Math 550A, Homework 7

Quotient Spaces

Not to be turned in

Exercises (to do on your own)

- 1. Prove that the quotient topology actually defines a topology.
- 2. Define an equivalence relation on $X = \mathbb{R}^2$ by setting

$$x_1 \times y_1 \sim x_2 \times y_2$$
 if $y_1 - (x_1)^3 = y_2 - (x_2)^3$.

Let X^* be the quotient space X/\sim . To what familiar space is X^* homeomorphic? (Give a convincing argument.)

3. Answer the same question as above for the equivalence relation

$$x_1 \times y_1 \sim x_2 \times y_2$$
 if $(x_1)^2 + (y_1)^2 = (x_2)^2 + (y_2)^2$

4. Define an equivalence relation on $X = \mathbb{R}^n - \{0\}$ by setting

$$\mathbf{x} \sim \mathbf{y}$$
 if $\mathbf{x} = \lambda \mathbf{y}$ where $\lambda > 0$.

Let X^* be the quotient space X/\sim . To what familiar space is X^* homeomorphic?

5. Let X be the topological space \mathbb{R}^2 with the dictionary order topology. Define an equivalence relation on X by setting

$$(x_1, y_1) \sim (x_2, y_2)$$
 if $x_1 = x_2$.

Let X^* be the quotient space X/\sim . To what familiar space is X^* homeomorphic?

6. Answer the same question as above for the equivalence relation

$$(x_1, y_1) \sim (x_2, y_2)$$
 if $y_1 = y_2$.

Let X^* be the quotient space X/\sim . To what familiar space is X^* homeomorphic?

7. Let X be the topological space \mathbb{R}^2 with the product topology. Define an equivalence relation on X by setting

 $(x_1, y_1) \sim (x_2, y_2)$ if $x_1 = x_2 mod1$ and $y_1 = y_2 mod1$.

Let X^* be the quotient space X/\sim . To what familiar space is X^* homeomorphic?