Math 123: Polar Coordinates

Ryan Blair

CSU Long Beach

Thursday April 28, 2016

Ryan Blair (CSULB)

Math 123: Polar Coordinates

Thursday April 28, 2016 1 / 5

- 2

999

イロト イポト イヨト イヨト

E

590

イロト イヨト イヨト イヨト

Polar Coordinates

Standard (x, y) coordinates use distance right (x) and distance up (y) to plot points.

イロト イポト イヨト イヨト 二日

Polar Coordinates

Standard (x, y) coordinates use distance right (x) and distance up (y) to plot points. Polar Coordinates (r, θ) use distance from the origin (r) and angle with the x-axis (θ) .

Polar Coordinates

Standard (x, y) coordinates use distance right (x) and distance up (y) to plot points. Polar Coordinates (r, θ) use distance from the origin (r) and angle with the x-axis (θ) .

$$x = r \cdot cos(\theta)$$
 and $y = r \cdot sin(\theta)$

$$r^2=x^2+y^2$$
 and $tan(heta)=rac{y}{x}$

Ryan Blair (CSULB)

Standard (x, y) coordinates use distance right (x) and distance up (y) to plot points. Polar Coordinates (r, θ) use distance from the origin (r) and angle with the x-axis (θ) .

$$x = r \cdot cos(\theta)$$
 and $y = r \cdot sin(\theta)$

$$r^2=x^2+y^2$$
 and $tan(heta)=rac{y}{x}$

Example: Derive these conversion rules.

Standard (x, y) coordinates use distance right (x) and distance up (y) to plot points. Polar Coordinates (r, θ) use distance from the origin (r) and angle with the x-axis (θ) .

$$x = r \cdot cos(\theta)$$
 and $y = r \cdot sin(\theta)$

$$r^2 = x^2 + y^2$$
 and $tan(\theta) = rac{y}{x}$

Example: Derive these conversion rules. **Example:** Sketch the graph of $r = cos(2\theta)$.

If y is a differentiable function of x and t and x is a differentiable function of t then

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

when $\frac{dx}{dt} \neq 0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

If y is a differentiable function of x and t and x is a differentiable function of t then

$$rac{dy}{dx} = rac{rac{dy}{dt}}{rac{dx}{dt}}$$

when $\frac{dx}{dt} \neq 0$.

So, if $r = f(\theta)$ is a curve in polar coordinates, then

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}sin(\theta) + rcos(\theta)}{\frac{dr}{d\theta}cos(\theta) - rsin(\theta)}$$

Ryan Blair (CSULB)

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - の Q @

If y is a differentiable function of x and t and x is a differentiable function of t then

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

when $\frac{dx}{dt} \neq 0$.

So, if $r = f(\theta)$ is a curve in polar coordinates, then

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}sin(\theta) + rcos(\theta)}{\frac{dr}{d\theta}cos(\theta) - rsin(\theta)}$$

Example: Find the slope of the curve $r = cos(2\theta)$ at $\theta = \frac{\pi}{4}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

If y is a differentiable function of x and t and x is a differentiable function of t then

$$rac{dy}{dx} = rac{rac{dy}{dt}}{rac{dx}{dt}}$$

when $\frac{dx}{dt} \neq 0$.

So, if $r = f(\theta)$ is a curve in polar coordinates, then

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}sin(\theta) + rcos(\theta)}{\frac{dr}{d\theta}cos(\theta) - rsin(\theta)}$$

Example: Find the slope of the curve $r = cos(2\theta)$ at $\theta = \frac{\pi}{4}$. **Example:** Find the points on the curve $r = e^{\theta}$ where the tangent line is horizontal or vertical.

Ryan Blair (CSULB)

Area in Polar Coordinates

The area of a **sector** is given by

$$A=\frac{1}{2}r^2\theta$$

3

. ⊒ . ⊳

• • • • • • • •

DQC

Area in Polar Coordinates

The area of a **sector** is given by

$$A=\frac{1}{2}r^{2}\theta$$

For a polar curve $r = f(\theta)$ from $\theta = a$ to $\theta = b$ the area between the origin and the curve is given by

$$A = \int_a^b \frac{1}{2} [f(\theta)]^2 d\theta$$

Ryan Blair (CSULB)

Area in Polar Coordinates

The area of a **sector** is given by

$$A=\frac{1}{2}r^{2}\theta$$

For a polar curve $r = f(\theta)$ from $\theta = a$ to $\theta = b$ the area between the origin and the curve is given by

$$A = \int_a^b \frac{1}{2} [f(\theta)]^2 d\theta$$

Example: Find the area enclosed by one leaf of $r = cos(2\theta)$.

Ryan Blair (CSULB)