Math 550A, Homework 3

Continuous Functions

Due in class, Thursday, 2/20

Reading Read $\S 18$ of Munkres.

Exercises (to do on your own)

1. Show that the subspace $(a, b) \subset \mathbb{R}$ with $a<b$ is homeomorphic to $(0,1)$.
2. Define S^{1} to be the following subset of \mathbb{R}^{2} :

$$
S^{1}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}
$$

Prove that S^{1} is closed by using the fact that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, where $f(x, y)=x^{2}+y^{2}$, is continuous.
3. (Infinite pasting lemma?) Suppose $\left\{A_{\alpha}\right\}$ is a collection of closed subsets of X whose union is X and $f: X \rightarrow Y$ is a map such that every restriction map $\left.f\right|_{A_{\alpha}}: A_{\alpha} \rightarrow Y$ is continuous. Must f be continuous?

Problems (to turn in)

1. Munkres $\S 18$, exericse 1 .
2. Munkres $\S 18$, exercise 8 (replace Y with \mathbb{R} if you would like).
3. Munkres $\S 18$, exercise 11 . Be sure to also read exercise 12.
