Math 500, Homework 7

Covering spaces, fundamental group

Due at start of class, Thursday, 12/8

Reading §53-55

Exercises (to do on your own)

1. Find a covering \(p : E \to B \) of the figure-eight \(B \) such that \(p^{-1}(b) \) consists of three points for each \(b \).

2. Let \(X \) be the figure-eight space, and let \(x_0 \) be the “crossing point” in the middle. Convince yourself (without rigorous proof) that \(\pi(X, x_0) \) is non-abelian. (This means there exist \([f],[g] \in \pi_1(X, x_0)\) such that \([f] \ast [g] \neq [g] \ast [f].\))

3. Let \(G \) and \(H \) be groups. Prove that the operation on \(G \times H \) defined by

\[
(g_1, h_1) \cdot (g_2, h_2) = (g_1 \cdot g_2, h_1 \cdot h_2)
\]

makes \(G \times H \) into a group.

4. Convince yourself that the Brouwer fixed point theorem could fail if you replaced \(B \) with the open disk \(B^o = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\} \).

Problems (to turn in)

1. Let \(p : E \to B \) be a covering map. Given \(b \in B \), prove that \(p^{-1}(\{b\}) \) is a discrete subspace of \(E \) (i.e., the subspace topology is the discrete topology).

2. Prove that a covering map \(p : E \to B \) is an open map. (Being also surjective and continuous, it follows that \(p \) is a quotient map.)

3. Let \(X \) and \(Y \) be spaces, with \(x_0 \in X \) and \(y_0 \in Y \). Prove that

\[
\pi_1(X \times Y, x_0 \times y_0) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0)
\]

as groups. (Exercise 3 explains the meaning of the product of two groups.)