Math 123: Taylor Series

Ryan Blair

CSU Long Beach

Thursday April 14, 2016

1 / 9

Outline

Taylor Series

Power Series Representations of Functions

We have already shown

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + x^{3} + \dots$$

Question: How do we find a power series representation for a general function.

Question: How is the sequence of partial sums of the power series related to the function.

Taylor Series are closely related to approximations

Example: Graph the following functions side-by-side:

- e^x
- 1
- 1 + x
- $1 + x + \frac{x^2}{2}$ $1 + x + \frac{x^2}{2} + \frac{x^3}{6}$

Taylor Series are closely related to approximations

Example: Graph the following functions side-by-side:

- e^x
- 1
- 1 + x
- $1 + x + \frac{x^2}{2}$
- $1 + x + \frac{x^2}{2} + \frac{x^3}{6}$

Core Idea: A power series representation is the LIMIT of successively better polynomial approximations!

Definition

The **Taylor series** generated by a function f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$$

Definition

The **Taylor series** generated by a function f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$$

Exercise: Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$

Definition

The **Taylor series** generated by a function f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$$

Exercise: Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$

Exercise: Verify that the Taylor series of sin(x) at x = 0 is

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Definition

The **Taylor series** generated by a function f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$$

Exercise: Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$

Exercise: Verify that the Taylor series of sin(x) at x = 0 is

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Theorem

If $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$ has radius of convergence R, then

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(x)$$

for all x in (a - R, a + R)

Problem: Find the Taylor series for f(x) = ln(x+1) at x = 0.

Trick: No trick, just substitute into the formula for Taylor series and find the pattern.

Problem: Find the Taylor series for f(x) = ln(x+1) at x = 0.

Trick: No trick, just substitute into the formula for Taylor series and find the pattern.

Answer:
$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k}$$

Problem: Find the Taylor series for f(x) = ln(x) at x = 1.

Trick: Save yourself time and use the Taylor Series we just found.

Problem: Find the Taylor series for f(x) = ln(x) at x = 1.

Trick: Save yourself time and use the Taylor Series we just found.

Answer:
$$\sum_{k=1}^{\infty} (-1)^{k-1} \frac{(x-1)^k}{k}$$

Problem: Find the first 3 terms of the Taylor series for $f(x) = x\sin(3x)$ at x = 0.

Trick: Use the fact that you know that Taylor Series for sin(x).

Problem: Find the first 3 terms of the Taylor series for $f(x) = e^x sin(x)$ at x = 0.

Trick: Use the fact that you know that Taylor Series for sin(x) and you know the Taylor Series for e^x .