Topology Homework 1

February 4, 2014

Solutions

§13#8

(a) Let $\mathcal{B} = \{ (a, b) | a < b \text{ and } a, b \in \mathbb{Q} \}$. Let U be open in \mathbb{R} (with the standard topology), and let $x \in U$. Since U is a union of basis elements (by Lemma 13.1), there exists an interval $(a, b), a, b \in \mathbb{R}$, such that $x \in (a, b) \subset U$. Since \mathbb{Q} is dense in \mathbb{R}, $\exists c, d \in \mathbb{Q}$ with $a < c < x < d < b$. Thus, $(c, d) \in \mathcal{B}$, with $x \in (c, d) \subset U$. It follows from Lemma 13.2 that \mathcal{B} is a basis for the standard topology on \mathbb{R}.

(b) Let $\mathcal{B} = \{ [a, b) | a < b, a, b \in \mathbb{Q} \}$. First we show \mathcal{B} is a basis. Let $x \in \mathbb{R}$. For any rational $a < x$ and rational $b > x$, we have $x \in [a, b) \in \mathcal{B}$. This verifies the first condition. Next, let $B_1 = [a, b), B_2 = [c, d)$ be two intervals in \mathcal{B} with a nonempty intersection that contains x. Letting e be the greater of a and c and letting f be the lesser of b and d, we obtain $x \in B_1 \cap B_2 = [e, f) \in \mathcal{B}$. This verifies the second condition (using $B_1 \cap B_2 = B_3$). Thus, \mathcal{B} is a basis. Call the topology it generates T. Now if $U \in T$, then by Lemma 13.1, U is the union of elements of \mathcal{B}, and since every rational is also real, U is also the union of certain basis elements for the lower limit topology. By 13.1 again, U is a member of the lower limit topology. Thus, the lower limit topology is finer than T. Now observe that $\pi \in [\pi, 4] \subset \mathbb{R}$. Suppose $\pi \in B = [a, b) \in \mathcal{B}$. Since a is rational, it must be that $\pi > a$. But then $B \not\subset [\pi, 4]$. Thus there does not exist a basis element in \mathcal{B} that contains π and is a subset of $[\pi, 4)$. By Lemma 13.3, T is not finer than the lower limit topology. The lower limit topology is then strictly finer than T, and therefore unequal to T.

§16#1

Let $A, Y,$ and X be as given in the problem. Let T_Y be the topology that A inherits from Y. Let T_X be the topology that A inherits from X. Then

$$T_Y = \{ A \cap W | W \text{open in } Y \}$$

$$T_X = \{ A \cap W | W \text{open in } X \}.$$
Let $U \in T_Y$. There exists W in Y such that $U = A \cap W$. Also, since Y is a subspace of X, there exists a V open in X such that $W = X \cap Y$. Then $U = A \cap (V \cap Y) = A \cap V$, since $A \subset Y$. Thus, $U \in T_X$. It follows that $T_Y \subset T_X$. Now let $U \in T_X$. There exists a W open in X such that $U = A \cap W$. Also $W \cap Y$ is open in Y, and since $A \subset Y$, $U = A \cap W = A \cap (W \cap Y)$. Thus $A \in T_Y$, and it follows that $T_X \subset T_Y$. Thus $T_X = T_Y$.

§16#4

Let U be open in $X \times Y$. Let T_X and T_Y be the topologies on X and Y respectively. Then

$$\pi_1(U) = \pi_1\left(\bigcup_{\alpha \in Z} A_\alpha \times B_\alpha \right)$$

$$= \bigcup_{\alpha \in Z} \pi_1(A_\alpha \times B_\alpha)$$

where Z and the open A_α's and B_α's are furnished by Theorem 13.1. From the above equality it is clear that $\pi_1(U) = \bigcup_{\alpha \in Z} A_\alpha$, which is open in X as a union of open sets. Thus, π_1 is an open map. A symmetric argument establishes that π_2 is also an open map.

§16#9

Let \mathcal{B} be the basis for the dictionary order topology T on $\mathbb{R} \times \mathbb{R}$. Let \mathcal{B}' be the basis for the product topology T' on $\mathbb{R}_d \times \mathbb{R}$. Let $(x, y) \in \mathbb{R} \times \mathbb{R}$ and let $W \in \mathcal{B}$ such that $(x, y) \in W$. Then $W = ((a, b), (c, d))$ for some real a, b, c, d. As case 1, suppose $a = x$. Then $y > b$, and for some $c > y$ we have $(x, y) \in S \equiv \{x\} \times (b, c) \subset W$ and $S \in \mathcal{B}'$. As case 2, suppose $x = b$. Then $y < d$, and for some $f < y$ we have $(x, y) \in S \equiv \{x\} \times (f, d) \subset W$ and $S \in \mathcal{B}'$. Finally, as case 3, suppose $a < x < b$. Then for any real z whatsoever, by virtue of the dictionary order we have $(a, b) < (z, z) < (c, d)$. Thus, letting (e, f) be any nonempty real interval whatsoever, we get $(x, y) \in S \equiv \{x\} \times (e, f) \subset W$ and $S \in \mathcal{B}'$. Thus, in all cases we can find an element $S \in \mathcal{B}'$ such that $(x, y) \in S \subset W$. By Lemma 13.3, $T \subset T'$. Now let $(x, y) \in \mathbb{R} \times \mathbb{R}$ and let $U \times (c, d) \in \mathcal{B}$ such that $(x, y) \in U \times (c, d)$. Then $(x, y) \in ((x, c), (x, d)) \subset U \times (c, d)$. Since $((x, c), (x, d)) \in \mathcal{B}$, it follows from Lemma 13.3 that $T' \subset T$. Consequently $T' = T$. Consider the interval $I = ((a, b), (a, c)) \in \mathcal{B}$ in the dictionary order topology on $\mathbb{R} \times \mathbb{R}$. Let $x \in I$. Since the standard topology has as a basis all open rectangles, if one can show that $R \not\subset I$ for any open rectangle R such that $x \in R$, then it will follow from Lemma 13.3 that the standard topology is not finer than $T' = T$. Let R be an open rectangle containing x, i.e. $R = (r, s) \times (q, t)$. Suppose $R \subset I$. Then for any element y in R it must be that $y = (y_1, y_2)$ for $b < y_2 < c$. This is a contradiction since $y' = (a + \frac{y_2 - a}{2}, y_2 + \frac{t - y_2}{2})$ is an element in R, but $y' \not\in I$. So the standard topology is not finer than T. Next, recycle symbols and let $R = (a, b) \times (c, d)$ be a basis element for
the standard topology, and let \((x, y) \in R\). Then \(B = ((x, c), (x, d)) \in \mathcal{B}\), and \((x, y) \in B \subseteq R\). Thus, \(T\) is finer than the standard topology on \(\mathbb{R}^2\).