Math 500, Homework 4

Metric spaces and Connectedness

Due at start of class, Tuesday, 11/1

Reading Read §20 – 21 and 26–28 of Munkres.

Exercises (to do on your own)

- 1. Prove that the collection of all ϵ -balls in a metric space actually forms a basis for a topology.
- 2. If (X, d) is a metric space, verify that $\overline{d}(x, y) = \min(d(x, y), 1)$ defines a metric on X.
- 3. Munkres §20, exercise 4.
- 4. Prove that the taxicab metric on \mathbb{R}^n (see problem 2 below) defines a metric.
- 5. Prove the fact used in class that in the product space $X \times Y$, the subspace $X \times \{y\}$ is homeomorphic to X for any $y \in Y$.
- 6. Prove that \mathbb{R}^{ω} is not connected in the box topology. (Hint: recall \mathbb{R}^{ω} is the set of all sequences of real numbers. Now look at the subsets consisting of bounded and unbounded sequences.)
- 7. Prove that \mathbb{R}^n is not homeomorphic to \mathbb{R} if n > 1 (Hint: consider what happens if you delete a point from each space).
- 8. (a) If A is a connected subspace of X, is \overline{A} necessarily connected?
 - (b) If A is a path-connected subspace of X, is \overline{A} necessarily path-connected?

Problems (to turn in)

- 1. Munkres §21, exercise 7 (recall \mathbb{R}^X is the set of functions $X \to \mathbb{R}$).
- 2. Suppose that d and d' are metrics on a set X. d and d' are said to be uniformly equivalent if there exist positive real numbers a, b such that

$$ad(x,y) \le d'(x,y) \le bd(x,y)$$

for all $x, y \in X$.

- (a) Prove that if d and d' are uniformly equivalent, then they induce the same topology on X. (You may use results from Munkres.)
- (b) Prove that on \mathbb{R}^n , the Euclidean metric d, the square metric ρ , the "taxicab metric"

$$\tau(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + \ldots + |x_n - y_n|.$$

are all uniformly equivalent to each other.

- 3. Is \mathbb{R}_{ℓ} connected? Explain.
- 4. Munkres §24, exercise 3.
- 5. Given a topological space X, define a relation \sim on X by setting $x \sim y$ if there exists a connected subspace of X containing both x and y.
 - (a) Verify that \sim is an equivalence relation. (See §3 for the definition of equivalence relation.)
 - (b) A component of X is an equivalence class for \sim (again, see §3). Prove that the components of X are connected, disjoint subspaces whose union is X.
 - (c) Prove that any connected subspace of X is contained in some component.