Math 123: Operations on Power Series

Ryan Blair

CSU Long Beach

Tuesday April 12, 2016

Outline

(1) Power Series

Review

Definition

A Power Series is a series and a function of the form

$$
P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}=c_{1}+c_{2}(x-a)+c_{3}(x-a)^{2}+\ldots
$$

The radius of convergence is a positive number R such that $P(x)$ converges for x such that $|x-a|<R$.

$$
R=\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{c_{k+1}}\right|
$$

Interval of Convergence

Given a power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ with radius of convergence R, the interval of convergence is one of the following where we include endpoints if the series is convergent at those points.

$$
(a-R, a+R),[a-R, a+R),(a-R, a+R],[a-R, a+R]
$$

Interval of Convergence

Given a power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ with radius of convergence R, the interval of convergence is one of the following where we include endpoints if the series is convergent at those points.

$$
(a-R, a+R),[a-R, a+R),(a-R, a+R],[a-R, a+R]
$$

Exercise: Find the interval of convergence for the power series $\sum_{k=1}^{\infty} \frac{(x)^{k}}{k}$.

Interval of Convergence

Given a power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ with radius of convergence R, the interval of convergence is one of the following where we include endpoints if the series is convergent at those points.

$$
(a-R, a+R),[a-R, a+R),(a-R, a+R],[a-R, a+R]
$$

Exercise: Find the interval of convergence for the power series $\sum_{k=1}^{\infty} \frac{(x)^{k}}{k}$.
Exercise: Find the interval of convergence for the power series $\sum_{k=1}^{\infty} \frac{(3 x-3)^{k}}{k^{2} 5^{k}}$.

Using the geometric series

Exercise: Use

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

to find a power series for $f(x)=\frac{1}{1+x^{2}}$ and find the interval of convergence.

Derivatives and Integrals of Series

Theorem
If $P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, then

$$
\begin{gathered}
P^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}(x-a)^{k-1} \\
\int P(x) d x=C+\sum_{k=0}^{\infty} \frac{c_{k}}{k+1}(x-a)^{k+1}
\end{gathered}
$$

Derivatives and Integrals of Series

Theorem
If $P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, then

$$
\begin{gathered}
P^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}(x-a)^{k-1} \\
\int P(x) d x=C+\sum_{k=0}^{\infty} \frac{c_{k}}{k+1}(x-a)^{k+1}
\end{gathered}
$$

Exercise: Find the derivative of $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.

Derivatives and Integrals of Series

Theorem
If $P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, then

$$
\begin{gathered}
P^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}(x-a)^{k-1} \\
\int P(x) d x=C+\sum_{k=0}^{\infty} \frac{c_{k}}{k+1}(x-a)^{k+1}
\end{gathered}
$$

Exercise: Find the derivative of $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Exercise: Find the power series for $f(x)=\tan ^{-1}(x)$.

Derivatives and Integrals of Series

Theorem
If $P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, then

$$
\begin{gathered}
P^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}(x-a)^{k-1} \\
\int P(x) d x=C+\sum_{k=0}^{\infty} \frac{c_{k}}{k+1}(x-a)^{k+1}
\end{gathered}
$$

Exercise: Find the derivative of $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.
Exercise: Find the power series for $f(x)=\tan ^{-1}(x)$. Exercise: Find the power series for $f(x)=\ln (1+x)$.

