Math 123: Taylor’s Formula and Approximations

Ryan Blair

CSU Long Beach

Tuesday April 19, 2016
Taylor’s Formula

\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) \]

Where \(R_n(x) \) is the **error term of order** \(n \).
Taylor’s Formula

\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) \]

Where \(R_n(x) \) is the error term of order \(n \).

Theorem (Taylor’s Theorem)

Given a Taylor Series \(\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k \), if there is a constant \(M \) such that \(|f^{(n+1)}(t)| < M \) for all \(t \) between \(a \) and \(x \), then

\[|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!} \]
Taylor’s Formula

\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) \]

Where \(R_n(x) \) is the error term of order \(n \).

Theorem (Taylor’s Theorem)

Given a Taylor Series \(\sum_{k=0}^\infty \frac{f^{(k)}(a)}{k!}(x-a)^k \), if there is a constant \(M \) such that \(|f^{(n+1)}(t)| < M \) for all \(t \) between \(a \) and \(x \), then
\[|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!} \]

Uses: Can show Taylor series converges if \(|R_n(x)| \) goes to zero as \(n \) goes to infinity, Can get estimates for functions.
Taylor’s Formula

\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) \]

Where \(R_n(x) \) is the **error term of order** \(n \).

Theorem (Taylor’s Theorem)

Given a Taylor Series \(\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^k \), if there is a constant \(M \) such that \(|f^{(n+1)}(t)| < M \) for all \(t \) between \(a \) and \(x \), then

\[|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!} \]

Uses: Can show Taylor series converges if \(|R_n(x)| \) goes to zero as \(n \) goes to infinity, Can get estimates for functions. Show that the Maclaurin series for \(\cos(x) \) converges to \(\cos(x) \) for all \(x \) using Taylor’s Theorem.
Examples

1. Show that the Maclaurin series for \(\frac{1}{1-x} \) converges to \(\frac{1}{1-x} \) for all \(x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \) by finding a formula for \(R_n(x) \).

2. Estimate the error for approximating \(e^x \) on \(\left[-\frac{1}{2}, \frac{1}{2}\right] \) using \(1 + x + \frac{x^2}{2} + \frac{x^3}{6} \).

3. Estimate the error for approximating \(\cos(x) \) on \([-2\pi, 2\pi] \) using \(1 + \frac{-x^2}{2} + \frac{x^4}{24} \).