_0) + d(x, x_1)
\]

\[
\leq \frac{2}{k} + d(x, x_1)
\]

\[
\leq \frac{1}{n}.
\]

This implies that \(B_k(x_0) \subset B_n(x_1) \). Similar computations show that \(B_k(x_0) \subset B_m(x_2) \), and hence \(B_k(x_0) \subset B_n(x_1) \cap B_m(x_2) \), so that \(\mathcal{B} \) is in fact a basis. \(\square \)

(2) Prove that if \(X \) has unique limits and is first countable, then \(X \) is Hausdorff.

\textbf{Proof:} Assume the given hypotheses for \(X \). Let \(x \) and \(y \) be distinct points in \(X \). Let \(A = \{ A_n \mid n \in \mathbb{Z}^+ \} \) and \(B = \{ B_n \mid n \in \mathbb{Z}^+ \} \) be countable bases at \(x \) and \(y \) respectively, with the proviso that \(B_n \neq B_m \) if \(n \neq m \). The latter proviso is admissible, since one can remove redundant elements from a countable basis without changing the countability or the status of being a basis. Let \(n_1 = 1 \). Having chosen \(n_1, n_2, \ldots, n_j \), let \(n_{j+1} \) be the least positive integer not included in \(\{ n_1, n_2, \ldots, n_j \} \) such that \(A_{n_{j+1}} \subset A_{n_j} \), if such an integer exists; otherwise let \(n_{j+1} = n_j \). This furnishes a decreasing (with respect to set inclusion) subsequence \(\{ A_{n_j} \} \) of \(A \). Construct an analogous subsequence \(\{ B_{m_j} \} \) of \(B \). For each positive integer \(j \), let \(I_j = A_{n_j} \cap B_{m_j} \). Since \(X \) is not Hausdorff, each \(I_j \) is nonempty, so choose an element \(x_j \in I_j \). Let \(U \) be an open subset of \(X \) that contains \(x \). Since \(A \) is a countable basis at \(x \), there exists a positive integer \(j \) such that \(A_{n_j} \subset X \). Then since \(X \supset A_{n_j} \supset A_{n_{j+1}} \supset A_{n_{j+2}} \supset \cdots \), it follows that \(U \) contains all \(x_k \) for \(k \geq j \). Since \(U \) was an arbitrary open set, it follows that \(\{ x_k \} \) converges to \(x \). Let \(V \) be an open subset of \(X \) that contains \(y \). Since \(B \) is a countable basis at \(y \), there exists a positive integer \(l \) such that \(B_{n_l} \subset X \). Then since \(X \supset B_{n_l} \supset B_{n_{l+1}} \supset B_{n_{l+2}} \supset \cdots \), it follows that \(U \) contains all \(x_k \) for \(k \geq l \). Since \(V \) was an arbitrary open set, it follows that \(\{ x_k \} \) converges to \(y \). This contradicts the uniqueness of limits. Hence, \(X \) is Hausdorff. \(\square \)

(3) Munkres §30 Exercise 4: Every compact metrizable space has a countable basis.

\textbf{Proof:} This follows from 5(b) above: Every compact space is Lindelof, since finite covers are in particular countable covers. But here is an argument carried out independently of 5(b).

Let \(X \) be a compact metrizable space with a countable basis. Since \(X \) is metrizable, let \(d \) be a metric on \(X \) that induces the topology with which \(X \) is equipped. Let \(n \in \mathbb{Z}^+ \) be fixed. To each \(x \in X \), let \(B(x; \frac{1}{n}) \) be the ball centered at \(x \) with radius \(\frac{1}{n} \). Then
\[\bigcup_{x \in X} B(x; \frac{1}{n}) \text{ contains } X \text{ as a subset, since in particular for each } x_0 \in X, x_0 \in B(x_0, \frac{1}{n}). \] Thus, \(\{B(x; \frac{1}{n}) | x \in X\} \) is an open cover of \(X \). Since \(X \) is compact, the latter cover admits a finite subcover, so there exists a finite subset \(A \subset X \) such that \(A_n = \{B(x; \frac{1}{n}) | x \in A\} \) is a cover of \(X \). Since \(n \) was arbitrary in \(\mathbb{Z}^+ \), one can construct such a collection \(A_n \) for each \(n \in \mathbb{Z}^+ \). The claim is that \(\mathcal{B} = \bigcup_{n \in \mathbb{Z}^+} A_n \) is a basis for the topology on \(X \). By proving the claim, one proves the theorem, since \(\mathcal{B} \) is countable as a countable union of finite sets.

Let \(x \in X, n \in \mathbb{Z}^+ \). Since \(A_n \) is a cover of \(X \), there exists some \(x_0 \in X \) such that \(x \in B(x_0; \frac{1}{n}) \). Since \(B(x_0; \frac{1}{n}) \in \mathcal{B} \), this verifies one of the two basis axioms. For the second one, recycle "\(n \)" and suppose \(B(x; \frac{1}{n}) \) and \(B(y; \frac{1}{m}) \) are two members of \(\mathcal{B} \) that have a nonempty intersection \(I \). Let \(z \in I \). Choose \(k \) so that

\[
\frac{1}{k} < \min \left\{ \frac{\frac{1}{n} - d(x, z)}{2}, \frac{\frac{1}{m} - d(y, z)}{2} \right\},
\]

and choose \(p \in X \) so that \(z \in B(p; \frac{1}{k}) \). It will be shown that

\[B(p; \frac{1}{k}) \subset I. \]

Let \(q \in B(p; \frac{1}{k}) \). We have

\[
d(q, x) < d(q, p) + d(p, x) < d(q, p) + d(p, z) + d(z, x) < \frac{1}{k} + \frac{1}{k} + d(z, x) < \frac{2}{k} + d(z, x) < \frac{1}{n} - d(x, z), \frac{1}{m} - d(y, z) \right\} + d(z, x) \leq \frac{1}{n},
\]

Hence, \(q \in B(x; \frac{1}{n}) \). Similar computations show that \(q \in B(y; \frac{1}{m}) \).

Thus, \(q \in I \), and one can conclude that \(B(p; \frac{1}{k}) \subset I \), verifying the second basis axiom. \(\square \)