Math 123: Power Series

Ryan Blair

CSU Long Beach
Thursday April 7, 2016

Outline

(1) Power Series

Power Series

Definition

A Power Series is a series and a function of the form

$$
P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}=c_{1}+c_{2}(x-a)+c_{3}(x-a)^{2}+\ldots
$$

where x is a variable, the c_{i} are constants and we say $P(x)$ is centered at a.

For what values of x does a power series converge?

Convergence of Power Series

A power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ fits into one of the following three categories:
(1) It converges for all x
(2) It converges only at $x=a$
(3) It converges for all x such that $|x-a|<R$ where R is some positive constant and may or may not converge at $x=a+R$ and $x=a-R$.

In the third case R is called the radius of convergence.

Ratio Test

Theorem

Given a series $\sum_{i=1}^{\infty} a_{i}$. If

$$
\lim _{i \rightarrow \infty}\left|\frac{a_{i+1}}{a_{i}}\right|=L,
$$

then
(1) If $L<1$, the series converges absolutely.
(2) If $L=1$, the test is inconclusive.

- If $L>1$, the series diverges.

Example: Use the ratio test to show $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges.

How to find the radius of convergence.

Using the ratio test we see that $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ converges if

$$
\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}(x-a)}{c_{k}}\right|<1
$$

So, we get

$$
R=\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{c_{k+1}}\right|
$$

How to find the radius of convergence.

Using the ratio test we see that $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ converges if

$$
\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}(x-a)}{c_{k}}\right|<1
$$

So, we get

$$
R=\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{c_{k+1}}\right|
$$

Find the radius of convergence of the power series for $\sum_{k=1}^{\infty} \frac{x^{k}}{k!}$.

How to find the radius of convergence.

Using the ratio test we see that $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ converges if

$$
\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}(x-a)}{c_{k}}\right|<1
$$

So, we get

$$
R=\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{c_{k+1}}\right|
$$

Find the radius of convergence of the power series for $\sum_{k=1}^{\infty} \frac{x^{k}}{k!}$. Find the radius of convergence for the power series $\sum_{k=1}^{\infty} x^{k}$.

How to find the radius of convergence.

Using the ratio test we see that $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ converges if

$$
\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}(x-a)}{c_{k}}\right|<1
$$

So, we get

$$
R=\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{c_{k+1}}\right|
$$

Find the radius of convergence of the power series for $\sum_{k=1}^{\infty} \frac{x^{k}}{k!}$. Find the radius of convergence for the power series $\sum_{k=1}^{\infty} x^{k}$. Find the radius of convergence for the power series $\sum_{k=1}^{\infty} \frac{(3 x)^{k}}{k 5^{k}}$.

How to find the radius of convergence.

Using the ratio test we see that $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ converges if

$$
\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}(x-a)}{c_{k}}\right|<1
$$

So, we get

$$
R=\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{c_{k+1}}\right|
$$

Find the radius of convergence of the power series for $\sum_{k=1}^{\infty} \frac{x^{k}}{k!}$. Find the radius of convergence for the power series $\sum_{k=1}^{\infty} x^{k}$. Find the radius of convergence for the power series $\sum_{k=1}^{\infty} \frac{(3 x)^{k}}{k 5^{k}}$. If the radius of convergence of a power series is R, find the radius of of convergence of its derivative.

Interval of Convergence

Given a power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ with radius of convergence R, the interval of convergence is one of the following where we include endpoints if the series is convergent at those points.

$$
(a-R, a+R),[a-R, a+R),(a-R, a+R],[a-R, a+R]
$$

Find the interval of convergence of $\sum_{k=1}^{\infty} \frac{(x)^{k}}{k}$.

