Math 123: Power Series

Ryan Blair

CSU Long Beach

Thursday April 7, 2016
1 Power Series
Definition

A **Power Series** is a series and a function of the form

\[P(x) = \sum_{k=0}^{\infty} c_k (x - a)^k = c_1 + c_2(x - a) + c_3(x - a)^2 + \ldots \]

where \(x \) is a variable, the \(c_i \) are constants and we say \(P(x) \) is centered at \(a \).

For what values of \(x \) does a power series converge?
Convergence of Power Series

A power series $\sum_{k=0}^{\infty} c_k (x - a)^k$ fits into one of the following three categories:

1. It converges for all x
2. It converges only at $x = a$
3. It converges for all x such that $|x - a| < R$ where R is some positive constant and may or may not converge at $x = a + R$ and $x = a - R$.

In the third case R is called the **radius of convergence**.
Ratio Test

Theorem

Given a series \(\sum_{i=1}^{\infty} a_i \). If

\[
\lim_{i \to \infty} \left| \frac{a_{i+1}}{a_i} \right| = L,
\]

then

1. If \(L < 1 \), the series converges absolutely.
2. If \(L = 1 \), the test is inconclusive.
3. If \(L > 1 \), the series diverges.

Example: Use the ratio test to show \(\sum_{n=1}^{\infty} \frac{1}{n!} \) converges.
How to find the radius of convergence.

Using the ratio test we see that \(\sum_{k=0}^{\infty} c_k (x - a)^k \) converges if

\[
\lim_{k \to \infty} \left| \frac{c_{k+1}(x - a)}{c_k} \right| < 1
\]

So, we get

\[
R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right|
\]
Power Series

How to find the radius of convergence.

Using the ratio test we see that $\sum_{k=0}^{\infty} c_k (x - a)^k$ converges if

$$\lim_{k \to \infty} \left| \frac{c_{k+1}(x - a)}{c_k} \right| < 1$$

So, we get

$$R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right|$$

Find the radius of convergence of the power series for $\sum_{k=1}^{\infty} \frac{x^k}{k!}$.
How to find the radius of convergence.

Using the ratio test we see that \(\sum_{k=0}^{\infty} c_k (x - a)^k \) converges if

\[
\lim_{k \to \infty} \left| \frac{c_{k+1}(x - a)}{c_k} \right| < 1
\]

So, we get

\[
R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right|
\]

Find the radius of convergence of the power series for \(\sum_{k=1}^{\infty} \frac{x^k}{k!} \).

Find the radius of convergence for the power series \(\sum_{k=1}^{\infty} x^k \).
How to find the radius of convergence.

Using the ratio test we see that \(\sum_{k=0}^{\infty} c_k (x - a)^k \) converges if

\[
\lim_{k \to \infty} \left| \frac{c_{k+1}(x - a)}{c_k} \right| < 1
\]

So, we get

\[
R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right|
\]

Find the radius of convergence of the power series for \(\sum_{k=1}^{\infty} \frac{x^k}{k!} \).
Find the radius of convergence for the power series \(\sum_{k=1}^{\infty} x^k \).
Find the radius of convergence for the power series \(\sum_{k=1}^{\infty} \frac{(3x)^k}{k5^k} \).
How to find the radius of convergence.

Using the ratio test we see that $\sum_{k=0}^{\infty} c_k (x - a)^k$ converges if

$$\lim_{k \to \infty} \left| \frac{c_{k+1}(x - a)}{c_k} \right| < 1$$

So, we get

$$R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right|$$

Find the radius of convergence of the power series for $\sum_{k=1}^{\infty} \frac{x^k}{k!}$. Find the radius of convergence for the power series $\sum_{k=1}^{\infty} x^k$. Find the radius of convergence for the power series $\sum_{k=1}^{\infty} \frac{(3x)^k}{k5^k}$. If the radius of convergence of a power series is R, find the radius of convergence of its derivative.
Given a power series $\sum_{k=0}^{\infty} c_k (x - a)^k$ with radius of convergence R, the **interval of convergence** is one of the following where we include endpoints if the series is convergent at those points.

$$(a - R, a + R), [a - R, a + R), (a - R, a + R], [a - R, a + R]$$

Find the interval of convergence of $\sum_{k=1}^{\infty} \frac{(x)^k}{k}$.